首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RAG1 and RAG2 initiate V(D)J recombination, which is the assembly of immunoglobulin and T cell receptor genes. The N-terminal region of RAG1 can be deleted, leaving an enzymatic "core" able to catalyze the complete reaction. Here we report that the N-terminal portion of RAG1 has a distinct enzymatic role separate from the rest of the protein. It acts as an E3 ligase in the ubiquitylation of a test substrate and formation of polyubiquitin chains in vitro. This finding suggests a new way in which V(D)J recombination can be regulated and coupled to other aspects of cell physiology.  相似文献   

2.
The enormous repertoire of the vertebrate specific immune system relies on the rearrangement of discrete gene segments into intact antigen receptor genes during the early stages of B-and T-cell development. This V(D)J recombination is initiated by a lymphoid-specific recombinase comprising the RAG1 and RAG2 proteins, which introduces double-strand breaks in the DNA adjacent to the coding segments. Much of the biochemical research into V(D)J recombination has focused on truncated or “core” fragments of RAG1 and RAG2, which lack approximately one third of the amino acids from each. However, genetic analyses of SCID and Omenn syndrome patients indicate that residues outside the cores are essential to normal immune development. This is in agreement with the striking degree of conservation across all vertebrate classes in certain non-core domains. Work from multiple laboratories has shed light on activities resident within these domains, including ubiquitin ligase activity and KPNA1 binding by the RING finger domain of RAG1 and the recognition of specific chromatin modifications as well as phosphoinositide binding by the PHD module of RAG2. In addition, elements outside of the cores are necessary for regulated protein expression and turnover. Here the current state of knowledge is reviewed regarding the non-core regions of RAG1 and RAG2 and how these findings contribute to our broader understanding of recombination.  相似文献   

3.
RAG1 and RAG2 initiate V(D)J recombination, the process of rearranging the antigen-binding domain of immunoglobulins and T-cell receptors, by introducing site-specific double-strand breaks (DSB) in chromosomal DNA during lymphocyte development. These breaks are generated in two steps, nicking of one strand (hydrolysis), followed by hairpin formation (transesterification). The nature and location of the RAG active site(s) have remained unknown. Because acidic amino acids have a critical role in catalyzing DNA cleavage by nucleases and recombinases that require divalent metal ions as cofactors, we hypothesized that acidic active site residues are likewise essential for RAG-mediated DNA cleavage. We altered each conserved acidic amino acid in RAG1 and RAG2 by site-directed mutagenesis, and examined >100 mutants using a combination of in vivo and in vitro analyses. No conserved acidic amino acids in RAG2 were critical for catalysis; three RAG1 mutants retained normal DNA binding, but were catalytically inactive for both nicking and hairpin formation. These data argue that one active site in RAG1 performs both steps of the cleavage reaction. Amino acid substitution experiments that changed the metal ion specificity suggest that at least one of these three residues contacts the metal ion(s) directly. These data suggest that RAG-mediated DNA cleavage involves coordination of divalent metal ion(s) by RAG1.  相似文献   

4.
The RAG1 and RAG2 proteins collaborate to initiate V(D)J recombination by binding recombination signal sequences (RSSs) and making a double-strand break between the RSS and adjacent coding DNA. Like the reactions of their biochemical cousins, the bacterial transposases and retroviral integrases, cleavage by the RAG proteins requires a divalent metal ion but does not involve a covalent protein/DNA intermediate. In the transposase/integrase family, a triplet of acidic residues, commonly called a DDE motif, is often found to coordinate the metal ion used for catalysis. We show here that mutations in each of three acidic residues in RAG1 result in mutant derivatives that can bind the RSS but whose ability to catalyze either of the two chemical steps of V(D)J cleavage (nicking and hairpin formation) is severely impaired. Because both chemical steps are affected by the same mutations, a single active site appears responsible for both reactions. Two independent lines of evidence demonstrate that at least two of these acidic residues are directly involved in coordinating a divalent metal ion: The substitution of Cys for Asp allows rescue of some catalytic function, whereas an alanine substitution is no longer subject to iron-induced hydroxyl radical cleavage. Our results support a model in which the RAG1 protein contains the active site of the V(D)J recombinase and are interpreted in light of predictions about the structure of RAG1.  相似文献   

5.
The process of antigen receptor gene rearrangement, V(D)J recombination, involves DNA cleavage by the RAG-1 and RAG-2 proteins. Cleavage generates covalently sealed (hairpin) DNA ends, termed coding ends, which must be opened by an endonuclease prior to joining. Resolution of these hairpin ends requires the activity of the DNA-dependent protein kinase (DNA-PK), a protein kinase whose specific role is yet undetermined. It has been suggested that phosphorylation of one or both RAG proteins by DNA-PK is required to activate or recruit the hairpin-opening nuclease. Furthermore, very recent work has shown that RAG proteins themselves can open hairpins. These data raise the possibility that DNA-PK-mediated phosphorylation of the RAG proteins could regulate the hairpin opening reaction. To test this hypothesis, we constructed mutant versions of RAG-1 and RAG-2 in which all four DNA-PK consensus phosphorylation sites were removed by site-directed mutagenesis. Our data provide conclusive evidence that phosphorylation of these conserved serine/threonine residues is not required for hairpin opening or joining of V(D)J recombination intermediates.  相似文献   

6.
RAG1 and RAG2 in V(D)J recombination and transposition   总被引:1,自引:0,他引:1  
RAG1 and RAG2 are the key components of the V(D)J recombinase machinery that catalyses the somatic gene rearrangements of antigen receptor genes during lymphocyte development. In the first step of V(D)J recombination--DNA cleavage--the RAG proteins act together as an endonuclease to excise the DNA between two individual gene segments. They are also thought to be involved in the subsequent DNA joining step. In vitro, the RAG proteins catalyze the integration of the excised DNA element into target DNA completing a process similar to bacterial transposition. In vivo, this reaction is suppressed by an unknown mechanism. The individual roles of RAG1 and RAG2 in V(D)J recombination and transposition reactions are discussed based on mutation analyses and structure predictions.  相似文献   

7.
8.
9.
10.
The majority of antigen receptor diversity in mammals is generated by V(D)J recombination. During this process DNA double strand breaks are introduced at recombination signals by lymphoid specific RAG1/2 proteins generating blunt ended signal ends and hairpinned coding ends. Rejoining of all DNA ends requires ubiquitously expressed DNA repair proteins, such as Ku70/86 and DNA ligase IV/XRCC4. In addition, the formation of coding joints depends on the function of the scid gene encoding the catalytic subunit of DNA-dependent protein kinase, DNA-PK(CS), that is somehow required for processing of coding end hairpins. Recently, it was shown that purified RAG1/2 proteins can cleave DNA hairpins in vitro, but the same activity was also described for a protein complex of the DNA repair proteins Nbs1/Mre11/Rad50. This leaves the possibility that either protein complex might be involved in coding end processing in V(D)J recombination. We have therefore analyzed V(D)J recombination in cells from patients with Nijmegen breakage syndrome, carrying a mutation in the nbs1 gene. We find that V(D)J recombination frequencies and the quality of signal and coding joining are comparable to wild-type controls, as analyzed by a cellular V(D)J recombination assay. In addition, we did not detect significant differences in CDR3 sequences of endogenous Ig lambdaL and kappaL chain gene loci cloned from peripheral blood lymphocytes of an NBS patient and of healthy individuals. These findings suggest that the Nbs1/Mre11/Rad50 complex is not involved in coding end processing of V(D)J recombination.  相似文献   

11.
V(D)J recombination is a somatic gene rearrangement process that assembles antigen receptor genes from individual segments during lymphocyte development. The access of the RAG1/RAG2 recombinase to these gene segments is regulated at the level of chromatin modifications, in particular histone tail modifications. Trimethylation of lysine 4 in histone H3 (H3K4me3) correlates with actively recombining gene elements, and this mark is recognized and interpreted by the plant homeodomain (PHD) of RAG2. Here we report that the PHD domain of the only known invertebrate homolog of RAG2, the SpRAG2L protein of the purple sea urchin (Strongylocentrotus purpuratus) also binds to methylated histones, but with a unique preference for H3K4me2. While the cognate substrate for the sea urchin RAG1L/RAG2L complex remains elusive, the affinity for histone tails and the nuclear localization of ectopically expressed SpRAG2L strongly support the model that this enzyme complex exerts its activity on DNA in the context of chromatin.  相似文献   

12.
Ataxia-telangiectasia mutated (ATM) is required for resistance to radiation-induced DNA breaks. Here we use chromatin immunoprecipitation to show that ATM also localizes to breaks associated with V(D)J recombination. ATM recruitment to the recombining locus correlates approximately with recruitment of the break-initiating factor RAG1 and precedes efficient break repair, consistent with localization of ATM to normal recombination intermediates. A product of ATM kinase activity, Ser 18-phosphorylated p53, was detected similarly at these breaks, arguing that ATM phosphorylates target proteins in situ. We suggest routine surveillance of intermediates in V(D)J recombination by ATM helps suppress potentially oncogenic translocations when repair fails.  相似文献   

13.
Although the RAG2 core domain is the minimal region required for V(D)J recombination, the noncore region also plays important roles in the regulation of recombination, and mutations in this region are often related to severe combined immunodeficiency. A complete understanding of the functions of the RAG2 noncore region and the potential contributions of its individual residues has not yet been achieved. Here, we show that the zinc finger motif within the noncore region of RAG2 is indispensable for maintaining the stability of the RAG2 protein. The zinc finger motif in the noncore region of RAG2 is highly conserved from zebrafish to humans. Knock‐in mice carrying a zinc finger mutation (C478Y) exhibit decreased V(D)J recombination efficiency and serious impairment in T/B‐cell development due to RAG2 instability. Further studies also reveal the importance of the zinc finger motif for RAG2 stability. Moreover, mice harboring a RAG2 noncore region mutation (N474S), which is located near C478 but is not zinc‐binding, exhibit no impairment in either RAG2 stability or T/B‐cell development. Taken together, our findings contribute to defining critical functions of the RAG2 zinc finger motif and provide insights into the relationships between the mutations within this motif and immunodeficiency diseases.  相似文献   

14.
Background: The RAG proteins required for V(D)J recombination of immunoglobulin and T-cell receptor genes in the acquired immune response contain a magnesium ion-binding site termed a DDE site, composed of D (aspartic acid) and E (glutamic acid) amino acids. A similar DDE-like magnesium binding site also is present in transposases, retroviral integrases, and the innate antiviral response enzymes RNAse H and RNA-induced silencing complex (RISC). OBJECTIVE: To help clinicians understand immunodeficiency that results from deficiencies of RAG protein functions, such as severe combined immunodeficiency disorders, Omenn syndrome, and ataxia telangiectasia, and to be familiar with the diverse roles of other DDE enzymes. METHODS: Literature published in peer-reviewed journals during the past 2 decades that identified and characterized DDE enzymes, including RAG proteins, RISC and RNA silencing, RNAse H, retroviral integrases, transposases, and a putative DDE recombinase required for herpes virus replication, was selectively reviewed and summarized by the author. RESULTS: DDE enzymes play a critical role in acquired immunity through RAG-mediated immunoglobulin and T-cell receptor V(D)J recombination in innate immunity through RISC and RNAse H. Paradoxically, DDE enzymes are critical components of pathogen-specific enzymes such as retroviral integrase and other pathogen-encoded proteins. CONCLUSION: Because of their critical role in acquired and innate immunity, the DDE recombinases are attractive targets for novel pharmacologic therapies. Currently, retroviral integrase inhibitors in clinical trial for human immunodeficiency virus infection appear to be safe and effective and could provide a paradigm for inactivating DDE sites in other viral pathogens, as well as RAG and RISC.  相似文献   

15.
V(D)J recombination is initiated by the recombination activating gene (RAG) proteins RAG-1 and RAG-2. The ability of antigen-receptor-gene segments to undergo V(D)J recombination is correlated with spatially- and temporally-restricted chromatin modifications. We have found that RAG-2 bound specifically to histone H3 and that this binding was absolutely dependent on dimethylation or trimethylation at lysine 4 (H3K4me2 or H3K4me3). The interaction required a noncanonical plant homeodomain (PHD) that had previously been described within the noncore region of RAG-2. Binding of the RAG-2 PHD finger to chromatin across the IgH D-J(H)-C locus showed a strong correlation with the distribution of trimethylated histone H3 K4. Mutation of a conserved tryptophan residue in the RAG-2 PHD finger abolished binding to H3K4me3 and greatly impaired recombination of extrachromosomal and endogenous immunoglobulin gene segments. Together, these findings are consistent with the interpretation that recognition of hypermethylated histone H3 K4 promotes efficient V(D)J recombination in vivo.  相似文献   

16.
Summary: V(D)J recombination generates functional immunoglobulin and T‐cell receptor genes in developing lymphocytes. The recombination‐activating gene 1 (RAG1) and RAG2 proteins catalyze site‐specific DNA cleavage in this recombination process. Biochemical studies have identified catalytically active regions of each protein, referred to as the core regions. Here, we review our progress in the identification and characterization, in biophysical and biochemical terms, of topologically independent domains within both the non‐core and core regions of RAG1. Previous characterizations of a structural domain identified in the non‐core region of RAG1 from residues 265–380, referred to as the zinc‐binding dimerization domain, are discussed. This domain contains two zinc‐binding motifs, a RING finger and a C2H2 zinc finger. Core RAG1 also consists of multiple domains, each of which functions individually in one or more of the essential macromolecular interactions formed by the intact core protein. Two structural domains referred to as the central and the C‐terminal domains that include residues 528–760 and 761–979 of RAG1, respectively, have been identified. The interactions of the central and C‐terminal domains in core RAG1 with the recombination signal sequence (RSS) have contributed additional insight to a developing model for the RAG1–RSS complex.  相似文献   

17.
The bounty of RAGs: recombination signal complexes and reaction outcomes   总被引:4,自引:0,他引:4  
Summary: V(D)J recombination is a form of site‐specific DNA rearrangement through which antigen receptor genes are assembled. This process involves the breakage and reunion of DNA mediated by two lymphoid cell‐specific proteins, recombination activating genes RAG‐1 and RAG‐2, and ubiquitously expressed architectural DNA‐binding proteins and DNA‐repair factors. Here I review the progress toward understanding the composition, assembly, organization, and activity of the protein‐DNA complexes that support the initiation of V(D)J recombination, as well as the molecular basis for the sequence‐specific recognition of recombination signal sequences (RSSs) that are the targets of the RAG proteins. Parallels are drawn between V(D)J recombination and Tn5/Tn10 transposition with respect to the reactions, the proteins, and the protein‐DNA complexes involved in these processes. I also consider the relative roles of the different sequence elements within the RSS in recognition, cleavage, and post‐cleavage events. Finally, I discuss alternative DNA transactions mediated by the V(D)J recombinase, the protein‐DNA complexes that support them, and factors and forces that control them.  相似文献   

18.
In addition to creating the DNA double strand breaks that initiate V(D)J recombination, the RAG proteins are thought to play a critical role in the joining phase of the reaction. One such role, suggested by in vitro studies, might be to ensure the structural integrity of postcleavage complexes, but the significance of such a function in vivo is unknown. We have identified RAG1 mutants that are proficient in DNA cleavage but defective in their ability to interact with coding ends after cleavage and in the capture of target DNA for transposition. As a result, these mutants exhibit severe defects in hybrid joint formation, hairpin coding end opening, and transposition in vitro, and in V(D)J recombination in vivo. Our results suggest that the RAG proteins have an architectural function in facilitating proper and efficient V(D)J joining, and a protective function in preventing degradation of broken ends prior to joining.  相似文献   

19.
20.
V(D)J recombination is a tightly controlled process of somatic recombination whose regulation is mediated in part by chromatin structure. Here, we report that RAG2 binds directly to the core histone proteins. The interaction with histones is observed in developing lymphocytes and within the RAG1/RAG2 recombinase complex in a manner that is dependent on the RAG2 C terminus. Amino acids within the plant homeo domain (PHD)-like domain as well as a conserved acidic stretch of the RAG2 C terminus that is considered to be a linker region are important for this interaction. Point mutations that disrupt the RAG2-histone association inhibit the efficiency of the V(D)J recombination reaction at the endogenous immunoglobulin locus, with the most dramatic effect in the V to DJ(H) rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号