首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetic resonance diffusion tensor imaging (DTI) was used to examine the integrity of midline white matter tracts in APPsw (Tg2576) transgenic mice, a mouse-model of cerebral amyloid deposition. Ex vivo DTI was performed on formalin-fixed brains from APPsw and age-matched transgene-negative control mice at the ages of 12, 15, and 17 months. The characteristics of water diffusion in six midline white matter tracts were quantified using four metrics: relative anisotropy (RA), mean diffusivity, axial diffusivity, and radial diffusivity. Two-way ANOVA analyses indicated a significant main effect of transgene on RA in the corpus callosum (CC) and ventral hippocampal commissure (VHC), due to small reductions (2-6%) in RA in APPsw mice relative to age-matched control mice. However, these reductions were not significant at any specific age group and were not progressive with increasing age. The other diffusion metrics exhibited no significant differences between APPsw and control mice in the CC and VHC, nor did any of the diffusion metrics exhibit significant differences between APPsw and control mice in other midline white matter tracts (anterior commissure, posterior commissure, fornix, and dorsal fornix). Overall, these results indicate that white matter integrity, as measured by ex vivo DTI, is predominately unaltered in formalin-fixed brains from amyloid plaque-bearing APPsw mice.  相似文献   

2.
In this study, axial (lambda(parallel)) and radial (lambda(perpendicular)) diffusivities derived from diffusion tensor imaging (DTI) were used to evaluate white matter injury in brains of mice affected by experimental autoimmune encephalomyelitis (EAE). Sixteen female C57BL/6 mice were immunized with amino acids 35-55 of myelin oligodendrocyte glycoprotein (MOG(35-55)). Three months after immunization, optic nerve and tract were severely affected with 19% and 18% decrease in lambda(parallel) respectively, suggesting the presence of axonal injury. In addition, a 156% and 86% increase in lambda( perpendicular) was observed in optic nerve and tract respectively, suggestive of myelin injury. After in vivo DTI, mice were perfusion fixed and immunohistochemistry for the identification of myelin basic protein (MBP) and phosphorylated neurofilament (pNF) was performed to verify the presence of axonal and myelin injury. The present study demonstrated that the visual pathway is selectively affected in MOG(35-55) induced murine EAE and these injuries are non-invasively detectable using lambda(parallel) and lambda( perpendicular).  相似文献   

3.
Diffusion tensor imaging (DTI) has the potential to provide important information about the integrity of white matter tracts in injured spinal cord tissue. It is thought that DTI-based transverse diffusivity (lambda(t)) reflects the state of myelin, whereas longitudinal diffusivity (lambda(l)) reflects axonal integrity. However, this has not been established in spinal cord injury (SCI). Therefore, we performed quantitative histologic analysis on 4- and 8-week post-SCI rodent spinal cords that had received a moderately severe injury at the T7 level and correlated the histology with lambda(t) and lambda(l) measured in vivo. Using antibodies specific to myelin and axonal process (i.e., neurofilament), the percent area of expression was determined in the dorsal, ventral, and lateral white matter from both rostral and caudal regions away from the epicenter of the injury site. The results suggest a positive correlation between lambda(t) and demyelination in many but not all regions. However, these studies failed to establish a correlation between lambda(l) and axonal damage. These results suggest that caution must be exercised in interpreting the DTI metrics in terms of tissue pathology in SCI.  相似文献   

4.
Diffusion tensor magnetic resonance imaging (DT-MRI) was applied for in vivo quantification of myelin loss and regeneration. A transgenic mouse line (Oligo-TTK) expressing a truncated form of the herpes simplex virus 1 thymidine kinase gene (hsv1-tk) in oligodendrocytes was studied along with two induced phenotypes of myelin pathology. Myelin loss and axonal abnormalities differentially affect values of DT-MRI parameters in the brain of transgenic mice. Changes in the anisotropy of the white matter were assessed by calculating and mapping the radial (D perpendicular) and axial (D parallel) water diffusion to axonal tracts and fractional anisotropy (FA). A significant increase in D perpendicular attributed to the lack of myelin was observed in all selected brain white matter tracts in dysmyelinated mice. Lower D parallel values were consistent with the histological observation of axonal modifications, including reduced axonal caliber and overexpression of neurofilaments and III beta-tubulin. We show clearly that myelination and axonal changes play a role in the degree of diffusion anisotropy, because FA was significantly decreased in dysmyelinated brain. Importantly, myelin reparation during brain postnatal development induced a decrease in the magnitude of D( perpendicular) and an increase in FA compared with the same brain before recovery. The progressive increase in D parallel values was attributed to the gain in normal axonal morphology. This regeneration was confirmed by the detection of enlarged oligodendrocyte population, newly formed myelin sheaths around additional axons, and a gradual increase in axonal caliber.  相似文献   

5.
Reduced fractional anisotropy (FA) in Diffusion Tensor Imaging (DTI) has been reported in cocaine dependent subjects compared to non-drug using controls. There are several pathological mechanisms that could be responsible for these findings, since FA can be reduced through damage to axonal tracts and by neuronal loss. One way of obtaining more information about pathology underlying changes in FA on DTI is diffusion tensor eigenvalues, representing diffusion along the fiber tract (lambda(1)) or perpendicular to the fiber tract (lambda(T)). Thirteen cocaine dependent subjects and 18 healthy controls underwent full brain DTI. Eigenvalues lambda(1) and lambda(T) of the corpus callosum were compared between cocaine users and controls. For lambda(T) there was a significant interaction of group x region of corpus callosum. Exploratory analysis of the subregions showed higher lambda(T) in the genu of the anterior corpus callosum of cocaine dependent subjects compared to control subjects. For lambda(1) there was no significant interaction of group x region of corpus callosum. Based on prior studies suggesting that alteration or damage to myelin increases diffusion perpendicular to the direction of fiber tracts (lambda(T)) with minimal effect on lambda(1) these findings are consistent with altered myelin in the corpus callosum in cocaine dependent subjects.  相似文献   

6.
Brain injury underlying the state‐related loss of ventilatory drive, autonomic, cognitive, and affective deficits in congenital central hypoventilation syndrome (CCHS) patients appears throughout the brain, as demonstrated by magnetic resonance (MR) T2 relaxometry and mean diffusivity studies. However, neither MR measure is optimal to describe types of axonal injury essential for assessing neural interactions responsible for CCHS characteristics. To evaluate axonal integrity and partition the nature of tissue damage (axonal vs. myelin injury) in CCHS, we measured water diffusion parallel (axial diffusivity) and perpendicular (radial diffusivity) to rostral brain fibers, indicative of axonal and myelin changes, respectively, with diffusion tensor imaging (DTI). We performed DTI in 12 CCHS (age 18.5 ± 4.9 years, 7 male) and 30 control (17.7 ± 4.6 years, 18 male) subjects, using a 3.0‐Tesla MR imaging scanner. Axial and radial diffusivity maps were calculated, spatially normalized, smoothed, and compared between groups (analysis of covariance; covariates, age and gender). Significantly increased radial diffusivity, primarily indicative of myelin injury, emerged in fibers of the corona radiata, internal capsule, corpus callosum, hippocampus through the fornix, cingulum bundle, and temporal and parietal lobes. Increased axial diffusivity, suggestive of axonal injury, appeared in fibers of the internal capsule, thalamus, corona radiata, and occipital and temporal lobes. Multiple brain regions showed both higher axial and radial diffusivity, indicative of loss of tissue integrity with a combination of myelin and axonal injury, including basal ganglia, bed nucleus, and limbic, occipital, and temporal areas. The processes underlying injury are unclear, but likely stem from both hypoxic and developmental processes. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Diffusion tensor imaging (DTI) is a powerful method to visualize white matter, but its use in patients with acute stroke remains limited because of the lack of corresponding histologic information. In this study, we addressed this issue using a hypoxia–ischemia (HI)-induced thrombotic model of stroke in adult mice. At 6, 15, and 24 hours after injury, animals were divided into three groups for (1) in vivo T2- and diffusion-weighted magnetic resonance imaging, followed by histochemistry, (2) ex vivo DTI and electron microscopy, and (3) additional biochemical or immunochemical assays. The temporal changes of diffusion anisotropy and histopathology were compared in the fimbria, internal capsule, and external capsule. We found that HI caused a rapid reduction of axial and radial diffusivities in all three axonal bundles. A large decrease in fractional anisotropy, but not in axial diffusivity per se, was associated with structural breakdown of axons. Furthermore, the decrease in radial diffusivity correlated with swelling of myelin sheaths and compression of the axoplasma. The gray matter of the hippocampus also exhibited a high level of diffusion anisotropy, and its reduction signified dendritic degeneration. Taken together, these results suggest that cross-evaluation of multiple DTI parameters may provide a fuller picture of axonal and dendritic injury in acute ischemic stroke.  相似文献   

8.
磁共振弥散张量成像在脑血管病中的应用   总被引:3,自引:0,他引:3  
磁共振弥散张量成像(DTI)是一种较新的成像技术,主要用于评估影响脑白质尤其是白质纤维束完整性的疾病,是当前惟一的一种能有效观察和追踪脑白质纤维束的非侵入性检查方法。该技术可定量分析病变组织和正常组织的弥散特征,直观显示颅内病变与白质纤维之间的关系,为诊断疾病和判断预后提供更多的信息。本文就DTI基本原理及其在脑血管病中的临床应用作一概述。  相似文献   

9.
In the current study, the feasibility and reproducibility of in vivo diffusion tensor imaging (DTI) of the spinal cord in normal mice are illustrated followed by its application to mice with experimental allergic encephalomyelitis (EAE) to detect and differentiate axon and myelin damage. Axial diffusivity, describing water movement along the axonal fiber tract, in all regions of spinal cord white matter from EAE-affected C57BL/6 mice was significantly decreased compared to normal mice, whereas there was no statistically significant change in radial diffusivity, describing water movement across the fiber tract. Furthermore, a direct comparison between DTI and histology from a single mouse demonstrated a decrease in axial diffusivity that was supported by widespread staining of antibody against beta-amyloid precursor protein. Regionally elevated radial diffusivity corresponded with locally diminished Luxol fast blue staining in the same tissue from the EAE mouse cord. Our findings suggest that axonal damage is more widespread than myelin damage in the spinal cord white matter of mice with EAE and that in vivo DTI may provide a sensitive and specific measure of white matter injury.  相似文献   

10.
It has recently been demonstrated that specific patterns of correlation exist in diffusion tensor imaging (DTI) parameters across white matter tracts in the normal human brain. These microstructural correlations are thought to reflect phylogenetic and functional similarities between different axonal fiber pathways. However, this earlier work was limited in three major respects: (1) the analysis was restricted to only a dozen selected tracts; (2) the DTI measurements were averaged across whole tracts, whereas metrics such as fractional anisotropy (FA) are known to vary considerably within single tracts; and (3) a univariate measure of correlation was used. In this investigation, we perform an automated multivariate whole-brain voxel-based study of white matter FA correlations using independent component analysis (ICA) of tract-based spatial statistics computed from 3T DTI in 53 healthy adult volunteers. The resulting spatial maps of the independent components show voxels for which the FA values within each map co-vary across individuals. The strongest FA correlations were found in anatomically recognizable tracts and tract segments, either singly or in homologous pairs. Hence, ICA of DTI provides an automated unsupervised decomposition of the normal human brain into multiple separable microstructurally correlated white matter regions, many of which correspond to anatomically familiar classes of white matter pathways. Further research is needed to determine whether whole-brain ICA of DTI represents a novel alternative to tractography for feature extraction in studying the normal microstructure of human white matter as well as the abnormal white matter microstructure found in neurological and psychiatric disorders.  相似文献   

11.
Diffusion tensor imaging (DTI) measures diffusion of molecular water, which can be used to calculate indices of white matter integrity. Early DTI studies of aging primarily focused on two global measures of integrity; the average rate (mean diffusivity, MD) and orientation coherence (fractional anisotropy, FA) of diffusion. More recent studies have added measures of water movement parallel (axial diffusivity, AD) and perpendicular (radial diffusivity, RD) to the primary diffusion direction, which are thought to reflect the neural bases of age differences in diffusion (i.e., axonal shrinkage and demyelination, respectively). In this study, patterns of age differences in white matter integrity were assessed by comparing younger and healthy older adults on multiple measures of integrity (FA, AD, and RD). Results revealed two commonly reported patterns (Radial Increase Only and Radial/Axial Increase), and one relatively novel pattern (Radial Increase/Axial Decrease) that varied by brain region and may reflect differential aging of microstructural (e.g., degree of myelination) and macrostructural (e.g., coherence of fiber orientation) properties of white matter. In addition, larger age differences in FA in frontal white matter were consistent with the anterior–posterior gradient of age differences in white matter integrity. Together, these findings complement other recent studies in providing information about patterns of diffusivity that are characteristic of healthy aging. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Bilateral white matter diffusion changes persist after epilepsy surgery   总被引:5,自引:0,他引:5  
PURPOSE: Bilateral white matter diffusion tensor imaging (DTI) abnormalities have been reported in patients with temporal lobe epilepsy (TLE) and unilateral mesial temporal sclerosis (MTS), but it is unknown whether these are functional or structural changes. We performed a longitudinal study in patients with unilateral MTS who were seizure-free for 1 year after surgery to determine whether the observed presurgical white matter diffusion abnormalities were reversible. METHODS: Eight TLE patients with unilateral MTS who were seizure-free after anterior temporal resection and 22 healthy subjects were recruited. DTI was performed before surgery and at 1-year follow-up. Tractography and region-of-interest (ROI) analyses were performed in the fornix, cingulum, genu, and splenium of the corpus callosum and external capsules. Diffusion tensor parameters were compared between groups and before and after surgery in the patient group. RESULTS: The fornix, cingulum, and external capsules showed preoperative bilateral abnormal diffusion parameters (i.e., decreased diffusion anisotropy and increased mean and perpendicular diffusivities). The fornix and cingulum ipsilateral to the resected mesial temporal structures showed signs of wallerian degeneration at 1-year follow-up. The contralateral tracts of the fornix, cingulum, and external capsules, as well as the genu of the corpus callosum, failed to show a normalization of their diffusion parameters. CONCLUSIONS: The irreversibility of the white matter DTI abnormalities on seizure freedom suggests underlying structural abnormalities (e.g., axonal/myelin degradation) as opposed to functional changes (e.g., fluid shifts due to seizures) in the white matter.  相似文献   

13.
Two basic neuroimaging‐based characterizations of white matter tracts are the magnitude of water diffusion along the principal tract orientation (axial diffusivity, AD) and water diffusion perpendicular to the principal orientation (radial diffusivity, RD). It is generally accepted that decreases in AD reflect disorganization, damage, or loss of axons, whereas increases in RD are indicative of disruptions to the myelin sheath. Previous reports have detailed the heritability of individual AD and RD measures, but have not examined the extent to which the same or different genetic or environmental factors influence these two phenotypes (except for corpus callosum). We implemented bivariate twin analyses to examine the shared and independent genetic influences on AD and RD. In the Vietnam Era Twin Study of Aging, 393 men (mean age = 61.8 years, SD = 2.6) underwent diffusion‐weighted magnetic resonance imaging. We derived fractional anisotropy (FA), mean diffusivity (MD), AD, and RD estimates for 11 major bilateral white matter tracts and the mid‐hemispheric corpus callosum, forceps major, and forceps minor. Separately, AD and RD were each highly heritable. In about three‐quarters of the tracts, genetic correlations between AD and RD were >.50 (median = .67) and showed both unique and common variance. Genetic variance of FA and MD were predominately explained by RD over AD. These findings are important for informing genetic association studies of axonal coherence/damage and myelination/demyelination. Thus, genetic studies would benefit from examining the shared and unique contributions of AD and RD.  相似文献   

14.
In vivo serial diffusion tensor imaging of experimental spinal cord injury   总被引:9,自引:0,他引:9  
In vivo longitudinal diffusion tensor imaging (DTI) of rodent spinal cord injury (SCI) was carried out over a period of eight weeks post-injury. A balanced, rotationally invariant, alternating gradient polarity icosahedral diffusion encoding scheme was used for an unbiased estimation of the DTI metrics. The fractional anisotropy (FA), diffusivities along (longitudinal), and perpendicular (transverse) to the fiber tracts, were estimated for the ventral, dorsal, and lateral white matter. In all the three regions, the DTI metrics were observed to be significantly different in injured cords relative to the uninjured controls close to the epicenter of the injury. However, these differences gradually disappeared away from the epicenter. The spatio-temporal changes in the DTI metrics showed a recovery pattern that is region specific. Although the temporal trends in the tissue recovery in rostral and caudal sections seem to be similar, overall the DTI metrics were observed to be closer to the normal tissue values in the caudal relative to the rostral sections (rostral-caudal asymmetry).  相似文献   

15.
Developmental dyslexia is one of the most common neuropsychological disorders in children and adults. Only few data are available on the pathomechanisms of this specific dysfunction, assuming - among others - that dyslexia might be a disconnection syndrome of anterior and posterior brain regions involved in phonological and orthographic aspects of the reading process, as well as in the integration of phonemes and graphemes. Therefore, diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) were used to verify the hypothesis of altered white and gray matter structure in German dyslexic adults. DTI revealed decreased fractional anisotropy (FA) in bilateral fronto-temporal and left temporo-parietal white matter regions (inferior and superior longitudinal fasciculus). Significant correlations between white matter anisotropy and speed of pseudoword reading were found. In dyslexics, gray matter volumes (as measured by VBM) were reduced in the superior temporal gyrus of both hemispheres. So far, our results, based on a combined analysis of white and gray matter abnormalities, provide exceedingly strong evidence for a disconnection syndrome or dysfunction of cortical areas relevant for reading and spelling. Thus, we suggest that this imbalance of neuronal communication between the respective brain areas might be the crucial point for the development of dyslexia.  相似文献   

16.
Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies.  相似文献   

17.
PURPOSE: Focal cortical dysplasia (FCD) is one of the most common underlying pathologic substrates in patients with medically intractable epilepsy. While magnetic resonance imaging (MRI) evidence of FCD is an important predictor of good surgical outcome, conventional MRI is not sensitive enough to detect all lesions. Previous reports of diffusion tensor imaging (DTI) abnormalities in FCD suggest the potential of DTI in the detection of FCD. The purpose of this study was to study subcortical white matter underlying small lesions of FCD using DTI. METHODS: Five patients with medically intractable epilepsy and FCD were investigated. Diffusion tensor imaging images were acquired (20 contiguous 3 mm thick axial slices) with maps of fractional anisotropy (FA), trace apparent diffusion coefficient (trace/3 ADC), and principal eigenvalues (ADC parallel and ADC perpendicular to white matter tracts) being calculated for each slice. Region of interest analysis was used to compare subcortical white matter ipsilateral and contralateral to the lesion. RESULTS: Three subjects with FCD associated with underlying white matter hyperintensities on T2 weighted MRI were observed to have increased trace/3 ADC, reduced fractional anisotropy and increased perpendicular water diffusivity which was greater than the relative increase in the parallel diffusivity. No DTI abnormalities were identified in two patients with FCD without white matter hyperintensities on conventional T2-weighted MRI. CONCLUSIONS: While DTI abnormalities in FCD with obvious white matter involvement are consistent with micro-structural degradation of the underlying subcortical white matter, DTI changes were not identified in FCD lesions with normal appearing white matter.  相似文献   

18.
Shu N  Li J  Li K  Yu C  Jiang T 《Human brain mapping》2009,30(1):220-227
Early visual deprivation may lead to both abnormal and plastic changes in the visual and other systems of the brain. Such secondary changes in the gray matter of the early blind have been well studied, but not so well in the cerebral white matter whose subtle changes may be revealed by diffusion tensor imaging. The first purpose of this study is to explore the possible changed white matter regions of the early blind in whole brain manners, using voxel-based analysis (VBA) and tract-based spatial statistics (TBSS) methods. The second purpose is to investigate the changes of diffusion eigenvalues in the abnormal white matter fiber tracts using tractography based group mapping analysis. From VBA of fractional anisotropy (FA) images, the significant changed white matter regions were the geniculocalcarine tract (GCT) and its adjacent regions. This finding was validated by TBSS method. Then we studied the changes of mean diffusivity (MD), FA, primary (lambda(1)) and transverse diffusivities (lambda(23)) in the GCT using tractography based group mapping analysis. We found the early blind had significantly lower FA (P < 0.0001), higher MD (P = 0.001) and lambda(23) (P < 0.0001) in the GCT. This pattern of diffusion changes is similar to findings seen in immaturity or axonal degeneration. Thus, we suggest that transneuronal degeneration and/or immaturity may account for the abnormal diffusion changes in the GCT of the early blind.  相似文献   

19.
The antidepressant fluoxetine stimulates astrocytic glycogenolysis, which serves as an energy source for axons. In multiple sclerosis patients fluoxetine administration may improve energy supply in neuron cells and thus inhibit axonal degeneration. In a preliminary pilot study, 15 patients with multiple sclerosis (MS) were examined by diffusion tensor imaging (DTI) and 1H magnetic resonance spectroscopy (MRS) in order to quantify the brain tissue diffusion properties (fractional anisotropy, apparent diffusion coefficient) and metabolite levels (choline, creatine and N-acetylaspartate) in cortical gray matter brain tissue, in normal appearing white matter and in white matter lesions. After oral administration of fluoxetine (20 mg/day) for 1 week, the DTI and MRS measurements were repeated and after treatment with a higher dose (40 mg/day) during the next week, a third series of DTI/MRS examinations was performed in order to assess any changes in diffusion properties and metabolism. One trend was observed in gray matter tissue, a decrease of choline measured at weeks 1 and 2 (significant in a subgroup of 11 relapsing remitting/secondary progressive MS patients). In white matter lesions, the apparent diffusion coefficient was increased at week 1 and N-acetylaspartate was increased at week 2 (both significant). These preliminary results provide evidence of a neuroprotective effect of fluoxetine in MS by the observed partial normalization of the structure-related MRS parameter N-acetylaspartate in white matter lesions.  相似文献   

20.
Vanishing white matter disease (VWM) is one of the most frequent inherited childhood white matter disorders. We present the brain and spinal cord disease progression on serial conventional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) in a 4-year-old boy. Consecutive MRI examinations demonstrated a progression of the signal abnormalities in the cerebral white matter. Globally, apparent diffusion coefficient (ADC) values as well as axial and radial diffusivity increased over time, while fractional anisotropy (FA) values decreased. Involvement of the cervical posterior spinal tracts and mild global spinal cord atrophy was found. In conclusion, serial MRI and DTI studies may help to better understand the selective injury of the myelin and axons in VWM disease. These data may help in monitoring disease progression. Our data also show that complete neuroimaging work-up in VWM should also include the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号