首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral amyloid angiopathy (CAA) is frequently observed in Alzheimer's disease (AD) and is characterized by deposition of amyloid beta (Aβ) in leptomeningeal and cortical brain vasculature. In 40% of AD cases, Aβ mainly accumulates in cortical capillaries, a phenomenon referred to as capillary CAA (capCAA). The aim of this study was to investigate blood-brain barrier (BBB) alterations in CAA-affected capillaries with the emphasis on tight junction (TJ) changes. First, capCAA brain tissue was analyzed for the distribution of TJs. Here, we show for the first time a dramatic loss of occludin, claudin-5, and ZO-1 in Aβ-laden capillaries surrounded by NADPH oxidase-2 (NOX-2)-positive activated microglia. Importantly, we observed abundant vascular expression of the Aβ transporter receptor for advanced glycation endproducts (RAGE). To unravel the underlying mechanism, a human brain endothelial cell line was stimulated with Aβ1-42 to analyze the effects of Aβ. We observed a dose-dependent cytotoxicity and increased ROS generation, which interestingly was reversed by administration of exogenous antioxidants, NOX-2 inhibitors, and by blocking RAGE. Taken together, our data evidently show that Aβ is toxic to brain endothelial cells via binding to RAGE and induction of ROS production, which ultimately leads to disruption of TJs and loss of BBB integrity.  相似文献   

2.
Genome‐wide association studies have pointed to clusterin (apolipoprotein J) as being linked to the occurrence of Alzheimer's disease (AD); studies have identified the protein as a possible biomarker. The association between clusterin and senile plaques in AD brain is well known, and clusterin levels in AD brain are 40% higher than that in control subjects. The present study investigates, immunohistochemically, the association between clusterin and Aβ peptides in AD and control cortex. A unique and specific association between clusterin and Aβ40 was observed in plaques in the cerebral cortex from AD subjects in that only plaques that contained Aβ40 showed clusterin immunoreactivity, while the many plaques with Aβ42 alone lacked clusterin labeling. Cerebrovascular Aβ in AD brain generally lacked Aβ42 but was positively labeled by both the Aβ40 and the clusterin antibodies. In control subjects, however, Aβ40 was absent from plaques, although very occasional plaques were found to be labeled by both the Aβ42 and the clusterin antibodies. Overall, in AD, but not aged control brain, clusterin was associated specifically with the Aβ40 form of Aβ in the brain. The lack of clusterin in association with Aβ42 may be a significant feature in neuronal loss and neurodegeneration in the disease state.  相似文献   

3.
Neprilysin (NEP), which degrades amyloid-β (Aβ), is expressed by neurons and cerebrovascular smooth muscle cells (CVSMCs). NEP immunolabeling is reduced within cerebral blood vessels of Alzheimer's disease (AD) patients with cerebral amyloid angiopathy (CAA). We have now measured NEP enzyme activity in leptomeningeal and purified cerebral cortical blood vessel preparations from control and AD patients with and without CAA. Measurements were adjusted for smooth muscle actin (SMA) to control for variations in CVSMC content. NEP activity was reduced in CAA, in both controls and AD. In leptomeningeal vessels, NEP activity was related to APOE genotype, being highest in ε2-positive and lowest in ε4-positive brains. To assess the role of NEP in protecting CVSMCs from Aβ toxicity, we measured cell death in primary human adult CVSMCs exposed to Aβ(1-40) , Aβ(1-42) or Aβ(1-40(Dutch variant)) . Aβ(1-42) was most cytotoxic to CVSMCs. Aβ(1-42) -mediated cell death was increased following siRNA-mediated knockdown or thiorphan-mediated inhibition of NEP activity; conversely Aβ(1-42) -mediated cytotoxicity was reduced by the addition of somatostatin and NEP over-expression following transfection with NEP cDNA. Our findings suggest that NEP protects CVSMCs from Aβ toxicity and protects cerebral blood vessels from the development and complications of CAA.  相似文献   

4.
The “two‐hit vascular hypothesis for Alzheimer's disease (AD)” and amyloid‐β (Aβ) oligomer hypothesis suggest that impaired soluble Aβ oligomers clearance through the cerebral vasculature may be an initial step of the AD process. Soluble Aβ oligomers are driven into perivascular spaces from the brain parenchyma and toward peripheral blood flow. The underlying vascular‐based mechanism, however, has not been defined. Given that microRNAs (miRNAs), emerging as novel modulators, are involved in numerous physiological and pathological processes, we hypothesized that cerebrovascular miRNAs may regulate the activities of brain blood vessels, which further affects the concentration of Aβ in the AD brain. In this study, perivascular Aβ deposits, higher vascular activation, increased pericyte coverage and up‐regulated capillaries miRNAs at 6 months old (6 mo) were found to correlate with the lower Aβ levels of middle AD stage (9 mo) in 3xTg‐AD (3xTg) mice. It is implicated that at the early stage of AD when intracellular Aβ appeared, higher expression of vessel‐specific miRNAs, elevated pericyte coverage, and activated endothelium facilitate Aβ oligomer clearance through the perivascular route, resulting in a transient reduction of Aβ oligomers at 9 mo. Additionally, ghrelin‐induced upregulation of capillary miRNAs and increased pericyte coverage attenuated Aβ burden at 9 mo, in further support of the relationship between vascular miRNAs and Aβ clearance. This work suggests a cerebral microvessel miRNA may boost endothelial highly activated phenotypes to promote elimination of Aβ oligomers through the perivascular drainage pathway and contribute to AD progression. The targeting of brain vessel‐specific miRNAs may provide a new rationale for the development of innovative therapeutic strategies for AD treatment.  相似文献   

5.
目的研究锌转运蛋白3(Zinc Transporter 3,ZnT3)与β-淀粉样蛋白(β-amyloid,Aβ)在APP/PS1转基因小鼠大脑血管壁及脉络丛上皮的定位分布,探讨ZnT3影响脑锌平衡从而参与AD发病的可能机制。方法应用免疫荧光技术和共聚焦激光扫描显微镜观察ZnT3和Aβ在APP/PS1转基因小鼠大脑血管壁及脉络丛上皮的共存情况。结果APP/PS1转基因小鼠侧脑室及第三、四脑室的脉络丛上皮细胞均呈ZnT3和Aβ染色阳性,二者共同表达于上皮细胞的胞质内,而细胞核未见任何着色。在APP/PS1转基因小鼠大脑皮层中,几乎所有Aβ阳性的血管壁上均有ZnT3的表达,二者的分布同样具有一致性。结论ZnT3与Aβ在APP/PS1转基因小鼠大脑血管及脉络丛上皮的一致性分布,提示ZnT3可能参与Aβ在大脑血管及脉络丛上皮的沉积。  相似文献   

6.
Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) are two common pathologies associated with β‐amyloid (Aβ) accumulation and inflammation in the brain; neither is well understood. The objective of this study was to evaluate human post‐mortem brains from AD subjects with purely parenchymal pathology, and those with concomitant CAA (and age‐matched controls) for differential expression of microglia‐associated Aβ ligands thought to mediate Aβ clearance and the association of these receptors with complement activation. Homogenates of brain parenchyma and enriched microvessel fractions from occipital cortex were probed for levels of C3b, membrane attack complex (MAC), CD11b and α‐2‐macroglobulin and immunoprecipitation was used to immunoprecipitate (IP) CD11b complexed with C3b and Aβ. Both C3b and MAC were significantly increased in CAA compared to AD‐only and controls and IP showed significantly increased CD11b/C3b complexes with Aβ in AD/CAA subjects. Confocal microscopy was used to visualize these interactions. MAC was remarkably associated with CAA‐affected blood vessels compared to AD‐only and control vessels. These findings are consistent with an Aβ clearance mechanism via microglial CD11b that delivers Aβ and C3b to blood vessels in AD/CAA, which leads to Aβ deposition and propagation of complement to the cytolytic MAC, possibly leading to vascular fragility.  相似文献   

7.
Alzheimer's disease (AD) is a complex, multifactorial progressive neurodegenerative disease. Pathologically, AD is characterized by extracellular deposits of amyloid beta (Aβ) protein and intracellular accumulation of neurofibrillary tangles (NFTs) of tau. The central role of Aβ protein in the AD etiology is well-established, and its increased deposition in AD brain is attributed to its decreased clearance from the brain. It is noteworthy that apolipoprotein E (ApoE), the most significant risk factor for late-onset AD, has been shown to play a vital role in brain Aβ clearance and the ability of ApoE to do this depends mainly upon its lipidation status. Thus, lower ApoE lipidation status leading to decreased Aβ clearance may underlie the increased Aβ deposition observed in AD brain. In addition to the pathophysiological Aβ deposits, AD is also characterized by certain metabolic changes. Among them, decreased cerebral glucose metabolism is one of the distinct characteristics of AD brain and is also observed in patients with Mild Cognitive Impairment (MCI) who subsequently develop AD. Thus, decreased cerebral glucose metabolism is an early event in AD pathology and may precede the neuropathological Aβ deposition associated with AD. In this context, we hypothesize here that the decreased glucose metabolism in pre-AD and early AD stages, may lead to lower ApoE lipidation status, which in turn may lead to decreased clearance and hence, increased deposition of Aβ protein in AD brain.  相似文献   

8.
This study was aimed to investigate whether ibuprofen could alter the P-glycoprotein expression and function under Alzheimer's Disease condition and whether this alteration was induced by the inhibition of inflammatory reaction. APP/PS1 mice were used as AD model mice and ibuprofen-treated AD mice were given ibuprofen for 5 months. Then, Abcb1a/1b mRNA levels and P-gp expression were evaluated by qRT-PCR and western blot. Abcb1 mRNA levels were significantly reduced in AD mice compared to control mice, and it could be restored by ibuprofen treatment. Meanwhile, P-gp expression result showed a similar trend. Aβ plaques in cerebral cortices and hippocampus were investigated via immunohistochemical, and the results revealed that Aβ plaques were reduced in ibuprofen-treated AD mice compared with the AD mice, indicated that P-gp function may be recovered by ibuprofen treatment. qRT-PCR and ELISA were used to determined TNF-α, IL-1β, IL-6 and NF-κB levels. The results demonstrated that TNF-α, IL-1β mRNA levels and NF-κB expression were all significantly upregulated in AD mice in comparison with the control mice, and ibuprofen treatment could suppress the increase of inflammatory factors. In conclusion, the P-gp expression and function were suppressed in AD condition by activating inflammatory reaction, and then causing the Aβ efflux decreased. However, upregulating P-gp could increase the Aβ efflux in further to treat AD via inhibiting the inflammatory factors expression.  相似文献   

9.
目的研究二价金属离子转运体1(divalent metal transporter 1,DMT1)在APP/PS1转基因小鼠大脑皮层内的定位分布,探讨DMT1异常表达影响脑铁代谢平衡从而参与AD发病的可能机制。方法应用免疫组织化学方法观察DMT1在9月龄APPsw/PS1小鼠大脑皮层的阳性分布;应用免疫荧光双标技术和共聚焦激光扫描显微镜观察DMT1蛋白和β淀粉样蛋白(β-amyloid peptide,Aβ)在APP/PS1转基因小鼠大脑皮层老年斑内的一致性分布和位置关系。结果APP/PS1转基因小鼠大脑皮层老年斑内均有DMT1阳性表达;DMT1和Aβ免疫双标发现DMT1免疫阳性产物与Aβ共存于老年斑,二者分布具有一致性。结论DMT1在APP/PS1转基因小鼠大脑皮层老年斑内大量表达,其分布与Aβ具有一致性,提示DMT1可能参与AD脑内Aβ沉积和老年斑形成。  相似文献   

10.
Although the molecular mechanism has not yet been clarified until now, it is very interesting that Alzheimer’s disease (AD), hypertension (HTN), and cerebral amyloid angiopathy (CAA) often occur synchronously and possess many similar pathological characteristics. Herein, we hypothesize that a feedback signaling loop, consisted of Pin1, endothelial nitric oxide synthase (eNOS), and amyloid-β (Aβ), may contribute to the interesting pathological phenomenon. First, Pin1 inhibits the production of Aβ, and enhances the activity of eNOS. Second, Aβ and eNOS form a mutual inhibition system. Third, the well-balanced feedback signaling loop avoids the development of AD, HTN, and CAA by inhibiting the frequent pathological characteristics of these diseases, including Aβ deposition in cerebral microvessels and cerebral microbleeds. On one hand, Pin1 and eNOS not only inhibit Aβ production but also accelerate Aβ clearance, preventing Aβ deposition in cerebral microvessels. On the other hand, Pin1 and eNOS promote vasodilatation and prevent the elevation of blood pressure in brain, alleviating the pathology of cerebral microbleeds. However, once the precise balance is disturbed, it may result in Aβ deposition, microbleeds, and elevated blood pressure, possibly leading to the synchronous occurrence of AD, HTN, and CAA. The hypothesis updates the current understanding of the molecular linkage among AD, HTN, and CAA, and lays the ground for developing combined prevention, diagnosis, and treatment of these diseases more efficiently and more economically. Interestingly, biotechnical medicines enhancing the activity of Pin1 and/or eNOS may prevent the development of AD, HTN, and CAA, and targeting Aβ deposition may alleviate the clinical pathologies of these related diseases.  相似文献   

11.

Background

Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD), are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs), a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start.

Methods

Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze.

Results

While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg) was less than that in a TLR4 wild-type AD model (TLR4W Tg). At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes.

Conclusion

This is the first demonstration of TLR4-dependent activation of microglia at the early stage of β-amyloidosis. Our results indicate that TLR4 is not involved in the initiation of Aβ deposition and that, as Aβ deposits start, microglia are activated via TLR4 signaling to reduce Aβ deposits and preserve cognitive functions from Aβ-mediated neurotoxicity.
  相似文献   

12.
Numerous experimental studies and clinical observations suggest that cerebral ischemia may contribute to the pathogenesis of Alzheimer’s disease (AD). Two-vessel occlusion caused cerebral ischemia model is often used in the study of vascular dementia (VaD). But how cerebral ischemia works on AD rat model which induced by intracerebroventricular injection of Aβ1-42 remains unclear. In the following study, we investigated the characteristics of rat model caused by intracerebroventricular injection of Aβ1-42 or two-vessel occlusion (2-VO) only and by both of the two operations. The animal cognitive functions were accessed by the Morris water maze. Regional cerebral blood flow was detected by Laser Doppler Blood Flowmeter. HE&Nissl staining, Congo red staining and immunohistochemistry were used to observe the status of neuronal loss, Aβ deposition and the phosphorylated tau expression in hippocampus, respectively. We also measured the contents of AchE and ChAT in serum and hippocampus by Enzyme Linked Immunosorbent Assay. The MWM results showed that rats of Aβ1–42+2-VO group had a disorder in cognitive functions, at an early stage of one week after modeling, comparing with rats of sham group. The regional cerebral blood flow (rCBF) was significantly reduced in Aβ1-42+2-VO and 2-VO group one week after modeling, and still maintained low perfusion levels four weeks after modeling. HE and Nissl staining showed that Aβ1-42+2-VO rats’ hippocampal CA1 neurons were in disorder, degeneration and necrosis, severe neuronal loss from the first week to the fourth week, while this phenomenon only appeared in the fourth week after modeling in rats of Aβ1-42 group and 2-VO group. Congo red staining showed that Aβ1-42 + 2-VO group rats’ hippocampus CA1 had amyloid deposits from the first week to the fourth week, Aβ1-42 group were not find amyloid deposition significantly until four weeks after modeling, however, 2-VO group had no significant amyloid deposition all the time. Notably, IHC showed that, two weeks after modeling, the p-tau positive total area and integrated optical density of hippocampal CA1 region were significantly increased in Aβ1-42 + 2-VO group rats, while 2-VO group and Aβ1-42 group rats had no significantly changes all the time. We also found that the content of AchE was increased both in serum and hippocampus of Aβ1-42 + 2-VO group rats, and ChAT was decreased. However, there was no significantly change in cortex of content of AchE: acetylcholinesterase (AchE) and choline acetylase (ChAT) all three groups. Together, our study suggest that intracerebroventricular injection of Aβ1-42 combined with two-vessel occlusion may accelerate Alzheimer’s disease development in rats. Also, this may serve as a less-time consuming new model to study the Alzheimer’s disease and especially AD accompanied by cerebral ischemia.  相似文献   

13.
The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease (AD). The APOE ε4 allele markedly increases AD risk and decreases age of onset, likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. In contrast, the APOE ε2 allele appears to decrease AD risk. Most rare, early-onset forms of familial AD are caused by autosomal dominant mutations that often lead to overproduction of Aβ(42) peptide. However, the mechanism by which APOE alleles differentially modulate Aβ accumulation in sporadic, late-onset AD is less clear. In a cohort of cognitively normal individuals, we report that reliable molecular and neuroimaging biomarkers of cerebral Aβ deposition vary in an apoE isoform-dependent manner. We hypothesized that human apoE isoforms differentially affect Aβ clearance or synthesis in vivo, resulting in an apoE isoform-dependent pattern of Aβ accumulation later in life. Performing in vivo microdialysis in a mouse model of Aβ-amyloidosis expressing human apoE isoforms (PDAPP/TRE), we find that the concentration and clearance of soluble Aβ in the brain interstitial fluid depends on the isoform of apoE expressed. This pattern parallels the extent of Aβ deposition observed in aged PDAPP/TRE mice. ApoE isoform-dependent differences in soluble Aβ metabolism are observed not only in aged but also in young PDAPP/TRE mice well before the onset of Aβ deposition in amyloid plaques in the brain. Additionally, amyloidogenic processing of amyloid precursor protein and Aβ synthesis, as assessed by in vivo stable isotopic labeling kinetics, do not vary according to apoE isoform in young PDAPP/TRE mice. Our results suggest that APOE alleles contribute to AD risk by differentially regulating clearance of Aβ from the brain, suggesting that Aβ clearance pathways may be useful therapeutic targets for AD prevention.  相似文献   

14.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid beta (Aβ) deposits, hyperphosphorylated tau deposition, and cognitive dysfunction. Abnormalities in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in learning and memory formation, have been reported in the brains of AD patients. A BDNF modulating peptide (Neuropep-1) was previously identified by positional-scanning synthetic peptide combinatorial library. Here we examine the neuroprotective effects of Neuropep-1 on several in vitro neurotoxic insults, and triple-transgenic AD mouse model (3xTg-AD). Neuropep-1 protects cultured neurons against oligomeric Aβ1–42, 1-methyl-4-phenylpyridinium, and glutamate-induced neuronal cell death. Neuropep-1 injection also significantly rescues the spatial learning and memory deficits of 3xTg-AD mice compared with vehicle-treated control group. Neuropep-1 treatment markedly increases hippocampal and cortical BDNF levels. Furthermore, we found that Neuropep-1-injected 3xTg-AD mice exhibit dramatically reduced Aβ plaque deposition and Aβ levels without affecting tau pathology. Neuropep-1 treatment does not alter the expression or activity of full-length amyloid precursor protein, α-, β-, or γ-secretase, but levels of insulin degrading enzyme, an Aβ degrading enzyme, were increased. These findings suggest Neuropep-1 may be a therapeutic candidate for the treatment of AD.  相似文献   

15.
There is little knowledge of the existence of Alzheimer disease (AD) or Alzheimer type of dementia in indigenous populations of developing countries. In an effort to evaluate this, we assessed the deposition of amyloid β (Aβ) protein and other lesions associated with AD in brains of elderly East Africans. Brain tissues were examined from 32 subjects, aged 45 to 83 years with no apparent neurological disease, who came to autopsy at two medical Institutions in Nairobi and Dar es Salaam. An age-matched sample from subjects who had died from similar causes in Cleveland was assessed in parallel. Of the 20 samples from Nairobi, 3 (15%) brains exhibited neocortical Aβ deposits that varied from numerous diffuse to highly localized compact or neuritic plaques, many of which were also thioflavin S positive. Two of the cases had profound AS deposition in the prefrontal and temporal cortices and one of these also exhibited moderate to severe cerebral amyloid angiopathy. Similarly, 2 of the 12 samples from Dar es Salaam exhibited diffuse and compact Aβ deposits that were also predominantly reactive for the longer Aβ42 species compared to Aβ40. We also noted that Aβ plaques were variably immunoreactive for amyloid associated proteins, apolipoprotein E, serum amyloid P and complement C3. Tau protein reactive neurofibrillary tangles (NFT) were also evident in the hippocampus of 4 subjects. By comparison, 4 (20%) of the 20 samples from randomly selected autopsies performed in Cleveland showed Aβ deposits within diffuse and compact parenchymal plaques and the vasculature. These observations suggest Aβ deposition and some NFT in brains of non-demented East Africans are qualitatively and quantitatively similar to that in age-matched elderly controls from Cleveland. While our small scale study does not document similar prevalence rates of preclinical AD, it suggests that elderly East Africans are unlikely to escape AD as it is known in developed countries.  相似文献   

16.
Low cerebrospinal fluid (CSF) Aβ42 levels correlate with increased brain Aβ deposition in Alzheimer's disease (AD), which suggests a disruption in the degradation and clearance of Aβ from the brain. In addition, APOE ε4 carriers have lower CSF Aβ42 levels than non-carriers. The hypothesis of this investigation was that CSF Aβ42 levels would correlate with regulatory region variation in genes that are biologically associated with degradation or clearance of Aβ from the brain. CSF Aβ42 levels were tested for associations with Aβ degradation and clearance genes and APOE ε4. Twenty-four SNPs located within the 5′ and 3′ regions of 12 genes were analyzed. The study sample consisted of 99 AD patients and 168 cognitively normal control subjects. CSF Aβ42 levels were associated with APOE ε4 status in controls but not in AD patients; A2M regulatory region SNPs were also associated with CSF Aβ42 levels in controls but not in AD patients, even after adjusting for APOE ε4. These results suggest that genetic variation within the A2M gene influences CSF Aβ42 levels.  相似文献   

17.
Intraneuronal amyloid-β (Aβ) may contribute to extracellular plaque deposition, the characteristic pathology of Alzheimer's disease (AD). The E3-ubiquitin ligase parkin ubiquitinates intracellular proteins and induces mitophagy. We previously demonstrated that parkin reduces Aβ levels in lentiviral models of intracellular Aβ. Here we used a triple transgenic AD (3xTg-AD) mouse, which over-expresses APP(Swe), Tau(P301L) and harbor the PS1(M146V) knock-in mutation and found that lentiviral parkin ubiquitinated intracellular Aβ in vivo, stimulated beclin-dependent molecular cascade of autophagy and facilitated clearance of vesicles containing debris and defective mitochondria. Parkin expression decreased intracellular Aβ levels and extracellular plaque deposition. Parkin expression also attenuated caspase activity, prevented mitochondrial dysfunction and oxidative stress and restored neurotransmitter synthesis. Restoration of glutamate synthesis, which was independent of glial-neuronal recycling, depended on mitochondrial activity and led to an increase in γ-amino butyric acid levels. These data indicate that parkin may be used as an alternative strategy to reduce Aβ levels and enhance autophagic clearance of Aβ-induced defects in AD. Parkin-mediated clearance of ubiquitinated Aβ may act in parallel with autophagy to clear molecular debris and defective mitochondria and restore neurotransmitter balance.  相似文献   

18.
One of the central lesions in the brain of subjects with Alzheimer's disease (AD) is represented by aggregates of β-amyloid (Aβ), a peptide of 40–42 amino acids derived from the amyloid precursor protein (APP). The reasons why Aβ accumulates in the brain of individuals with sporadic forms of AD are unknown. Platelets are the primary source of circulating APP and, upon activation, can secrete significant amounts of Aβ into the blood which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. Increased platelet activity can stimulate platelet adhesion to endothelial cells, trigger the recruitment of leukocytes into the vascular wall and cause perivascular inflammation, which can spread inflammation in the brain. Neuroinflammation is fueled by activated microglial cells and reactive astrocytes that release neurotoxic cytokines and chemokines. Platelet activation is also associated with the progression of carotid artery disease resulting in an increased risk of cerebral hypoperfusion which may also contribute to the AD neurodegenerative process. Platelet activation may thus be a pathophysiological mechanism of AD and for the strong link between AD and cerebrovascular diseases. Interfering with platelet activation may represent a promising potential adjunct therapeutic approach for AD.  相似文献   

19.
Clusterin is a secreted molecular chaperone, also called apolipoprotein J. Recent genetic studies have demonstrated that clusterin is a significant susceptibility gene for late-onset Alzheimer's disease (AD). Clusterin shares several properties with apolipoprotein E, a well-known risk gene for AD, i.e. they bind to amyloid-β peptides and are present in neuritic plaques, enhance the clearance of amyloid-β peptides in brain, and are included in lipid particles and thus regulate cholesterol traffic. Biochemical studies indicate that clusterin can prevent the progress of AD pathogenesis. We have observed earlier that histone deacetylase (HDAC) inhibitors can induce the expression of clusterin in several neuroblastoma and glioma cell lines. Recent studies have revealed that valproic acid, a common and well-tolerated drug for epilepsy and bipolar disorders, is a potent HDAC inhibitor. In this study, we examined whether valproic acid can induce the expression of clusterin in human astrocytes. Our results demonstrated that valproic acid is a potent inducer of clusterin expression and secretion in human astrocytes at the therapeutical concentrations. Another clinically used HDAC inhibitor, the cancer drug, Vorinostat (SAHA, suberoylanilide hydroxamic acid), also robustly stimulated the expression of clusterin in human astrocytes. One could postulate that valproic acid may be able to prevent amyloid-β aggregation in AD, as observed in transgenic AD mice, by increasing clusterin expression.  相似文献   

20.
Cerebral amyloid angiopathy (CAA) is a key histopathological hallmark of Alzheimer's disease (AD) and hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D). CAA is characterized by amyloid-beta (Aβ) depositions and remodeling of the extracellular matrix (ECM) in brain vessels and plays an important role in the development and progression of both AD and HCHWA-D. Tissue transglutaminase (tTG) modulates the ECM by molecular cross-linking of ECM proteins. Here, we investigated the distribution pattern, cellular source, and activity of tTG in CAA in control, AD, and HCHWA-D cases. We observed increased tTG immunoreactivity and colocalization with Aβ in the vessel wall in early stage CAA, whereas in later CAA stages, tTG and its cross-links were present in halos enclosing the Aβ deposition. In CAA, tTG and its cross-links at the abluminal side of the vessel were demonstrated to be either of astrocytic origin in parenchymal vessels, of fibroblastic origin in leptomeningeal vessels, and of endothelial origin at the luminal side of the deposited Aβ. Furthermore, the ECM proteins fibronectin and laminin colocalized with the tTG-positive halos surrounding the deposited Aβ in CAA. However, we observed that in situ tTG activity was present throughout the vessel wall in late stage CAA. Together, our data suggest that tTG and its activity might play a differential role in the development and progression of CAA, possibly evolving from direct modulation of Aβ aggregation to cross-linking of ECM proteins resulting in ECM restructuring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号