首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peerschke  EI; Francis  CW; Marder  VJ 《Blood》1986,67(2):385-390
Recent evidence suggests that fibrinogen binding to platelets is mediated by the 12 carboxyterminal amino acid residues of the gamma chain. Because human plasma fibrinogen gamma chains differ in mol wt and carboxyterminal amino acid sequence, we examined the effect of such gamma chain heterogeneity on platelet-fibrinogen interactions, using two fibrinogens of distinct composition, separated by ion exchange chromatography. One fibrinogen possessed only gamma chains of mol wt 50,000 (F gamma 50), the predominant gamma chain species found in plasma. The other fibrinogen possessed equal amounts of gamma chains with mol wt 50,000 and 57,500 (F gamma 50,57.5), with the longer gamma chain (gamma 57.5) possessing an amino acid extension at the carboxyterminal end. The latter fibrinogen was 50% less effective than F gamma 50 in supporting ADP-induced platelet aggregation at concentrations of .01 to 2 mg/mL. Scatchard analysis revealed no difference in the binding affinities of the two fibrinogens to ADP- treated platelets, but the amount of F gamma 50,57.5 that was bound to platelets at saturation was only 50% that of F gamma 50. Fibrinogen receptors that remained unoccupied in the presence of saturating concentrations of F gamma 50,57.5, however, could be occupied by fresh F gamma 50. Excess unlabeled F gamma 50 displaced both radiolabeled fibrinogens from activated platelets, and both fibrinogens bound to the same platelet receptor, as judged by the inhibition of binding to stimulated platelets by a monoclonal antibody directed against the glycoprotein (GP) IIb/IIIa complex. Furthermore, an intact GPIIb/IIIa complex was required for these reactions, since platelets incubated with EDTA at 37 degrees C at alkaline pH failed to aggregate and bound neither fibrinogen in response to ADP following recalcification. Approximately 50% of each fibrinogen bound irreversibly to platelets after one hour and failed to dissociate in the presence of 10 mmol/L of EDTA or excess unlabeled F gamma 50. The data demonstrate that heterodimeric F gamma 50,57.5 binds less well to platelets and supports platelet aggregation only half as well as homodimeric F gamma 50. These results support prior conclusions that the carboxyterminal portion of the gamma chain is important in platelet-fibrinogen interactions, and suggest that the 20 amino acid, hydrophobic gamma chain carboxyterminal extension of F gamma 50,57.5 may sterically hinder the interaction of this fibrinogen with platelet receptors.  相似文献   

2.
Arginyl-glycyl-aspartic acid sequences and fibrinogen binding to platelets   总被引:6,自引:1,他引:6  
Human fibrinogen has an Arg-Gly-Asp-Ser (RGDS) sequence at residues 572- 575 of its A alpha-chain. Although RGDS-containing peptides inhibit fibrinogen binding to stimulated platelets, these peptides also inhibit platelet binding of human fibrinogen fragment X and rat fibrinogen, which lack RGDS sequences corresponding to A alpha 572-575. Thus competition between free RGD-containing peptides and internal RGDS sequence at A alpha 572-575 is not the basis for their inhibition of fibrinogen binding to platelets. Addition of a Thr to the carboxy- terminus and an Asn to the amino-terminus of the RGDS sequence, the amino acids corresponding to A alpha 576 and 571 respectively, reduced the inhibitory potency of RGDS-containing peptides by fourfold to tenfold. Arg-Gly-Asp-Phe (RGDF) corresponds to A alpha 95-98, and the RGDF peptide was an effective inhibitor of fibrinogen binding, fourfold to fivefold more potent than RGDS. Thus, local primary structure may play an important role in regulating the capacity of RGD sequences in proteins to interact with specific adhesion receptors.  相似文献   

3.
Peerschke  EI; Coller  BS 《Blood》1984,64(1):59-63
We recently described a monoclonal antibody, 10E5 , that completely blocks adenosine diphosphate (ADP) induced fibrinogen binding to platelets and aggregation induced by ADP, epinephrine, and thrombin. Multiple lines of evidence indicate that 10E5 binds to platelet membrane glycoproteins IIb and/or IIIa. Because it has been reported that platelets treated with chymotrypsin aggregate when fibrinogen is added, we tested the effect of 10E5 antibody on chymotrypsin-induced fibrinogen binding and platelet aggregation. Aspirin-treated human platelets were washed in modified Tyrode's buffer (pH 7.5), incubated for 5 minutes at 22 degrees C with 300 micrograms/mL chymotrypsin, and washed again. The amount of 10E5 antibody bound to these platelets (37,232 +/- 2,928 molecules/platelet; mean +/- SEM, N=9) was similar to that bound to unstimulated control platelets (36,910 +/- 2,669) and did not differ significantly from the amount of antibody bound to ADP- treated platelets (P less than .01, N = 5). The amount of 10E5 bound to chymotrypsin-treated platelets correlated directly with the amount of fibrinogen bound to separate aliquots of the same platelet samples (r = .876, P less than .001). The 10E5 antibody caused virtually complete inhibition of both the binding of fibrinogen to chymotrypsin-treated platelets and the aggregation induced by exogenous fibrinogen. Immunoprecipitation studies of 125I-labeled chymotrypsin-treated platelets revealed that the 10E5 antibody bound proteins with molecular weights characteristic of glycoproteins IIb and IIIa. These data suggest that the fibrinogen receptor on chymotrypsin-treated platelets is identical to that on ADP-treated platelets and that this receptor is either near to, or on, the glycoprotein IIb/IIIa complex.  相似文献   

4.
Peerschke  EI; Zucker  MB; Grant  RA; Egan  JJ; Johnson  MM 《Blood》1980,55(5):841-847
Fibrinogen is essential for aggregating platelets with adenosine diphosphate (ADP) and was recently shown to bind to platelets stimulated with ADP. The present work confirms the specific and saturable nature of the platelet-fibrinogen interaction. Binding of 125iodine-labeled fibrinogen to human gel-filtered platelts was maximal at 1 min, and the receptors were saturated when the fibrinogen concentration in the suspending medium approached 0.8 mg/ml. Assuming that one fibrinogen molecule interacts with a single receptor, experiments with 9 normal donors revealed the presence of 12,896 +/- 2456 receptors per platelet. Much of the bound material dissociated from platelets after incubation with apyrase or EDTA. Binding was markedly inhibited at pH 6.5, in the presence of EDTA, and with platelets from 3 thrombasthenic patients but not with those from a patient with the Bernard-Soulier syndrome. Fibrinogen binding was also virtually absent with platelets that had been incubated with EDTA for 8 min at 37 degrees C and pH 7.8. These platelets could not aggregate when mixed with ADP and adequate CaCl2 and fibrinogen, although they could still change their shape. Thus, ADP-induced binding of fibrinogen correlates with platelet aggregability.  相似文献   

5.
The role of fibrinogen as a cofactor in platelet aggregation is mediated by its binding to platelet receptors that are induced by stimuli such as ADP. In the present study, we demonstrate that the tetrapeptide glycyl-L-prolyl-L-arginyl-L-proline inhibits the interaction of fibrinogen with its platelet receptor. The primary effect of the peptide was on the extent rather than on the rate of fibrinogen binding. Significant inhibition occurred at a 1:1 molar ratio of peptide to fibrinogen and reached maximal levels at 100:1 ratio. The inhibition was dependent upon fibrinogen concentration and occurred in the presence of calcium or magnesium. The peptide inhibited the binding of fibrinogen to platelets with exposed receptors, suggesting that it interfered directly with the ligand-receptor interaction. Fibrinogen binding supported by epinephrine and thrombin as well as ADP was inhibited by the peptide. Fibrinogen-dependent aggregation of washed platelets by ADP was abolished by a 30-fold molar excess of the peptide. The tetrapeptide is an analog of the amino-terminal sequence of the alpha-chain of fibrin and has been shown to inhibit fibrin polymerization [Laudano, A. P. & Doolittle, R. F. (1978) Proc. Natl. Acad. Sci. USA 75, 3085-3089]. A peptide corresponding to the natural sequence, glycyl-L-prolyl-L-arginyl-L-valyl-L-valine, was also capable of inhibiting fibrinogen binding to the platelet. These results suggest that common structural features within fibrinogen may serve a dual function by permitting the molecule to participate in both platelet aggregation and fibrin formation.  相似文献   

6.
Abstract

Atrial fibrillation (AF) is the most common sustained arrhythmia and associated with adverse outcomes and increased risk for thromboembolic events. Warfarin is still the most extensively prescribed oral anticoagulant in AF to prevent ischemic complications. We aimed to determine the differences at platelet indices with warfarin usage layered by International Normalized Ratio (INR). A total of 250 patients with permanent non-valvular AF (mean age 70.2?±?9.1; 153 female) were divided into two groups. Group 1 included 125 patients whose INR is between 2.0 and 3.0 (called as “effective”) and Group 2 included 125 patients whose INR is <2.0 (called as “ineffective”). Also 123 age- and sex-matched individuals in sinus rhythm enrolled as control group (Group 3). After physical and echocardiographic examination, complete blood counts and INR were studied. There was no statistically significant difference in age, sex, co-morbidities and medications, also hemoglobin, white blood cell and platelet counts among the groups. The CHA2DS2-VASc scores were similar between Groups 1 and 2. The mean platelet volume (MPV), platelet distribution width (PDW) and plateletcrit (PCT) were significantly higher in Group 2 than Groups 1 and 3 and similar between Groups 1 and 3. MPV was positively correlated with PDW and PCT and also inversely correlated with INR value and platelet count. On multivariate logistic regression analysis, MPV, PDW and PCT were independent predictors of ineffectiveness of INR. The results of this study showed that MPV, PDW and PCT are increased in patients with non-valvular AF without effective warfarin treatment. Warfarin usage adjusted by INR is associated with lower values of these platelet indices, even lower as the values of subjects in sinus rhythm. MPV, PDW and PCT are independent predictors of INR ineffectiveness and seem to be useful parameters for monitoring the effectiveness of warfarin treatment.  相似文献   

7.
8.
Fibrinogen binding to receptors on stimulated platelets is a prerequisite for platelet aggregation. To gain further insight into the role of fibrinogen in platelet aggregation and to identify the platelet fibrinogen receptor, we developed a monoclonal anti-platelet antibody that inhibited platelet aggregation. The purified antibody, designated A2A9, inhibited platelet aggregation stimulated by 10 microM ADP, 10 microM epinephrine, and thrombin at 1 unit/ml without inhibiting platelet shape change or platelet secretion. A2A9 was also a competitive inhibitor of fibrinogen binding to ADP-stimulated platelets. Fifty percent inhibition of fibrinogen binding occurred at 65 nM A2A9. Direct binding studies using radiolabeled A2A9 demonstrated 47,000 A2A9 binding sites on unstimulated platelets, with a dissociation constant of 60 nM. Platelets from two individuals with Glanzmann thrombasthenia bound essentially no A2A9. Therefore, these data support the hypothesis that receptor-bound fibrinogen mediates platelet aggregation. In order to identify the platelet fibrinogen receptor, A2A9 immobilized on agarose was used for affinity chromatography. Two platelet polypeptides with Mr = 140,000 and 93,000 were recovered from the immobilized A2A9. After disulfide reduction, these Mr values were altered to 125,000 and 116,000. The smaller polypeptide was also found to contain the PlA1 antigen. These data localize the epitope recognized by A2A9 to the platelet membrane glycoprotein IIb-IIIa complex and suggest that this complex forms the physiologic platelet fibrinogen receptor.  相似文献   

9.
Allosteric equilibria in the binding of fibrinogen to platelets.   总被引:3,自引:0,他引:3       下载免费PDF全文
The binding of fibrinogen to platelets occurs according to the law of mass action. The platelet receptor binds reversibly a single fibrinogen molecule and undergoes a conformational transition between two allosteric states, T and R, that differ in their affinity for fibrinogen. The equilibrium between the two forms is shifted by ADP toward the R (high-affinity) state, thus promoting the aggregation process. This model opens the way to consideration of allosteric modulation of the binding of fibrinogen to its platelet receptor.  相似文献   

10.
P Hourdillé  M Hasitz  F Belloc  A T Nurden 《Blood》1985,65(4):912-920
We have used immunogold staining to locate thrombospondin (TSP) on thrombin-activated human platelets, and have compared its distribution with that of fibrinogen (or fibrin) on thrombin- and ADP-stimulated platelets. To do this, isolated platelets were incubated with monospecific antibodies to TSP or fibrinogen (fib) and the bound IgG located with a second antibody adsorbed to gold particles. Thrombin-induced secretion in Tyrode-Ca2+ was followed by both anti-TSP and anti-fib binding, with large clusters of gold particles observed on the platelet surface. Little or no labeling was observed on unstimulated platelets with either antibody. When secretion was effected in Tyrode-EDTA, anti-TSP IgG still bound to the activated platelets, but the number of particle clusters was significantly reduced. Little binding of anti-fib IgG now occurred. Platelets activated with ADP in the presence of added fib, and subsequently incubated with anti-fib IgG, showed small particle clusters over the whole platelet surface. Thrombin-stimulated platelets from two patients with thrombasthenia bound anti-TSP IgG similarly to normal platelets activated in Tyrode-EDTA. No anti-fib binding occurred. Our results suggest that fib and TSP bind to specific domains on the stimulated platelet membrane. Such sites may be responsible for the mediation of platelet surface contact interactions.  相似文献   

11.
We have constructed synthetic peptides modeled on the sequences of (i) Arg-Gly-Asp, present in fibrinogen, fibronectin, and von Willebrand factor, and of (ii) the fibrinogen gamma chain (gamma 400-411) His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val. The concentration of each peptide that inhibits 50% of 125I-labeled fibrinogen binding to thrombin-stimulated platelets (IC50) was then determined. The IC50 for (gamma 400-411) was 48-180 microM at a fibrinogen concentration of 60 micrograms/ml. A substitution of arginine for alanine at position 9 decreased the IC50 to 14.5 microM. Arginine substitutions for all other residues on the amino-terminal side of the peptide Arg9-Gly-Asp-Val resulted in an IC50 of 0.4-0.8 microM, and the IC50 of the peptide Arg13-Gly-Asp-Val was 0.2-0.3 microM. This contrasts with an IC50 of 200 microM for Arg5-Gly-Asp-Val-Arg4 and an IC50 greater than 1 mM for the peptide Arg12. The inhibitory effect resulted primarily in a decreased affinity of fibrinogen binding to platelets, although the number of available binding sites had also decreased. Binding was completely inhibited. At concentrations between 10 and 18 microM, Arg9-Gly-Asp-Val blocked all ADP-induced aggregation in citrated platelet-rich plasma. The peptide Tyr-His-His-Lys-Arg-Lys-Arg-Lys-Gln-Arg-Gly-Asp-Val was labeled with 125I to quantitate its binding to thrombin-stimulated platelets; at saturation, 59,990 molecules were bound per cell (Kd = 3.8 X 10(-7) M). These modified synthetic peptides bind to platelets with the same affinity as does intact fibrinogen and inhibit platelet function. The increased affinity of these modified peptides is greater than 20-fold that of peptides comprised of only native sequences and is a prerequisite for the potential antithrombotic use of these agents.  相似文献   

12.
Plow  EF; Marguerie  GA 《Blood》1980,56(3):553-555
Thrombin and adenosine diphosphate (ADP) supported the binding of 125I- fibrinogen to washed human platelets with similar kinetics and affinity. Platelet secretion, as measured by 14C-serotonin release, and fibrinogen binding exhibited an identical dependence on thrombin concentration. Enzymatic removal of ADP with apyrase or creatine phosphate/creatine phosphokinase (CP/CPK) from thrombin-stimulated platelets markedly inhibited 125I-fibrinogen binding, but pretreatment of platelets with CP/CPK prior to thrombin stimulation was without effect. Thus, ADP, released from the platelet, participates in the binding of fibrinogen to thrombin-stimulated platelets.  相似文献   

13.
Human von Willebrand factor (vWF) and fibrinogen are adhesive plasma glycoproteins essential for formation of a platelet hemostatic plug. We investigated the role of ADP and fibrinogen in binding of vWF to platelets in vitro. Binding of 125I-labeled vWF to human platelets separated from plasma proteins and treated with ADP was specific, and time and concentration dependent, reaching equilibrium at 20 min and approaching saturation at 12 micrograms/ml. The binding was inhibited by EDTA and by prostaglandin I2, a known activator of platelet adenylate cyclase. A purine nucleotide affinity analog, 5'-p-fluorosulfonylbenzoyl adenosine (FSBA), which covalently modifies the ADP binding sites on the human platelet membrane, prevented binding of vWF induced with ADP, as well as with human thrombin and with ionophore A23187, agents known to cause platelet ADP secretion. By comparison, FSBA did not inhibit binding of vWF induced by ristocetin, indicating that the ristocetin mechanism is not dependent on ADP. Human fibrinogen inhibited in a competitive manner the ADP-induced binding of 125I-labeled vWF (9 micrograms/ml) with an IC50 of 25 micrograms/ml. Conversely, unlabeled vWF inhibited ADP-induced binding of 125I-labeled fibrinogen (60 micrograms/ml) with an IC50 of 16 micrograms/ml. A synthetic dodecapeptide (Mr, 1188), analogous with the specific platelet receptor recognition site of human fibrinogen gamma chain (gamma 400-411), inhibited binding of both 125I-labeled vWF and 125I-labeled fibrinogen to ADP-treated platelets, whereas it was without effect on binding of 125I-labeled vWF to ristocetin-treated platelets. These data indicate that vWF and fibrinogen have a common receptor mechanism for their interaction with human platelets that is dependent on ADP occupancy of its binding sites and is recognized by the sequence of 12 amino acid residues at the carboxyl terminus of the human fibrinogen gamma chain.  相似文献   

14.
The aims of this study were to investigate whether anticardiolipin antibodies (aCL) bind to intact (resting or activated) platelets in vitro. Suspensions of resting, activated (with a mixture of thrombin and collagen) and freeze-thawed platelets from healthy subjects were incubated with either affinity-purified aCL or pooled normal human immunoglobulin G (IgG). Platelet-bound IgG was measured by flow cytometric analysis of platelets incubated with a fluorescein-conjugated polyclonal goat anti-human IgG. There was no significant binding of IgG aCL to intact resting or activated platelets, while significant specific binding to freeze-thawed platelets was demonstrated. These results question the theory that aCL bind/activate intact platelets in vivo.  相似文献   

15.
The Arg-Gly-Asp sequence resides in the cell attachment region of fibronectin. Arg-Gly-Asp-containing peptides support fibroblast attachment, inhibit fibroblast adhesion to fibronectin, and inhibit fibronectin binding to thrombin-stimulated platelets. In view of the similarities between the binding of fibronectin, fibrinogen, and von Willebrand factor to stimulated platelets, we have examined the effects of Arg-Gly-Asp-containing peptides on the interaction of these latter two adhesive proteins with platelets. Gly-Arg-Gly-Asp-Ser-Pro was used as a prototype peptide, and this hexapeptide inhibited fibrinogen binding to ADP and thrombin-stimulated platelets in the 10-200 microM range. The inhibition exceeded 90% at high concentrations of peptide and was observed in the presence of either calcium or magnesium. Platelet aggregation was also inhibited by the peptide in this dose range. The hexapeptide inhibited fibrinogen binding to platelets with receptors fixed in an exposed state, indicating direct interference with the ligand-platelet interaction. The peptide was 1/2 to 1/3rd as potent in inhibiting fibrinogen as fibronectin binding to platelets, but fibrinogen and von Willebrand factor binding were inhibited to an identical extent. Conservative amino acid substitutions for the arginine, glycine, or aspartic acid markedly reduced inhibitory activity and the Asp-Gly-Arg sequence was inactive. These results indicate that Arg-Gly-Asp-containing peptides can inhibit the binding of the three adhesive proteins to stimulated platelets, establishing a basic common feature between the interaction of these molecules with platelets.  相似文献   

16.
Su X  Mi J  Yan J  Flevaris P  Lu Y  Liu H  Ruan Z  Wang X  Kieffer N  Chen S  Du X  Xi X 《Blood》2008,112(3):592-602
Mutational analysis has established that the cytoplasmic tail of the integrin β3 subunit binds c-Src (termed as Src in this study) and is critical for bidirectional integrin signaling. Here we show in washed human platelets that a cell-permeable, myristoylated RGT peptide (myr-RGT) corresponding to the integrin β3 C-terminal sequence dose-dependently inhibited stable platelet adhesion and spreading on immobilized fibrinogen, and fibrin clot retraction as well. Myr-RGT also inhibited the aggregation-dependent platelet secretion and secretion-dependent second wave of platelet aggregation induced by adenosine diphosphate, ristocetin, or thrombin. Thus, myr-RGT inhibited integrin outside-in signaling. In contrast, myr-RGT had no inhibitory effect on adenosine diphosphate-induced soluble fibrinogen binding to platelets that is dependent on integrin inside-out signaling. Furthermore, the RGT peptide induced dissociation of Src from integrin β3 and dose-dependently inhibited the purified recombinant β3 cytoplasmic domain binding to Src-SH3. In addition, phosphorylation of the β3 cytoplasmic tyrosines, Y747 and Y759, was inhibited by myr-RGT. These data indicate an important role for β3-Src interaction in outside-in signaling. Thus, in intact human platelets, disruption of the association of Src with β3 and selective blockade of integrin IIbβ3 outside-in signaling by myr-RGT suggest a potential new antithrombotic strategy.  相似文献   

17.
Platelet fibrinogen binding in whole blood has been measured in vitro by flow cytometry using a commercially available, fluorescein isothiocyanate (FITC)-conjugated polyclonal antifibrinogen antibody. Fibrinogen-antifibrinogen immune complexes were formed in experimental conditions approaching antigen-antibody equivalence, but optimal reaction conditions in which their formation was prevented or minimized could be achieved. Immune complex formation was associated with fibrinogen binding to unstimulated platelets but did not significantly affect ADP-induced fibrinogen binding. Half-maximal fibrinogen binding occurred at about 0.4 microM ADP, and ADP-induced fibrinogen binding continued progressively during 20 min incubation with 10 microM ADP. Fibrinogen binding correlated closely with platelet glycoprotein IIb-IIIa expression in members of a family with Glanzmann's thrombasthenia, and, in double labelling experiments, with the binding of PAC1, a monoclonal antibody that binds to GP IIb-IIIa only after the exposure of fibrinogen receptors. These studies show that platelet fibrinogen binding can be reliably measured in whole blood by means of a polyclonal antifibrinogen antibody which does not discriminate between plasma and platelet-bound fibrinogen, despite the presence of an approximately 100-fold excess of the former.  相似文献   

18.
Previous studies suggested a role for prostaglandins or thromboxane A2, or both in the exposure of fibrinogen receptors on normal platelets in response to several aggregating agents. Platelets from diabetics are known to be more sensitive to aggregating agents and to produce more prostaglandins and thromboxane than platelets from normal subjects. We compared fibrinogen binding to platelets from diabetic subjects with binding to platelets from normal subjects and determined whether aspirin (which inhibits the formation of prostaglandins and thromboxane) would inhibit the binding of fibrinogen to platelets from diabetic subjects and whether this correlated with its effects on platelet aggregation. We found the following: Aspirin suppressed thromboxane formation and rendered the platelets less sensitive to the induction of aggregation by adenosine diphosphate (ADP) or collagen. The amount of U-46619 [( 15s]-hydroxy-11-alpha, 9-alpha [epoxy-methano]- prosta[5Z,13E]-dienoic acid, a stable analog of prostaglandin endoperoxide/thromboxane A2) necessary to induce aggregation, was similar in normal and diabetic subjects and was unchanged after ingestion of aspirin. Binding of 125I-fibrinogen following stimulation of platelets by ADP or collagen was greater in diabetic (because more binding sites were exposed) than in normal subjects. However, following stimulation by U-46619, binding was similar in diabetic and normal subjects. Aspirin caused a reduction in the exposure of binding sites on both platelets from diabetic and normal subjects, so that (in this respect) platelets from diabetic subjects became more like those from normal subjects. Effects of the monoclonal antibody B59.2, which is specific for the platelet glycoprotein IIb-IIIa complex (the presumed receptor for fibrinogen on the platelet surface) were also studied. The amount of this antibody that bound to platelets was the same for normal and diabetic subjects both before and after aspirin and with or without stimulation by ADP or collagen. In addition, B59.2 inhibited aggregation and fibrinogen binding in both platelets from diabetic and normal subjects. The combined data suggest that the glycoprotein IIb- IIIa complex of platelets from diabetic subjects is similar to that of platelets from normal subjects and that the increased fibrinogen binding and aggregation of platelets from diabetic subjects in response to ADP or collagen is mediated by increased formation of prostaglandin endoperoxide or thromboxane A2, or both.  相似文献   

19.
The gamma chain of human fibrinogen has been shown to be heterogeneous; three forms of various sizes are normally present in plasma. To further characterize the two less prevalent elongated variants, we have purified the three forms of the gamma chain, isolated unique tryptic fragments, and sequenced the variant portions of each chain. The intermediate-sized form (gamma 55) has a sequence identical to the longest variant (gamma 57.5) from residue Val-408 to Pro-423, which is the C terminus of the gamma 55 chain. The gamma 57.5 chain extends an additional four amino acids. The C-terminal amino acid sequence and corresponding nucleotide sequence of the gamma 55 chain show marked similarity with an elongated gamma-chain variant of rat fibrinogen. In addition, a remarkable similarity in both amino acid and nucleotide sequence was noted between the human gamma 55 chain and the C-terminal extension in human and bovine A alpha chain of fibrinogen, which are encoded by the cDNA but are posttranslationally cleaved and are not found in plasma. The findings suggest an evolutionary conservation in the C-terminal amino acid sequence found in both the fibrinogen A alpha and gamma chains in several species.  相似文献   

20.
Resting human platelets contain approximately 0.3 mM unpolymerized actin. When freshly drawn and washed platelets are treated with saponin, 85-90% of the unpolymerized actin diffuses out. Analysis by polyacrylamide gel electrophoresis under nondenaturing conditions shows that the bulk of this unpolymerized actin migrates with a higher mobility than does pure G-actin, profilactin, or actin-gelsolin complex. When muscle G-actin is added to fresh or boiled saponin extract, the added muscle actin is shifted to the high-mobility form. The saponin extract contains an acidic peptide having a molecular mass in the range of 5 kDa, which has been purified to homogeneity by reverse-phase HPLC. This peptide also shifts muscle actin to the high-mobility form. Addition of either boiled saponin extract or the purified peptide to muscle G-actin also strongly and stoichiometrically inhibits salt-induced polymerization, as assayed by falling-ball viscometry and by sedimentation. We conclude that this peptide binds to the bulk of the unpolymerized actin in platelets and prevents it from polymerizing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号