首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycogen synthase kinase-3beta (GSK-3beta) has been proposed as the main kinase able to phosphorylate tau aberrantly in Alzheimer's disease and in related tauopathies. We have previously generated a double transgenic mouse line overexpressing the enzyme GSK-3beta and tau protein carrying a triple frontotemporal dementia and parkinsonism linked to chromosome 17 mutation whose expression patterns overlap in CA1 (pyramidal neurons) and dentate gyrus (granular neurons). Here, we have used this transgenic model to analyze how axonal and somatodendritic neuronal compartments are affected in the hippocampus. Our data demonstrate that neuronal subpopulations respond differentially to increased GSK-3 activity. Thus, dentate gyrus granular neurons undergo apoptotic death with subsequent degeneration of the mossy fibers, while CA1 pyramidal neurons accumulate hyperphosphorylated tau both in the axonal and in the somatodendritic compartments. These studies also allow us to propose a model of spreading of pathology through the hippocampus as a consequence of GSK-3 and tau dysregulation.  相似文献   

2.
老年性痴呆模型大鼠海马结构nNOS神经元的变化   总被引:10,自引:0,他引:10  
目的 研究老年性痴呆模型大鼠海马结构nNOS神经元的变化情况。方法 用 15月龄老年Wistar大鼠以D 半乳糖腹腔注射 4周加上鹅膏蕈氨酸 (ibotenicacid ,IBO)脑内Meynert核注射造模 ,然后运用免疫组织化学方法检测大鼠海马CA1、CA3和齿状回nNOS神经元数目。结果 老年性痴呆模型大鼠海马CA1、CA3和齿状回nNOS阳性神经元数目及其积分光密度较正常老年组和正常青年组有明显减少的趋势 ,组间比较有差异显著性。结论 大鼠海马结构nNOS神经元的减少是老年性痴呆病的主要病理变化之一  相似文献   

3.
Transient global cerebral ischemia induced in rats by four-vessel occlusion for 20 min produced an increase in the immunocontent of glial fibrillary acidic protein and a protein phosphorylation response that was different in the CA1 and dentate gyrus areas of the hippocampus. We studied different times of reperfusion (one, four, seven, 14 and 30 days) and observed that the immunocontent and in vitro rate of phosphorylation of glial fibrillary acidic protein in the CA1 region was significantly increased at all intervals after the ischemic insult, indicating that the astrocytic response was maintained for at least 30 days. After reperfusion for 14 days a significant increase in the ratio "in vitro phosphorylation rate/immunocontent" in the CA1 region was observed when compared to control values, to other intervals and to the dentate gyrus, suggesting a hyperphosphorylation of this intermediate filament protein at this interval. In the dentate gyrus, an area less vulnerable to the insult, labelling and immunocontent of glial fibrillary acidic protein were equally increased from four days of reperfusion and the increase remained significant until 30 days, confirming that neuronal death is not the only determining factor for gliosis to occur. In control sham-operated animals, neither the CA1 region nor the dentate gyrus showed significant increases in labelling or immunocontent. Changes in the phosphorylation of glial fibrillary acidic protein may be essential for the plastic response of astrocytes to neuronal damage, as neurons and astrocytes can act as functional units involved in homeostasis, plasticity and neurotransmission.  相似文献   

4.
Abnormal neuronal excitability and impaired synaptic plasticity might occur before the degeneration and death of neurons in Alzheimer's disease (AD). To elucidate potential biophysical alterations underlying aberrant neuronal network activity in AD, we performed whole-cell patch clamp analyses of L-type (nifedipine-sensitive) Ca2+ currents (L-VGCC), 4–aminopyridine-sensitive K+ currents, and AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid) and NMDA (N-methyl-D-aspartate) currents in CA1, CA3, and dentate granule neurons in hippocampal slices from young, middle-age, and old 3xTgAD mice and age-matched wild type mice. 3xTgAD mice develop progressive widespread accumulation of amyloid β-peptide, and selective hyperphosphorylated tau pathology in hippocampal CA1 neurons, which are associated with cognitive deficits, but independent of overt neuronal degeneration. An age-related elevation of L-type Ca2+ channel current density occurred in CA1 neurons in 3xTgAD mice, but not in wild type mice, with the magnitude being significantly greater in older 3xTgAD mice. The NMDA current was also significantly elevated in CA1 neurons of old 3xTgAD mice compared with in old wild type mice. There were no differences in the amplitude of K+ or AMPA currents in CA1 neurons of 3xTgAD mice compared with wild type mice at any age. There were no significant differences in Ca2+, K+, AMPA, or NMDA currents in CA3 and dentate neurons from 3xTgAD mice compared with wild type mice at any age. Our results reveal an age-related increase of L-VGCC density in CA1 neurons, but not in CA3 or dentate granule neurons, of 3xTgAD mice. These findings suggest a potential contribution of altered L-VGCC to the selective vulnerability of CA1 neurons to tau pathology in the 3xTgAD mice and to their degeneration in AD patients.  相似文献   

5.
Recent studies have suggested that missense mutations in the presenilin-1 gene are causally related to the majority of familial early-onset Alzheimer's disease (AD). To examine the possible involvement of presenilin-1 in late-onset sporadic AD, a quantitative analysis of its distribution in the cerebral cortex of nondemented and AD patients was performed using immunocytochemistry. Stereological analyses revealed that AD brains showed a marked neuronal loss in the CA1 field of the hippocampus and hilus of the dentate gyrus, subiculum, and entorhinal cortex. In these areas, however, the fraction of neurofibrillary tangle (NFT)-free neurons showing presenilin-1 immunoreactivity was increased compared with nondemented controls. In contrast, cortical areas, which displayed no neuronal loss, did not show any significant increase in the fraction of presenilin-1-positive neurons. Moreover, presenilin-1 immunoreactivity was reduced in NFT-containing neurons. Thus, in AD, the fraction of NFT-free neurons that contained presenilin-1 varied from 0.48 to 0.77, whereas the fraction of NFT-containing neurons that were presenilin-1 positive varied from 0.1 to 0.24. Together, these observations indicate that presenilin-1 may have a neuroprotective role and that in AD low cellular expression of this protein may be associated with increased neuronal loss and NFT formation.  相似文献   

6.
Patil S  Chan C 《Neuroscience letters》2005,384(3):288-293
Epidemiological studies suggest that high fat diets significantly increase the risk of Alzheimer's disease (AD). In addition, the AD brain is characterized by high fatty acid content compared to that of healthy subjects. Nevertheless, the basic mechanism relating elevated fatty acids and the pathogenesis of AD remains unclear. The present study examines the role of fatty acids in causing hyperphosphorylation of the tau protein, one of the characteristic signatures of AD pathology. Hyperphosphorylation of tau disrupts the cell cytoskeleton and leads to neuronal degeneration. Here, primary rat cortical neurons and astrocytes were treated with saturated free fatty acids (FFAs), palmitic and stearic acids. There was no change in the levels of phosphorylated tau in rat cortical neurons treated directly with these FFAs. The conditioned media from FFA-treated astrocytes, however, caused hyperphosphorylation of tau in the cortical neurons at AD-specific phospho-epitopes. Co-treatment of neurons with N-acetyl cysteine, an antioxidant, reduced FFA-induced hyperphosphorylation of tau. The present results establish a central role of FFAs in causing hyperphosphorylation of tau through astroglia-mediated oxidative stress.  相似文献   

7.
Transforming growth factors β (TGFβ) regulate multiple biological activities. TGFβ activation of the Smad pathway results in activation of genes encoding extracellular matrix molecules, proteases, protease activators and protease inhibitors. In Alzheimer's disease (AD), TGFβ protein and mRNA levels are raised, which would be expected to be neuroprotective. However, recent observations suggest that TGFβ-Smad signalling is disrupted by the hyperphosphorylation of tau, the primary component of neurofibrillary tangles: phosphorylated Smad2/3 (pSmad 2/3) co-localises with phosphorylated tau in the neuronal cytoplasm and levels are reduced in the nucleus. We have investigated whether in vitro induction of tau hyperphosphorylation influences pSmad 2/3 localisation in rat primary cortical cells. Treatment with okadaic acid, a protein phosphatase 1 and 2A inhibitor caused hyperphosphorylation of tau at epitopes hyperphosphorylated in AD and disrupted pSmad 2/3 translocation into the nucleus. The disruptive effect of tau phosphorylation on pSmad 2/3 translocation was confirmed by treatment of primary cortical cells with synthetic oligomeric Aβ1-42, a more physiologically relevant model of AD. Our findings suggest that despite the increased level of TGFβ in AD, the TGFβ-Smad signalling pathway is impeded within neurones due to sequestration of pSmad 2/3 by hyperphosphorylated tau. This may compromise neuroprotective actions of TGFβ and contribute to neurodegeneration in AD.  相似文献   

8.
The activity of protein phosphatase-2A (PP2A) is compromised and is believed to be a cause of the abnormal hyperphosphorylation of tau in Alzheimer's disease (AD) brain. We investigated in AD the role of the two known endogenous PP2A inhibitors, called I1(PP2A) and I2(PP2A), which regulate the intracellular activity of PP2A in mammalian tissues. We found a significant increase in the neocortical levels of I1(PP2A) and I2(PP2A) in AD as compared to control cases by in situ hybridization. The immunohistochemical studies revealed that I2(PP2A) was translocated from neuronal nuclei to cytoplasm in AD. The 39-kd full-length I2(PP2A) was selectively cleaved into an approximately 20-kd fragment in AD brain cytosol. Digestion of the recombinant human I2(PP2A) with AD brain extract showed an increase in the generation of the approximately 20 kd and other fragments of the inhibitor as compared to control brain extract. Double-immunohistochemical studies revealed co-localization of PP2A with PP2A inhibitors in neuronal cytoplasm and co-localization of the inhibitors with abnormally hyperphosphorylated tau. These studies suggest the possible involvement of I1(PP2A) and I2(PP2A) in the abnormal hyperphosphorylation of tau in AD.  相似文献   

9.
为了探讨β淀粉样蛋白对大鼠学习记忆功能和tau蛋白异常磷酸化的影响,本文在海马注射Aβ25-35建立阿尔茨海黙病(AD)大鼠模型的基础上,通过行为学检测、HE染色、免疫组化和免疫蛋白印迹技术对动物的学习能力、组织的病理改变和tau(pS202)、tau(pT231)和tau-5的表达情况进行了分析。在行为学检测中,Aβ注射组大鼠在穿梭箱实验中的主动回避次数和被动回避次数减少,失败次数增多,而在Morris水迷宫测试中的逃避潜伏期和游泳距离延长。HE染色显示Aβ注射组大鼠海马CA1、CA3、齿状回的神经细胞数目减少;而免疫组化和免疫印迹结果显示注射组tau(pS202)阳性细胞明显增加,tau(pS202)、tau(pT231)和tau-5蛋白表达增加。以上结果提示海马内注射Aβ25-35可引起大鼠学习记忆功能下降,可能与神经细胞减少,tau蛋白异常磷酸化增多有关。  相似文献   

10.
Neurofibrillary tangles form in a specific spatial and temporal pattern in Alzheimer's disease. Although tangle formation correlates with dementia and neuronal loss, it remains unknown whether neurofibrillary pathology causes cell death. Recently, a mouse model of tauopathy was developed that reversibly expresses human tau with the dementia-associated P301L mutation. This model (rTg4510) exhibits progressive behavioral deficits that are ameliorated with transgene suppression. Using quantitative analysis of PHF1 immunostaining and neuronal counts, we estimated neuron number and accumulation of neurofibrillary pathology in five brain regions. Accumulation of PHF1-positive tau in neurons appeared between 2.5 and 7 months of age in a region-specific manner and increased with age. Neuron loss was dramatic and region-specific in these mice, reaching over 80% loss in hippocampal area CA1 and dentate gyrus by 8.5 months. We observed regional dissociation of neuronal loss and accumulation of neurofibrillary pathology, because there was loss of neurons before neurofibrillary lesions appeared in the dentate gyrus and, conversely, neurofibrillary pathology appeared without major cell loss in the striatum. Finally, suppressing the transgene prevented further neuronal loss without removing or preventing additional accumulation of neurofibrillary pathology. Together, these results imply that neurofibrillary tangles do not necessarily lead to neuronal death.  相似文献   

11.
The nuclear protein I2PP2A/SET, an endogenous inhibitor of protein phosphatase-2A (PP2A), is increased and translocated to the cytoplasm in the neurons of Alzheimer's disease (AD) brains, and PP2A activity in cytoplasm is compromised. However, it is not fully understood how SET is retained in the cytoplasm. By generating a phosphorylation site-specific antibody, we found in the present study that SET is phosphorylated at Ser9, by which it is accumulated in the cytoplasm of the AD brains. Further studies demonstrate that both the phosphor-mimic and casein kinase (CK)II-mediated phosphorylation at Ser9 interferes with the formation of the SET/importin-α/importin-β complex, and thus inhibits SET nuclear import and induces the cytoplasmic detention of SET. Interestingly, Ser9 is nested in the center of the sequence 6AKVSKK11 of SET, which is consistent with a classical nuclear localization signal (NLS). To test whether 6AKVSKK11 is a new NLS of SET, we mutated SET lysine 7, lysine 10, and lysine 11 to alanine acid (K7A, K10A, K11A) respectively, and expressed these mutants in HEK293/tau cells. We found that expression of SET (K11A) led to a nuclear import defect of SET, and application of a synthesized peptide Tat-AAKVSKKE that can competitively bind to importin α/β resulted in cytoplasmic detention of SET. Finally, phosphorylation of SET aggravates PP2A inhibition and leads to tau hyperphosphorylation. In conclusion, the current study has identified a novel mechanism that causes cytoplasmic detention of SET with a new NLS-dependent CKII-associated phosphorylation of Ser9, suggesting that inhibition of CKII arrests cytoplasmic accumulation of SET and thus preserves PP2A activity in AD brains.  相似文献   

12.
目的:探讨远志皂苷对β-淀粉样肽1-40(Aβ1-40)诱导的阿尔茨海默病(AD)大鼠脑神经元tau蛋白过度磷酸化的影响。方法:大鼠右侧海马CA1区注射Aβ1-40建立AD模型,并用远志皂苷(18.5 mg/kg、37.0 mg/kg和74.0 mg/kg)对大鼠进行灌胃治疗;免疫组织化学染色法观察大脑神经元中总tau蛋白、p-tau(Ser396)、蛋白激酶A(PKA)和蛋白磷酸酶2A(PP2A)蛋白的表达;蛋白免疫印迹技术检测大脑神经元中总tau蛋白含量、tau蛋白Ser396位点磷酸化以及PKA、PP2A蛋白的表达水平。结果:与对照组相比,Aβ1-40组大脑神经元中总tau蛋白含量、tau蛋白Ser396位点磷酸化水平和PKA蛋白的表达水平显著升高,而PP2A蛋白的表达水平明显降低。与Aβ1-40组相比,远志皂苷各治疗组大鼠大脑神经元中总tau蛋白含量、tau蛋白Ser396位点磷酸化水平和PKA蛋白表达水平下降明显,而PP2A蛋白表达水平显著升高。结论:远志皂苷可能是通过下调PKA蛋白表达量,上调PP2A蛋白表达量,减轻AD大鼠脑神经元中tau蛋白Ser396位点的过度磷酸化,使神经细胞免遭Aβ1-40的毒害。  相似文献   

13.
夹闭大鼠双侧颈总动脉2h后,用还原型尼克酰胺腺嘌呤二核苷酸脱氢酶反应观察了大鼠海马及纹状体一氧化氮合酶阳性神经元的变化及神经损伤。结果显示:在缺血损伤严重的CA1区及齿状回一氧化氮合酶阳性神经元较正常动物明显增多并深染,而在同样严重受损的纹状体一氧化氮合酶阳性神经元较正常者明显减少。结合文献及本结果提示:一氧化氮在脑缺血所致的神经损伤中起着重要作用,而海马、纹状体的一氧化氮合酶阳性神经元本身可能具有不同的抗伤害机制.  相似文献   

14.
Alzheimer disease (AD) is a neurodegenerative disorder characterized by neuronal loss, dementia and pain. Two main protein aggregates, extracellular (senile plaques, SP) and intracellular (neurofibrillary tangles, NFT), are associated with AD. NFT are mainly composed of hyperphosphorylated microtubule-associated protein tau. Nowadays several protein kinases have been implicated in the phosphorylation of tau, including glycogen synthase kinase 3 beta (GSK3β), MAP kinase, protein kinase A and cyclin-dependent kinase 5 (Cdk5). A deregulation in the activity of Cdk5 has been postulated to participate in the abnormal tau hyperphosphorylation in AD. Activation of Cdk5 occurs after its association with p35, a neuron-specific activator, predominantly in the nervous system. Therefore, in this study we used the tetracycline transactivator system to increase p35/GFP in neuronal cells, treated with amyloid beta 1-42 (Aβ1-42) peptide. These cells showed an increase of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cleaved caspase-3 staining, indicating increased apoptosis of neuronal cells. This effect could be reversed by the addition of tetracycline in the culture medium, suggesting synergistic effects of p35 over-expression and Aβ treatment in the apoptosis of neuronal cells. These results represent a linkage between amyloidogenic and cdk5 pathways leading to apoptosis of neuronal cells.  相似文献   

15.
The cleavage of amyloid precursor protein (APP) by caspases unmasks a domain extending from membrane to caspase cleavage site. This domain induces apoptosis in vitro and in vivo when overexpressed in neurons through the help of an internalization vector. In this model, we previously showed that SET rapidly binds to the internalized domain and is involved in downstream deleterious effects. Under these conditions SET mislocalizes from the nucleus to the cytoplasm, as in Alzheimer's disease (AD). In this report using the same model, we show that PAT1 attaches to the internalized domain earlier than SET and that this binding causes an increase in the levels of APP and APLP2 at the cell surface. Down regulation experiments of PAT1 and of APP and APLP2 show that the increase of the levels of APP and APLP2 at the cell surface triggers the cell death signal and SET mislocalization into the cytoplasm. In the context of AD these data suggest that mislocalization of SET into the cytoplasm may occur downstream of first cell death signal events involving PAT1 protein.  相似文献   

16.
Alzheimer's disease (AD) is characterized by Aβ overproduction and tau hyperphosphorylation. We report that an early, transient and site-specific AD-like tau hyperphosphorylation at Ser262 and Thr231 epitopes is temporally and causally related with an activation of the endogenous amyloidogenic pathway that we previously reported in hippocampal neurons undergoing cell death upon NGF withdrawal [Matrone, C., Ciotti, M.T., Mercanti, D., Marolda, R., Calissano, P., 2008b. NGF and BDNF signaling control amyloidogenic route and Ab production in hippocampal neurons. Proc. Natl. Acad. Sci. 105, 13138-13143]. Such tau hyperphosphorylation, as well as apoptotic death, is (i) blocked by 4G8 and 6E10 Aβ antibodies or by specific β and/or γ-secretases inhibitors; (ii) temporally precedes tau cleavage mediated by a delayed (6-12 h after NGF withdrawal) activation of caspase-3 and calpain-I; (iii) under control of Akt-GSK3β-mediated signaling. Finally, we show that such site-specific tau hyperphosphorylation causes tau detachment from microtubules and an impairment of mitochondrial trafficking.These results depict, for the first time, a rapid interplay between endogenous Aβ and tau post-translational modifications which act co-ordinately to compromise neuronal functions in the same neuronal system, under physiological conditions as seen in AD brain.  相似文献   

17.
Hippocampal atrophy and neuron loss are commonly found in Alzheimer’s disease (AD). However, the underlying molecular mechanisms and the fate in the AD hippocampus of subpopulations of interneurons that express the calcium-binding proteins parvalbumin (PV) and calretinin (CR) has not yet been properly assessed. Using quantitative stereologic methods, we analyzed the regional pattern of age-related loss of PV- and CR-immunoreactive (ir) neurons in the hippocampus of mice that carry M233T/L235P knocked-in mutations in presenilin-1 (PS1) and overexpress a mutated human beta-amyloid precursor protein (APP), namely, the APPSL/PS1 KI mice, as well as in APPSL mice and PS1 KI mice. We found a loss of PV-ir neurons (40–50%) in the CA1-2, and a loss of CR-ir neurons (37–52%) in the dentate gyrus and hilus of APPSL/PS1 KI mice. Interestingly, comparable PV- and CR-ir neuron losses were observed in the dentate gyrus of postmortem brain specimens obtained from patients with AD. The loss of these interneurons in AD may have substantial functional repercussions on local inhibitory processes in the hippocampus.  相似文献   

18.
Sato K  Matsuki N 《Neuroscience》2002,109(4):745-756
The correlation between the expression of a 72 kDa heat shock protein and vulnerability of hippocampal CA1, CA3, and dentate gyrus regions to glutamate toxicity was investigated using a highly specific antisense oligonucleotide technique. Glutamate (1 mM, 15 min) caused region-dependent neuronal damage in cultured hippocampal slices 24 h after exposure and the most severe damage was observed in CA1. When slices were heat-shocked (43.5 degrees C, 30 min) before exposure to glutamate, neuronal damage in CA1 was attenuated. The strongest protection was observed when the interval between the heat shock and the exposure to glutamate was 3 days, which coincided with the maximal induction of a 72 kDa heat shock protein in neurons. When the expression of a 72 kDa heat shock protein was suppressed by the antisense oligonucleotide, the protective effect of the heat shock was completely inhibited. Glutamate itself also induced a 72 kDa heat shock protein in neurons, region-dependently, 24 h after the exposure. The signal of a 72 kDa heat shock protein in CA3 and dentate gyrus was significantly stronger than that in CA1. When the antisense oligonucleotide was applied, the damage in CA3 and dentate gyrus was exaggerated dose-dependently, and this effect was more remarkable in CA3 than in the dentate gyrus. Based on these data, we concluded that: (i) a 72 kDa heat shock protein has a protective effect against the selective vulnerability of CA1 neurons, (ii) a 72 kDa heat shock protein is an essential factor for the tolerance exhibited by CA3 neurons, and (iii) dentate gyrus tolerance is based on mechanisms other than those mediated through a 72 kDa heat shock protein.  相似文献   

19.
Neurons in layer II of the entorhinal cortex consistently develop neurofibrillary tangles in Alzheimer's disease (AD). Experimental neuroanatomical studies have shown that these neurons give rise to the perforant pathway, a major excitatory projection to the hippocampal formation, which terminates in a discrete pattern in the outer portion of the molecular layer of the dentate gyrus. The distribution of two nerve terminal associated proteins, synaptophysin and NT75, was studied in the molecular layer of the dentate gyrus in AD and control cases to determine whether Alzheimer neuronal pathology is associated with loss of synaptic markers. In parallel studies, the effect of ablation of the entorhinal cortex in rats was evaluated. In AD as compared to controls, a decrease in synaptophysin immunostaining was evident in the terminal zone of the perforant pathway. NT75 nerve terminal immunostaining was too weak to interpret in the human hippocampal formation. Both synaptophysin and NT75 immunoreactivity were found in association with some neuritic plaques. In rats, entorhinal lesions resulted in diminished immunoreactivity for both synaptophysin and NT75 in the perforant pathway terminal zone. These results suggest that nerve terminal protein loss is a concomitant feature of neuronal pathology in AD.  相似文献   

20.
The present study aimed to elucidate the distribution of heme oxygenase-1 (HO-1) in the hippocampus after intracerebroventricular injections of kainate. Very little or no staining of HO-1 was observed in the normal CA1, whilst moderate staining of dentate hilar neurons was observed in the dentate gyrus, in the normal hippocampus. At postinjection day 1, a slight increase in immunoreactivity in the neuropil of the lesioned CA fields and a marked increase in HO-1 immunoreactivity in glial cells of the stratum lacunosum moleculare of CA fields and the stratum moleculare of the dentate gyrus was observed. Electron microscopy showed that the glial cells had features of viable astrocytes. At postinjection day 3, glial cells in the dentate gyrus continued to express HO-1, whilst pyramidal neurons in the degenerating CA fields started to express intense HO-1 immunoreactivity in their cell bodies. At postinjection weeks 1–3, HO-1 was observed in glial cells in the center of the lesion, but also in neurons at the perifocal region of the glial scar. The glial cells were found to have features of viable astrocytes and microglia, whilst the neurons contained discontinuous cell membranes and nuclear outlines, and had features of degenerating neurons. Intense immunoreactivity was observed in the cytoplasm of the degenerating neurons. The density of staining was greater than that observed in astrocytes or microglia. Recent in vitro results on fibroblasts transfected with HO-1 cDNA showed that, despite cytoprotection with low (less than fivefold compared with untransfected cells) HO-1 activity, high levels of HO-1 expression (more than 15-fold) were associated with significant oxygen toxicity. These and the present observations suggest a destructive effect of increased expression of HO-1 in neurons, and possible novel therapeutic approaches involving overexpression of HO-1 must therefore be approached with caution. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号