首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Management of acute pain remains a significant clinical problem. In preclinical studies, CB2 cannabinoid receptor-selective agonists inhibit nociception without producing central nervous system side effects. The CB2 receptor-selective agonist AM1241 produces antinociceptive effects that are antagonized by CB2, but not CB1, receptor-selective antagonists, suggesting that activation of CB2 receptors results in antinociception. However, it has not been possible to definitively demonstrate that these effects are mediated by CB2 receptors, because we have lacked the pharmacological tools to confirm the in vivo receptor selectivity of the antagonists used. Further, recent evidence for cannabinoid-like receptors beyond CB1 and CB2 raises the possibility that AM1241 exerts its antinociceptive effects at uncharacterized CB2-like receptors that are also inhibited by AM630. The experiments reported here further test the hypothesis that CB2 receptor activation inhibits nociception. They evaluated the antinociceptive actions of AM1241 and the less-selective CB2 receptor agonist WIN55,212-2 in wild-type (CB2+/+) mice and in mice with genetic disruption of the CB2 receptor (CB2-/- mice). AM1241 inhibited thermal nociception in CB2+/+ mice, but had no effect in CB2-/- littermates. WIN55,212-2 produced equivalent antinociception in CB1+/+ and CB1-/- mice, while its antinociceptive effects were reduced in CB2-/- compared to CB2+/+ mice. The effects of morphine were not altered in CB2-/- compared to CB2+/+ mice. These data strongly suggest that AM1241 produces antinociception in vivo by activating CB2 cannabinoid receptors. Further, they confirm the potential therapeutic relevance of CB2 cannabinoid receptors for the treatment of acute pain.  相似文献   

2.
Cannabinoid receptor agonists diminish responses to painful stimuli. Extensive evidence implicates the CB(1) receptor in the production of antinociception. However, the capacity of CB(2) receptors, which are located outside the central nervous system (CNS), to produce antinociception is not known. Using AM1241, a CB(2) receptor-selective agonist, we demonstrate that CB(2) receptors produce antinociception to thermal stimuli. Injection of AM1241 in the hindpaw produced antinociception to a stimulus applied to the same paw. Injection of an equivalent dose of AM1241 into the paw contralateral to the side of testing did not. The antinociceptive actions of AM1241 were blocked by the CB(2) receptor-selective antagonist AM630, but not by the CB(1) receptor-selective antagonist AM251. AM1241 also produced antinociception when injected systemically (intraperitoneally). The antinociceptive actions of systemic AM1241 were blocked by injection of AM630 into the paw where the thermal stimulus was applied, but not the contralateral paw. These findings demonstrate the local, peripheral nature of CB(2) cannabinoid antinociception. AM1241 did not produce the CNS cannabinoid effects of hypothermia, catalepsy, inhibition of activity or impaired ambulation, while this tetrad of effects was produced by the mixed CB(1)/CB(2) receptor agonist WIN55,212-2. Peripheral antinociception without CNS effects is consistent with the peripheral distribution of CB(2) receptors. CB(2) receptor agonists may have promise clinically for the treatment of pain without CNS cannabinoid side effects.  相似文献   

3.
The present studies were conducted to test the hypothesis that activation of peripheral cannabinoid CB(2) receptors would suppress hyperalgesia evoked by intradermal administration of capsaicin, the pungent ingredient in hot chili peppers. The CB(2)-selective cannabinoid agonist (2-iodo-5-nitro-phenyl)-[1-(1-methyl-piperidin-2-ylmethyl)-1H-indol-3-yl]-methanone (AM1241) (33, 330 microg/kg i.p.) suppressed the development of capsaicin-evoked thermal and mechanical hyperalgesia and allodynia. AM1241 also produced a dose-dependent suppression of capsaicin-evoked nocifensive behavior. The AM1241-induced suppression of each parameter of capsaicin-evoked pain behavior was completely blocked by the CB(2) antagonist N-[(1S)-endo-1,3,3-trimethyl bicycle [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) but not by the CB(1) antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A). AM1241 (33 microg/kg i.pl.) suppressed capsaicin-evoked thermal and mechanical hyperalgesia and allodynia after local administration to the capsaicin-treated (ipsilateral) paw but was inactive after administration to the capsaicin-untreated (contralateral) paw. Our data indicate that AM1241 suppresses capsaicin-evoked hyperalgesia and allodynia through a local site of action. These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to normalize nociceptive thresholds and produce antinociception in persistent pain states.  相似文献   

4.
为比较骨髓腔内(IBM)或静脉(Ⅳ)等不同途径输注小鼠造血干细胞后在受体内的分布特点及对移植效果的影响,将C57BL/6胎鼠及新生鼠外周血(FNPB)单个核细胞(MNC)移植经亚致死量^60Coγ射线辐照的BALB/c鼠。受鼠随机分为6组:单侧IBM组;双侧IBM组;Ⅳ组;双侧IBM+Ⅳ组;照射对照组;空白对照组。用组织冰冻切片和流式细胞术动态了解CFSE标记的FNPBMNC在受体内的分布变化,观察移植后受鼠生存状况、植入水平、造血恢复及GVHD情况。结果显示:IBM注射的供体FNPBMNC主要积聚于注射侧骨髓腔内,少量FNPBMNC可经血循环二次归巢,肺部滞留很少。单/双侧IBM组输注的FNPBMNC总数无明显差异,但经双侧IBM输入FN—PBMNC渗漏至外周血或其它组织器官的比例更少;IBM各组造血重建速度均优于Ⅳ组,尤以双侧IBM组最快,其外周血象和造血干祖细胞集落产率在移植后第21天已接近正常水平,单侧IBM组、双侧IBM+Ⅳ组次之;IBM组各时点植入水平均明显高于Ⅳ组,双侧IBM组注射侧胫骨植入水平与单侧IBM组无明显差异,二次移植中双侧IBM组的植入水平明显高于Ⅳ组;IBM移植组90天存活率≥80%,Ⅳ组仅为50%。结论:双侧IBM有利于更多造血干细胞归巢,促进植入和造血重建,提高IBM途径移植的效果。  相似文献   

5.
High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo.  相似文献   

6.
7.
Our studies show that the induction of a chronic inflammatory lesion in the left hind legs of mice by administration of 5000 rad produced distinct abnormalities of the hematopoietic system. A peripheral neutrophilia accompanied reduced numbers of total nucleated cells, stem cells, stromal cells, erythroblasts, and lymphocytes in the unirradiated femoral marrow, and the spleen was enlarged. Mice with these hematopoietic abnormalities promptly succumbed with bone marrow failure to a sublethal dose of total body irradiation (600 rad TB). Acute inflammation associated with a sterile abscess also impaired survival after 600 rad TB. Hematopoietic abnormalities resembling those in mice with inflammation had been reported in mice bearing a solid extramedullary tumor of sarcoma-180. Concomitant studies showed that bone marrow failure and impaired survival after 600 rad TB administered to mice bearing sarcoma-180 occurred at the same time as that in mice with chronic inflammation. We concluded that chronic inflammation or tumor produced similar abnormalities in the bone marrow and spleen that led to markedly impaired survival and death from bone marrow failure after a sublethal dose of total body irradiation. Although the extramedullary hematopoiesis in the enlarged spleen indicated that its microenvironment supported hematopoiesis, whereas that in marrow was reduced, it was insufficient to compensate for a total body deficit of functional stem cells.  相似文献   

8.
Mouse hematopoiesis, suppressed by a sublethal dose of ionizing radiation, was the target for combined therapy with a cyclooxygenase-2 (COX-2) inhibitor meloxicam and an adenosine A3 receptor agonist IB-MECA. The drugs were administered in an early postirradiation treatment regimen: meloxicam was given in a single dose 1 hour after irradiation, IB-MECA in two doses 24 and 48 hours after irradiation. Treatment-induced changes in several compartments of hematopoietic progenitor and precursor cells of the bone marrow were evaluated on day 3 after irradiation. Values of hematopoietic progenitor cells for granulocytes/macrophages and erythrocytes (GM-CFC and BFU-E, respectively), as well as those of proliferative granulocytic cells were found to be significantly higher in the mice treated with the drug combination in comparison to irradiated controls and attained the highest increase factors of 1.6, 1.6, and 2.6, respectively. The study emphasizes the significance of the combined treatment of suppressed hematopoiesis with more agents. Mechanisms of the action of the individual compounds of the studied drug combination and of their joint operation are discussed.  相似文献   

9.
Mice and rats lacking the guanosine nucleotide-binding protein Gimap5 exhibit peripheral T cell lymphopenia, and Gimap5 can bind to Bcl-2. We show that Gimap5-deficient mice showed progressive multilineage failure of bone marrow and hematopoiesis. Compared with wild-type counterparts, Gimap5-deficient mice contained more hematopoietic stem cells (HSCs) but fewer lineage-committed hematopoietic progenitors. The reduction of progenitors and differentiated cells in Gimap5-deficient mice resulted in a loss of HSC quiescence. Gimap5-deficient HSCs and progenitors underwent more apoptosis and exhibited defective long-term repopulation capacity. Absence of Gimap5 disrupted interaction between Mcl-1-which is essential for HSC survival-and HSC70, enhanced Mcl-1 degradation, and compromised mitochondrial integrity in progenitor cells. Thus, Gimap5 is an important stabilizer of mouse hematopoietic progenitor cell survival.  相似文献   

10.
Livers of the adult mice contain c-kit+ stem cells that can reconstitute thymocytes, multiple lineage cells, and bone marrow (BM) stem cells. Transfer of 1 x 10(7) hepatic mononuclear cells (MNC) and 5 x 10(4) hepatic c-kit+ cells of BALB/c mice induced DP thymocytes within a week in four Gy-irradiated CB17/-SCID mice, but 2 wk were required for BM cells or BM c-kit+ cells to produce DP thymocytes. Moreover, B cell-depleted BM cells or liver MNC of SCID mice that had been rescued by hepatic MNC of BALB/c mice again reconstituted thymus and B cells of other irradiated SCID mice. CD3- IL-2R beta- populations of both BM cells and hepatic MNC of C57BL/6 (B6) mice could generate T cells with intermediate TCR (mostly NK1.1-) in the liver of irradiated B6 SCID mice before thymic reconstitution (extrathymic T cells). Furthermore, transfer of liver c-kit+ cells of B6-Ly 5.1 mice into irradiated B6 SCID (Ly5.2) mice revealed that liver c-kit+ cells can reconstitute myeloid and erythroid lineage cells. These results strongly suggest that the liver contains pluripotent stem cells and serves an important hematopoietic organ even into adulthood.  相似文献   

11.
目的建立选择性外周血自细胞腺苷A2A受体基因缺失的小鼠模型。方法分别采用一次9.5GyX线照射和2次6.2GyX线间隔照射对小鼠进行清髓处理,将腺苷A2A受体基因敲除的小鼠骨髓细胞移植到清髓性处理的野生型小鼠体内,使其白细胞的腺苷A2A受体选择性缺失,并对移植效果进行鉴定。结果通过基因型鉴定发现骨髓移植6周后受体小鼠的白细胞性染色体基因PCR产物电泳条带为300和330bp;腺苷A2A受体阳性细胞率为10.21%,而野生型小鼠为96.72%;2次分割放疗结合大于6×10。个骨髓细胞的移植量可以得到满意的小鼠存活率(91%)。结论成功地建立了选择性缺失白细胞腺苷A2A受体基因的小鼠模型。  相似文献   

12.
Morphine is a potent opioid analgesic used to alleviate moderate or severe pain, but the development of drug tolerance and dependence limits its use in pain management. Previous studies showed that cannabinoid type 2 (CB2) receptor ligands may modulate opioid effects. However, there is no report of the effect of CB2 receptor agonist on acute morphine tolerance and physical dependence. We therefore investigated the effect of a CB2 receptor agonist (AM1241) on morphine-induced morphine tolerance and physical dependence in mice. Repeated coadministration of AM1241 (1 or 3mg/kg intraperitoneally) and morphine (10mg/kg subcutaneously) for 7days increased the mechanical paw withdrawal threshold in mice as measured by the von Frey filament test, and 3mg/kg AM1241 in combination with morphine increased the thermal paw withdrawal latency as measured by the hot-plate test. Combination with 3mg/kg AM1241 and morphine increased acute morphine antinociception. Coadministration of 1 or 3mg/kg AM1241 and morphine reduced acute morphine tolerance, and 3mg/kg AM1241 reduced chronic morphine tolerance. Coadministration of 1 or 3mg/kg AM1241 and morphine reduced naloxone-precipitated withdrawal jumping, but not diarrhea. Coadministration of AM1241 and morphine did not inhibit spontaneous locomotor activity. Pretreatment with 3mg/kg AM1241 decreased the chronic morphine-induced Iba1 expression in spinal cord. Coadministration of AM1241 (3 mg/kg) reduced the production of interleukin-1β, tumor necrosis factor-α, and interleukin-6 induced by long-term and acute morphine treatment. Our findings suggest that the coadministration of the CB2 receptor agonist and morphine could increase morphine antinociception and reduce morphine tolerance and physical dependence in mice.Perspective:The combination of a CB2 agonist and morphine may provide a new strategy for better treatment of acute and chronic pain and prevention of opioid tolerance and dependence. This finding may also provide a clue for the treatment of opioid tolerance and dependence in clinics.  相似文献   

13.
A single embryonic stem cell (ESC) line can be repetitively cryopreserved, thawed, expanded, and differentiated into various cellular components serving as a potentially renewable and well-characterized stem cell source. Therefore, we determined whether ESCs could be used to reconstitute marrow and blood in major histocompatibility complex (MHC)-mismatched mice. To induce differentiation toward hematopoietic stem cells (HSCs) in vitro, ESCs were cultured in methylcellulose with stem cell factor, interleukin (IL)-3, and IL-6. ESC-derived, cytokine-induced HSCs (c-kit+/CD45+) were isolated by flow cytometry and injected either intra bone marrow or intravenously into lethally irradiated MHC-mismatched recipient mice. From 2 wk to 6 mo after injection, the peripheral blood demonstrated increasing ESC-derived mononuclear cells that included donor-derived T and B lymphocytes, monocytes, and granulocytes without clinical or histologic evidence of graft-versus-host disease (GVHD). Mixed lymphocyte culture assays demonstrated T cell tolerance to both recipient and donor but intact third party proliferative responses and interferon gamma production. ESCs might be used as a renewable alternate marrow donor source that reconstitutes hematopoiesis with intact immune responsiveness without GVHD despite crossing MHC barriers.  相似文献   

14.
本研究旨在探讨右旋蛋氨酸(D-methionine,D-met)对造血系统辐射损伤的影响。将C57BL/6小鼠分为对照组、照射组、D-met300mg/kg组+照射组和D-met1000mg/kg+照射组。对照组小鼠接受假照射,其余3组小鼠接受7.5Gy,1、4、8q和lGy1线的全身照射,分别用于小鼠存活率、骨髓细胞存活率、外周血白细胞数及其分类数以及骨髓细胞集落形成能力的检测。D-met于照射前30min腹腔注射。结果表明,300和1000mg/kgD-met均未显著提高7.5Gy照射小鼠的存活率;10-2、10-3和10-4mol/LD-met能明显提高1、4、8Gy照射小鼠骨髓细胞的存活率;300和1000mg/kgD-met虽能使受1Gy全身照射小鼠的外周血白细胞数有所增加,但与照射小鼠相比却无统计学差异,而对骨髓细胞集落形成能力具有明显的促进作用。结论:D-met可有效缓解辐射对骨髓细胞的杀伤作用,提高受照小鼠骨髓细胞的存活率,促进照射小鼠造血功能的恢复。  相似文献   

15.
背景:研究证实多种造血生长因子、基质细胞饲养层及其条件培养液可促进胚胎干细胞向造血干细胞分化。目的:以人主动脉-性腺-中肾(aorta-gonad-mesonephros,AGM)区基质细胞为饲养层体外诱导小鼠胚胎干细胞分化为造血干细胞,并比较不同移植途径对造血干细胞体内造血重建能力的影响。方法:将小鼠E14胚胎干细胞诱导为拟胚体,采用Transwell非接触共培养体系在人AGM区基质细胞饲养层上诱导6d,接种NOD-SCID小鼠检测体内致瘤性。再将诱导后的拟胚体细胞移植经致死量60Coγ射线辐照的BALB/C雌鼠,受鼠随机分为静脉移植组、骨髓腔移植组、照射对照组及正常对照组。结果与结论:拟胚体细胞经人AGM区基质细胞诱导后Sca-1+c-Kit+细胞占(13.12±1.30)%。NOD-SCID小鼠皮下接种经人AGM区基质细胞诱导的拟胚体细胞可出现畸胎瘤,经骨髓腔接种未见肿瘤形成。静脉移植组动物全部死亡,骨髓腔移植组生存率为55.6%,移植后21d外周血象基本恢复,存活受鼠检测到供体来源Sry基因。提示小鼠胚胎干细胞经人AGM区基质细胞诱导分化的造血干细胞通过骨髓腔移植安全并具有一定的造血重建能力。  相似文献   

16.
Using an experimental mouse model, we have investigated the kinetics of hematopoietic reconstitution of recipients transplanted during fetal development with fresh and transduced hematopoietic stem cells (HSCs). Total bone marrow (BM) and purified Lin(-)Sca-1(+) cells, either fresh or transduced ex vivo with enhanced green fluorescent protein (EGFP)-encoding retroviral vectors, were in utero transplanted (IUT) into fetal mice. Data obtained 2 months after transplantation showed a similar proportion of engrafted animals, regardless of the fact that samples were purified or not on HSCs, and subjected or not to ex vivo transduction with retroviral vectors. The transplantation of grafts enriched in HSCs, either fresh or transduced, always improved the levels of donor chimerism of IUT mice in comparison with results obtained in mice transplanted with unpurified BM grafts (6.8 and 7.3% versus 1.15% median values, respectively). Significantly, engrafted recipients that were transplanted with the transduced graft always contained transduced EGFP(+) cells in peripheral blood (around 5% of donor cells were EGFP(+) at 2 months post-transplantation). This proportion was essentially maintained at longer times post-transplantation, as well as in secondary recipients transplanted with the BM of IUT mice. Our study describes for the first time a significant and stable engraftment of unconditioned mice subjected to IUT with HSCs transduced with retroviral vectors.  相似文献   

17.
Endogenous cannabinoids and peripheral cannabinoid CB2 receptors (CB2Rs) are involved in the antinociceptive effect of electroacupuncture (EA) on inflammatory pain. However, it is not clear how CB2R activation contributes to the antinociceptive effect of EA. The major proinflammatory cytokines, such as tumour necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β) and IL‐6, are involved in inflammatory pain. Here we determined the effects of CB2R activation and EA on the expression level of IL‐1β, IL‐6 and TNF‐α in inflamed skin tissues. Inflammatory pain was induced by injection of complete Freund's adjuvant into the left hindpaw of rats. Thermal hyperalgesia was tested with a radiant heat stimulus, and mechanical allodynia was quantified using von Frey filaments. The mRNA and protein levels of IL‐1β, IL‐6 and TNF‐α in inflamed skin tissues were measured using real‐time polymerase chain reaction and Western blot, respectively. Local injection of the selective CB2R agonist AM1241 or EA applied to GB30 and GB34 significantly reduced thermal hyperalgesia and mechanical allodynia induced by tissue inflammation. The specific CB2R antagonist AM630 significantly attenuated the antinociceptive effect of EA. Furthermore, EA or AM1241 treatment significantly decreased the mRNA and protein levels of IL‐1β, IL‐6 and TNF‐α in inflamed skin tissues. In addition, pretreatment with AM630 significantly reversed the inhibitory effect of EA on these cytokine levels in inflamed skin tissues. Our results suggest that EA reduces inflammatory pain and proinflammatory cytokines in inflamed skin tissues through activation of CB2Rs.  相似文献   

18.
For decades, in vitro expansion of transplantable hematopoietic stem cells (HSCs) has been an elusive goal. Here, we demonstrate that multipotent adult progenitor cells (MAPCs), isolated from green fluorescent protein (GFP)-transgenic mice and expanded in vitro for >40-80 population doublings, are capable of multilineage hematopoietic engraftment of immunodeficient mice. Among MAPC-derived GFP+CD45.2+ cells in the bone marrow of engrafted mice, HSCs were present that could radioprotect and reconstitute multilineage hematopoiesis in secondary and tertiary recipients, as well as myeloid and lymphoid hematopoietic progenitor subsets and functional GFP+ MAPC-derived lymphocytes that were functional. Although hematopoietic contribution by MAPCs was comparable to control KTLS HSCs, approximately 10(3)-fold more MAPCs were required for efficient engraftment. Because GFP+ host-derived CD45.1+ cells were not observed, fusion is not likely to account for the generation of HSCs by MAPCs.  相似文献   

19.
Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation–mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation–induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner.  相似文献   

20.
BACKGROUND: Modification of Notch receptors by O‐linked fucose and its further elongation by the Fringe family of glycosyltransferase has been shown to be important for Notch signaling activation. Our recent studies disclose a myeloproliferative phenotype, hematopoietic stem cell (HSC) dysfunction, and abnormal Notch signaling in mice deficient in FX, which is required for fucosylation of a number of proteins including Notch. The purpose of this study was to assess the self‐renewal and stem cell niche features of fucose‐deficient HSCs. STUDY DESIGN AND METHODS: Homeostasis and maintenance of HSCs derived from FX?/? mice were studied by serial bone marrow transplantation, homing assay, and cell cycle analysis. Two‐photon intravital microscopy was performed to visualize and compare the in vivo marrow niche occupancy by fucose‐deficient and wild‐type (WT) HSCs. RESULTS: Marrow progenitors from FX?/? mice had mild homing defects that could be partially prevented by exogenous fucose supplementation. Fucose‐deficient HSCs from FX?/? mice displayed decreased self‐renewal capability compared with the WT controls. This is accompanied with their increased cell cycling activity and suppressed Notch ligand binding. When tracked in vivo by two‐photon intravital imaging, the fucose‐deficient HSCs were found localized farther from the endosteum of the calvarium marrow than the WT HSCs. CONCLUSIONS: The current reported aberrant niche occupancy by HSCs from FX?/? mice, in the context of a faulty blood lineage homeostasis and HSC dysfunction in mice expressing Notch receptors deficient in O‐fucosylation, suggests that fucosylation‐modified Notch receptor may represent a novel extrinsic regulator for HSC engraftment and HSC niche maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号