首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is well established that cortical motor stimulation results in contralateral upper limb (UL) activity. Motor responses are also elicited in the ipsilateral UL, though controversy surrounds the significance of these effects. Evidence suggests that ipsilateral muscle activity is more common following the stimulation of the supplementary motor area (SMA) and dorsal premotor area (PMd), compared to the primary motor cortex (M1), but none of these studies compared effects from all three areas in the same subjects. This has limited our understanding of how these three cortical motor areas influence ipsilateral UL muscle activity. The purpose of this study was to determine the contribution of each of three cortical areas to the production of ipsilateral and contralateral UL. To maximize sensitivity and allow comparison of the effects across cortical areas, we applied the same stimulation parameters (36 pulse stimulus train at 330 Hz) to M1, SMA, and PMd in three adult M. fascicularis and recorded electromyographic (EMG) activity from muscles in the trunk and both ULs. Of all muscle responses identified, 24 % were ipsilateral to the stimulation, mostly in proximal muscles. The highest percentage of ipsilateral responses occurred following SMA stimulation. We also observed that PMd stimulation elicited more suppression responses compared with stimulation of M1 and SMA. The results indicate that ipsilateral motor areas provide a significant contribution to cortical activation of the trunk and proximal UL muscles. These understudied pathways may represent a functional substrate for future strategies to shape UL recovery following injury or stroke.  相似文献   

2.
Functional imaging studies in humans have demonstrated widespread age-related changes in cortical motor networks. However, the relative contribution of cortical regions during motor performance varies not only with age but with task parameters. In this study, we investigated whether motor system activity during a task involving increasingly forceful hand grips was influenced by age. Forty right-handed volunteers underwent functional magnetic brain imaging whilst performing repetitive isometric hand grips with either hand in separate sessions. We found no age-related changes in the average size and shape of the task-related blood oxygen level dependent (BOLD) signal in contralateral primary motor cortex (M1), but did observe reduced ipsilateral M1 deactivation in older subjects (both hands). Furthermore, task-related activity co-varied positively with force output in a number of brain regions, but was less prominent with advancing age in contralateral M1, cingulate sulcus (both hands), sensory and premotor cortices (right hand). These results indicate that a reduced ability to modulate activity in appropriate motor networks when required may contribute to age-related decline in motor performance.  相似文献   

3.
The goal of the present neuroanatomical study in macaque monkeys was twofold: (1) to clarify whether the hand representation of the primary motor cortex (M1) has a transcallosal projection to M1 of the opposite hemisphere; (2) to compare the topography and density of transcallosal connections for the hand representations of M1 and the supplementary motor area (SMA). The hand areas of M1 and the SMA were identified by intracortical microstimulation and then injected either with retrograde tracer substances in order to label the neurons of origin in the contralateral motor cortical areas (four monkeys) or, with an anterograde tracer, to establish the regional distribution and density of terminal fields in the opposite motor cortical areas (two monkeys). The main results were: (1) The hand representation of M1 exhibited a modest homotopic callosal projection, as judged by the small number of labeled neurons within the region corresponding to the contralateral injection. A modest heterotopic callosal projection originated from the opposite supplementary, premotor, and cingulate motor areas. (2) In contrast, the SMA hand representation showed a dense callosal projection to the opposite SMA. The SMA was found to receive also dense heterotopic callosal projections from the contralateral rostral and caudal cingulate motor areas, moderate projections from the lateral premotor cortex, and sparse projections from M1. (3) After injection of an anterograde tracer (biotinylated dextran amine) in the hand representation of M1, only a few small patches of axonal label were found in the corresponding region of M1, as well as in the lateral premotor cortex; virtually no label was found in the SMA or in cingulate motor areas. Injections of the same anterograde tracer in the hand representation of the SMA, however, resulted in dense and widely distributed axonal terminal fields in the opposite SMA, premotor cortex, and cingulate motor areas, while labeled terminals were clearly less dense in M1. It is concluded that the hand representations of the SMA and M1 strongly differ with respect to the strength and distribution of callosal connectivity with the former having more powerful and widespread callosal connections with a number of motor fields of the opposite cortex than the latter. These anatomical results support the proposition of the SMA being a bilaterally organized system, possibly contributing to bimanual coordination.On leave from the Institute of Physiology, Armenian Academy of Sciences, Erevan, Armenia  相似文献   

4.
Motor areas in the frontal lobe of the primate   总被引:17,自引:0,他引:17  
There has been a substantial change in our concepts about the cortical motor areas. It is now clear that the frontal lobe of primates contains at least six premotor areas that project directly to the primary motor cortex (M1). Two premotor areas, the ventral premotor area (PMv) and the dorsal premotor area (PMd), are located on the lateral surface of the hemisphere. Four premotor areas are located on the medial wall of the hemisphere and include the supplementary motor area (SMA) and three cingulate motor areas. Each of these premotor areas has substantial direct projections to the spinal cord. Corticospinal axons from the premotor areas terminate in the intermediate zone of the spinal cord, and some also terminate in the ventral horn around motoneurons. In this respect, the premotor areas are like M1 and appear to have direct connections with spinal motoneurons, particularly those innervating hand muscles. Furthermore, it is possible to evoke movements of the distal and proximal forelimb using intracortical stimulation at relatively low currents in the premotor areas. Thus, the premotor areas appear to have the potential to influence the control of movement not only at the level of M1, but also more directly at the level of the spinal cord. For these reasons, we have suggested that the premotor areas may operate at a hierarchical level comparable to M1. We propose that each premotor area is a functionally distinct efferent system that differentially generates and/or controls specific aspects of motor behavior.  相似文献   

5.
We investigate whether imagery of voluntary movements of different body parts activates somatotopical sections of the human motor cortices. We used functional magnetic resonance imaging to detect the cortical activity when 7 healthy subjects imagine performing repetitive (0.5-Hz) flexion/extension movements of the right fingers or right toes, or horizontal movements of the tongue. We also collected functional images when the subjects actually executed these movements and used these data to define somatotopical representations in the motor areas. In this study, we relate the functional activation maps to cytoarchitectural population maps of areas 4a, 4p, and 6 in the same standard anatomical space. The important novel findings are 1). that imagery of hand movements specifically activates the hand sections of the contralateral primary motor cortex (area 4a) and the contralateral dorsal premotor cortex (area 6) and a hand representation located in the caudal cingulate motor area and the most ventral part of the supplementary motor area; 2). that when imagining making foot movements, the foot zones of the posterior part of the contralateral supplementary motor area (area 6) and the contralateral primary motor cortex (area 4a) are active; and 3). that imagery of tongue movements activates the tongue region of the primary motor cortex and the premotor cortex bilaterally (areas 4a, 4p, and 6). These results demonstrate that imagery of action engages the somatotopically organized sections of the primary motor cortex in a systematic manner as well as activating some body-part-specific representations in the nonprimary motor areas. Thus the content of the mental motor image, in this case the body part, is reflected in the pattern of motor cortical activation.  相似文献   

6.
Unilateral movements are enabled through a distributed network of motor cortical areas but the relative contribution from the parts of this network is largely unknown. Failure of this network potentially results in mirror activation of the primary motor cortex (M1) ipsilateral to the intended movement. Here we tested the role of the right dorsal premotor cortex (dPMC) in 11 healthy subjects by disrupting its activity with 20 Hz repetitive transcranial magnetic stimulation (rTMS) whilst the subjects exerted a unilateral contraction of the left first dorsal interosseous (FDI). We found that disruption of right dPMC enhanced mirror activation of the ipsilateral left M1, as probed by motor evoked potential (MEP) amplitude to the right FDI. This was not the case with sham rTMS, when rTMS was directed to the right M1, or with rTMS of the right dPMC but without contraction of the left FDI. Findings suggest that activity in the dPMC contributes to the suppression of mirror movements during intended unilateral movements.  相似文献   

7.
Fang M  Li J  Lu G  Gong X  Yew DT 《Brain topography》2005,17(3):127-137
Summary: Healthy adults of three age groups (young, middle-age and older) were cued by a multimedia projector to perform a series of simple (making a fist, opening/closing of the mouth) and complex (opposition of index finger and thumb, chewing gum) motor tasks while being scanned by functional magnetic resonance imaging. Our results showed that in unilateral hand movements, the premotor/motor cortex in the contralateral hemisphere was most strongly activated. Supplementary motor cortex involvement was usually present in the young and not in the old, except in precision movement when supplementary motor cortex was also involved in the old. For movements of the face (chewing, opening and closing of mouth), the prefrontal cortex was activated in the old age group but finger and hand movements never activated the prefrontal cortex in any age. Furthermore, areas like insula and cingulate gyrus might be activated in motor tasks. We conclude that different motor activities triggered diverse activation patterns which differed in different age groups.  相似文献   

8.
Although maintenance of steady contractions is required for many daily tasks, there is little understanding of brain areas that modulate lower limb force accuracy. Functional magnetic resonance imaging was used to determine brain areas associated with steadiness and force during static (isometric) lower limb target-matching contractions at low and high intensities. Fourteen young adults (6 men and 8 women; 27.1 ± 9.1 years) performed three sets of 16-s isometric contractions with the ankle dorsiflexor muscles at 10, 30, 50, and 70 % of maximal voluntary contraction (MVC). Percent signal changes (PSCs, %) of the blood oxygenation level-dependent response were extracted for each contraction using region of interest analysis. Mean PSC increased with contraction intensity in the contralateral primary motor area (M1), supplementary motor area, putamen, pallidum cingulate cortex, and ipsilateral cerebellum (p < 0.05). The amplitude of force fluctuations (standard deviation, SD) increased from 10 to 70 % MVC but relative to the mean force (coefficient of variation, CV %) was greatest at 10 % MVC. The CV of force was associated with PSC in the ipsilateral parietal lobule (r = ?0.28), putamen (r = ?0.29), insula (r = ?0.33), and contralateral superior frontal gyrus (r = ?0.33, p < 0.05). There were minimal sex differences in brain activation across the isometric motor tasks indicating men and women were similarly motivated and able to activate cortical motor centers during static tasks. Control of steady lower limb contractions involves cortical and subcortical motor areas in both men and women and provides insight into key areas for potential cortical plasticity with impaired or enhanced leg function.  相似文献   

9.
Traditional models of the human language circuitry encompass three cortical areas, Broca’s, Geschwind’s and Wernicke’s, and their connectivity through white matter fascicles. The neural connectivity deep to these cortical areas remains poorly understood, as does the macroscopic functional organization of the cortico-subcortical language circuitry. In an effort to expand current knowledge, we combined functional MRI (fMRI) and diffusion tensor imaging to explore subject-specific structural and functional macroscopic connectivity, focusing on Broca’s area. Fascicles were studied using diffusion tensor imaging fiber tracking seeded from volumes placed manually within the white matter. White matter fascicles and fMRI-derived clusters (antonym-generation task) of positive and negative blood-oxygen-level-dependent (BOLD) signal were co-registered with 3-D renderings of the brain in 12 healthy subjects. Fascicles connecting BOLD-derived clusters were analyzed within specific cortical areas: Broca’s, with the pars triangularis, the pars opercularis, and the pars orbitaris; Geschwind’s and Wernicke’s; the premotor cortex, the dorsal supplementary motor area, the middle temporal gyrus, the dorsal prefrontal cortex and the frontopolar region. We found a functional connectome divisible into three systems—anterior, superior and inferior—around the insula, more complex than previously thought, particularly with respect to a new extended Broca’s area. The extended Broca’s area involves two new fascicles: the operculo-premotor fascicle comprised of well-organized U-shaped fibers that connect the pars opercularis with the premotor region; and (2) the triangulo-orbitaris system comprised of intermingled U-shaped fibers that connect the pars triangularis with the pars orbitaris. The findings enhance our understanding of language function.  相似文献   

10.
From electroencephalographic recordings, we estimated the surface Laplacian over motor areas in a Stroop-like between-hand choice reaction time task in humans. Response-locked averages showed a (negative) "motor potential" over the primary motor areas contralateral to the response. At the same time, a positive wave was observed over the primary motor areas ipsilateral to the response. These data suggest that, when a between-hand choice is required, an inhibition of the primary motor cortex ipsilateral to the nonresponding hand is implemented. This observation is relevant to the interpretation of the lateralized readiness potential (LRP) because the LRP is blind to the respective contribution of the contralateral and ipsilateral motor cortices. In addition, a negative wave beginning about 200 ms before EMG onset and peaking about 50 ms before it occurred over the supplementary motor areas (FCz). This wave preceded the motor potential, which supports the view that the supplementary motor areas are upstream in a hierarchy of the motor command.  相似文献   

11.
Fang PC  Stepniewska I  Kaas JH 《Neuroscience》2006,143(4):987-1020
Connections of motor areas in the frontal cortex of prosimian galagos (Otolemur garnetti) were determined by injecting tracers into sites identified by microstimulation in the primary motor area (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), frontal eye field (FEF), and granular frontal cortex. Retrogradely labeled neurons for each injection were related to architectonically defined thalamic nuclei. Nissl, acetylcholinesterase, cytochrome oxidase, myelin, parvalbumin, calbindin, and Cat 301 preparations allowed the ventral anterior and ventral lateral thalamic regions, parvocellular and magnocellular subdivisions of ventral anterior nucleus, and anterior and posterior subdivisions of ventral lateral nucleus of monkeys to be identified. The results indicate that each cortical area receives inputs from several thalamic nuclei, but the proportions differ. M1 receives major inputs from the posterior subdivision of ventral lateral nucleus while premotor areas receive major inputs from anterior parts of ventral lateral nucleus (the anterior subdivision of ventral lateral nucleus and the anterior portion of posterior subdivision of ventral lateral nucleus). PMD and SMA have connections with more dorsal parts of the ventral lateral nucleus than PMV. The results suggest that galagos share many subdivisions of the motor thalamus and thalamocortical connection patterns with simian primates, while having less clearly differentiated subdivisions of the motor thalamus.  相似文献   

12.
We investigated how neurons in the different motor areas of the frontal lobe reflect the movement dynamics, and how their neuronal activity undergoes plastic changes when monkeys adapt to perturbing forces (they learn new dynamics). Here we describe the results obtained in the dorsal premotor area (PMd) and ventral premotor area (PMv). Monkeys performed visually instructed, delayed reaching movements before, during and after exposure and adaptation to a viscous, curl force field. During movement planning (i.e., during an instructed delay that followed the cue and preceded the go signal), we found dynamics-related activity in PMd but not in PMv. A closer analysis revealed that the population of PMd reflected the dynamics of the upcoming movement increasingly over the course of the delay, starting from a kinematics-related signal. During movement execution, dynamics-related activity was present in both PMd and PMv. In this respect, the results for PMd were similar to that previously found for the supplementary motor area (SMA) whereas the results for PMv were more similar to that previously found for the primary motor cortex (M1). Plastic changes associated with the acquisition of new dynamics found in PMd and PMv were qualitatively similar to those previously observed in M1 and SMA. The ensemble of our experiments suggest a broader picture of the cortical control of movements, whereby multiple areas all contribute to the various sensorimotor processes, including “low” computations such as the movement dynamics, but also express a degree of specialization.  相似文献   

13.
Recent studies in adults have found consistent contralateral high gamma activities in the sensorimotor cortex during unilateral finger movement. However, no study has reported on this same phenomenon in children. We hypothesized that contralateral high gamma activities also exist in children during unilateral finger movement. Sixty normal children (6–17 years old) were studied with a 275-channel MEG system combined with synthetic aperture magnetometry (SAM). Sixty participants displayed consistently contralateral event-related synchronization (C-ERS) within high gamma band (65–150 Hz) in the primary motor cortices (M1) of both hemispheres. Interestingly, nineteen younger children displayed ipsilateral event-related synchronization (I-ERS) within the high gamma band (65–150 Hz) just during their left finger movement. Both I-ERS and C-ERS were localized in M1. The incidence of I-ERS showed a significant decrease with age. Males had significantly higher odds of having ipsilateral activity compared to females. Noteworthy, high gamma C-ERS appeared consistently, while high gamma I-ERS changed with age. The asymmetrical patterns of neuromagnetic activities in the children’s brain might represent the maturational lateralization and/or specialization of motor function. In conclusion, the present results have demonstrated that contralateral high-gamma neuromagnetic activities are potential biomarkers for the accurate localization of the primary motor cortex in children. In addition, the interesting finding of the ipsilateral high-gamma neuromagnetic activities opens a new window for us to understand the developmental changes of the hemispherical functional lateralization in the motor system.  相似文献   

14.
Shaping the excitability of human motor cortex with premotor rTMS   总被引:8,自引:3,他引:5  
Recent studies have shown that low-frequency repetitive transcranial magnetic stimulation (rTMS) to the left dorsal premotor cortex has a lasting influence on the excitability of specific neuronal subpopulations in the ipsilateral primary motor hand area (M1 HAND ). Here we asked how these premotor to motor interactions are shaped by the intensity and frequency of rTMS and the orientation of the stimulating coil. We confirmed that premotor rTMS at 1 Hz and an intensity of 90% active motor threshold (AMT) produced a lasting decrease in corticospinal excitability probed with single-pulse TMS over the left M1 HAND . Reducing the intensity to 80% AMT increased paired-pulse excitability at an interstimulus interval (ISI) of 7 ms. Opposite effects occurred if rTMS was given at 5 Hz: at 90% AMT, corticospinal excitability increased; at 80% AMT, paired-pulse excitability at ISI = 7 ms decreased. No effects were seen if rTMS was applied at the same intensities to prefrontal or primary motor cortices. These findings indicate that the intensity of premotor rTMS determines the net effect of conditioning on distinct populations of neurones in the ipsilateral M1 HAND , but it is the frequency of rTMS that determines the direction of the induced change. By selecting the appropriate intensity and frequency, premotor rTMS allows to induce a predictable up- or down-regulation of the excitability in distinct neuronal circuits of human M1 HAND .  相似文献   

15.
Trunk muscles receive corticospinal innervation ipsilaterally and contralaterally and here we investigate the degree of ipsilateral innervation and any cortical asymmetry in pairs of trunk muscles and proximal and distal limb muscles. Transcranial magnetic stimulation (TMS) was applied to left and right motor cortices in turn and bilateral electromyographic (EMG) recordings were made from internal oblique (IO; lower abdominal), deltoid (D; shoulder) and first dorsal interosseus (1DI; hand) muscles during voluntary contraction in ten healthy subjects. We used a 7-cm figure-of-eight stimulating coil located 2 cm lateral and 2 cm anterior to the vertex over either cortex. Incidence of ipsilateral motor evoked potentials (MEPs) was 85% in IO, 40% in D and 35% in 1DI. Mean (± S.E.M.) ipsilateral MEP latencies were longer (P<0.05; paired t-test) than contralateral MEP latencies (contralateral vs. ipsilateral; IO: 16.1±0.4 ms vs. 19.0±0.5 ms; D: 9.7±0.3 ms vs. 15.1±1.9 ms; 1DI: 18.3±0.6 ms vs. 23.3±1.4 ms), suggesting that ipsilateral MEPs were not a result of interhemispheric current spread. Where data were available, we calculated a ratio (ipsilateral MEP areas/contralateral MEP areas) for a given muscle (IO: n=16; D: n=8; 1DI: n=7 ratios). Mean values for these ratios were 0.70±0.20 (IO), 0.14±0.05 (D) and 0.08±0.02 (1DI), revealing stronger ipsilateral drive to IO. Comparisons of the sizes of these ratios revealed a bias towards one cortex or the other (four subjects right; three subjects left). The predominant cortex showed a mean ratio of 1.21±0.38 compared with 0.26±0.06 in the other cortex (P<0.05). It appears that the corticospinal control of IO has a strong ipsilateral component relative to the limb muscles and also shows hemispheric asymmetry.  相似文献   

16.
Role of the cerebellum in externally paced rhythmic finger movements   总被引:1,自引:0,他引:1  
Several studies have suggested that the cerebellum has an important role in timing of subsecond intervals. Previous studies using transcranial magnetic stimulation (TMS) to test this hypothesis directly have produced inconsistent results. Here we used 1-Hz repetitive TMS (rTMS) for 10 min over the right or left cerebellar hemisphere to interfere transiently with cerebellar processing to assess its effect on the performance of a finger-tapping task. Subjects tapped with their right index finger for 1 min (synchronization phase) with an auditory or visual cue at 0.5, 1, or 2 Hz; they continued for a further 1 min at the same rate with no cues (continuation phase). The blocks of trials were performed in a random order. rTMS of the cerebellum ipsilateral to the movement increased the variability of the intertap interval but only for movements at 2 Hz that were made while subjects were synchronizing with an auditory cue. There was no effect on the continuation phase of the task when the cues were no longer present or on synchronization with a visual cue. Similar results were seen after stimulation over the contralateral dorsal premotor cortex but not after rTMS over supplementary motor area. There was no effect after rTMS over the ipsilateral right cervical nerve roots or over the ipsilateral primary motor cortex. The results support the hypothesis of neural network for event-related timing in the subsecond range that involves a cerebellar-premotor network.  相似文献   

17.
We studied the topography of contralateral connections of both prefrontal and premotor regions of the dog's frontal association cortex (FAC) by charting distributions of retrogradely labeled cells following unilateral HRP injections to various areas of this cortex. Generally, in the contralateral hemisphere the labeled cells were most numerous in the FAC areas localized homotopically to the injection sites, less numerous in FAC areas heterotopic to injections, and the least numerous in cortical areas situated outside the frontal lobe. The nonfrontal areas which project to the dorsal and ventral FAC differ from one another. Dorso-caudal parts of the cingular and insular areas, as well as the auditory, somatosensory and visual association cortices project to the dorsal FAC, while the ventro-rostral parts of the cingular and insular areas, together with the prepiriform and periamygdaloid areas of the olfactory cortex as well as the subcallosal area send their axons to the ventral FAC. Thus, the dorsal and ventral FAC areas are supplied by contralateral afferents originating from different cortical areas. Similar organization of ipsilateral FAC connections was described previously.  相似文献   

18.
To investigate the effector dependence of task-related neural activity in dorsal premotor (PMd) and primary motor cortex (M1), directional tuning functions were compared between instructed-delay reaching tasks performed separately with either the contralateral or the ipsilateral limb. During presentation of the instructional cue, the majority (55/90, 61%) of cells in PMd were tuned with both arms, and their dynamic range showed a trend for stronger discharge with the contralateral arm. Most strikingly, however, the preferred direction of most of these latter cells (41/55, 75%) was not significantly different between arms. During movement, many PMd cells continued to be tuned with both arms (53/90, 59%), with a trend for increasing directional differences between the arms over the course of the trial. In contrast, during presentation of the instructional cue only 5/74 (7%) cells in M1 were tuned with both arms. During movement, about half of M1 cells (41/74, 55%) were tuned with both arms but the preferred directions of their tuning functions were often very different and there was a strong bias toward greater discharge rates when the contralateral arm was used. Similar trends were observed for EMG activity. In conclusion, M1 is strongly activated during movements of the contralateral arm, but activity during ipsilateral arm movements is also common and usually different from that seen with the contralateral arm. In contrast, a major component of task-related activity in PMd represents movement in a more abstract or task-dependent and effector-independent manner, especially during the instructed-delay period.  相似文献   

19.
To reveal the somatotopy of the pedunculopontine tegmental nucleus that functions as a brainstem motor center, we examined the distribution patterns of corticotegmental inputs from the somatic motor areas of the frontal lobe in the macaque monkey. Based on the somatotopical map prepared by intracortical microstimulation, injections of the anterograde tracers, biotinylated dextran amine and wheat germ agglutinin-conjugated horseradish peroxidase, were made into the following motor-related areas: the primary motor cortex, the supplementary and presupplementary motor areas, the dorsal and ventral divisions of the premotor cortex, and the frontal eye field. Data obtained from the present experiments were as follows: (i) Corticotegmental inputs from orofacial, forelimb, and hindlimb representations of the primary motor cortex tended to be arranged orderly from medial to lateral in the pedunculopontine tegmental nucleus. However, the distribution areas of these inputs considerably overlapped; (ii) The major input zones from distal representations of the forelimb and hindlimb regions of the primary motor cortex were located medial to those from their proximal representations, although there was a substantial overlap between the distribution areas of distal versus proximal limb inputs; (iii) The main terminal zones from the forelimb regions of the primary motor cortex, the supplementary and presupplementary motor areas, and the dorsal and ventral divisions of the premotor cortex appeared to overlap largely in the mediolaterally middle aspect of the pedunculopontine tegmental nucleus; and (iv) Corticotegmental input from the frontal eye field was scattered over the pedunculopontine tegmental nucleus.Thus, the present results indicate that the pedunculopontine tegmental nucleus is likely to receive partly separate but essentially convergent cortical inputs not only from multiple motor-related areas representing the same body part, but also from multiple regions representing diverse body parts. This suggests that somatotopical representations are intermingled rather than segregated in the pedunculopontine tegmental nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号