首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amygdaloid neurons of origin and the trajectory of amygdaloid fibers to the medial preoptic area of the adult male Syrian hamster were identified by using horseradish peroxidase (HRP) histochemistry. After iontophoresis of HRP into the medial preoptic area, retrogradely labeled amygdaloid neurons were located in the dorsal and caudal parts of the medial amygdaloid nucleus and throughout the amygdalohippocampal area. No amygdaloid neurons were labeled after HRP applications confined to the most rostral portion of the medial preoptic area (anterior to the body of the anterior commissure). Following more caudal medial preoptic area injections (body of the anterior commissure to the suprachiasmatic nucleus) the distribution of retrogradely labeled cells in the medial amygdaloid nucleus and the amygdalohippocampal area revealed no topographic organization of the amygdalopreoptic connections. When amygdaloid neurons were labeled, the amygdalohippocampal area contained two to five times as many HRP-filled cells as the medial amygdaloid nucleus. Retrogradely transported HRP could be followed from the medial preoptic area to the amygdala through fibers in the dorsomedial quadrant of the stria terminalis. In addition, electrolytic lesions of the stria terminalis prior to iontophoresis of HRP into the medial preoptic area prevented retrograde transport to neurons in both the dorsocaudal medial amygdaloid nucleus and the amygdalohippocampal area. These results confirm earlier observations describing the location of autoradiographically labeled efferents from the medial amygdaloid nucleus to the medial preoptic area and provide new information about the restricted region within the medial amygdaloid nucleus from which these projections arise. They also suggest that, unlike the projections from the medial amygdaloid nucleus to the bed nucleus of the stria terminalis, the efferents to the medial preoptic area travel entirely in the stria terminalis.  相似文献   

2.
The medial nucleus of the amygdala, bed nucleus of the stria terminalis, and medial preoptic area appear to mediate steroidal regulation of mating behavior in male rodents. The mechanism of action has not been determined. One way testosterone could enhance neuronal function is by increasing neurotransmitter levels, thus altering neuronal transmission. To assess this hypothesis, we examined the effect of castration and testosterone treatment on substance P levels in the neurons of these three brain regions. Brains from male Syrian hamsters that were (1) gonadally intact, (2) castrated for 13 weeks, or (3) castrated for 9 weeks and treated with testosterone for 4 weeks, were processed for substance P, and the numbers of substance P immunoreactive neurons in the medial nucleus of the amygdala, bed nucleus of the stria terminalis, and medial preoptic area were determined. Castration reduced the number of substance P neurons in the bed nucleus of the stria terminalis and medial preoptic area relative to those in intact hamsters: the number of substance P neurons in these regions was restored by testosterone treatment. Castration did not reduce the number of substance P neurons in the medial nucleus of the amygdala; however, testosterone treatment increased the numbers of these neurons when compared to intacts. Thus, testosterone regulates substance P levels in areas that regulate mating behavior. As substance P enhances male copulatory behavior our results suggest that testosterone may regulate copulatory behavior by enhancing substance P levels in medial nucleus of the amygdala, bed nucleus of the stria terminalis and medial preoptic area.  相似文献   

3.
The regional distribution of neurones expressing aromatase mRNA in the ram hypothalamus was examined by in situ hybridization using 33P-labelled cRNA probes. The highest amounts of hybridization signal were observed in the central part of the medial preoptic nucleus and posterior medial part of the bed nucleus of the stria terminalis. Moderate amounts of hybridization signal were observed in the anteroventral periventricular preoptic nucleus, medial preoptic nucleus and a broad band extending between the medial preoptic nucleus and bed nucleus of the stria terminalis. Low levels of hybridization signal were observed in the organum vasculosum of the lamina terminalis, anterior part of the medial preoptic nucleus, and central part of the ventromedial nucleus of the hypothalamus. The presence of aromatase mRNA within neurones of the steroid-sensitive hypothalamic circuit supports a role for aromatization in the mechanism of testosterone action on reproductive function in male sheep. The distribution of aromatase mRNA in the ovine hypothalamus was similar to that described for other vertebrate species, suggesting a high degree of functional conservation across species.  相似文献   

4.
The fields of origin of the amygdalofugal pathways in the albino rat were studied by using the Fink-Heimer technique to stain degenerating fibers and terminals in brains of animals sacrificed four and seven days after small unilateral lesions of the amygdale. A surprisingly restricted field of origin was found for the supracommissural stria terminalis — the component projecting to the ventromedial nucleus of the hypothalamus Only a lesion in the most posterior part of the cortical nucleus produced degeneration in this pathway. The postcommissural stria terminalis which apparently distributes to the bed nucleus of the stria terminalis and preoptic area originates in a more widespread area including parts of both the basolateral and corticomedial complexes. Although intense terminal degeneration could be seen within the amygdala following all lesions, long fibers projecting into the anterior amygdaloid area, lateral preoptic area and lateral hypothalamus were found only after lesions in which fibers of passage from periamygdaloid cortex could have been interrupted. Convincing evidence, therefore, of a long axon ventral amygdalofugal pathway of the rat was not found in this study.  相似文献   

5.
Medial preoptic axons were traced into the diagonal band of Broca and septum, particularly lateral septum. Other labeled fibers could be followed dorsally from medial preoptic area injections adjacent to the stria medullaris, and in the periventricular fiber system and the stria terminalis and its bed nucleus. The anterior and medial amygdaloid nuclei were labeled by fibers via the stria terminalis and others arching over the optic tract and through the substantia innominata. The lateral habenula was labeled. Labeled periventricular fibers reached the periventricular nucleus of the thalamus. Descending efferents were traced principally below the fornix and in the adjacent lateral hypothalamus to label the anterior hypothalamus, the tuberal nuclei, and median eminence. Axons of the medial preoptic area joined the medial part of the medial forebrain bundle and distributed to the reticular formation and the central gray of the midbrain and pons. A small amount of contralateral connections were described.  相似文献   

6.
Potential efferent projections of A13 dopaminergic (DA) neurons were identified in the present study by examining the distribution of labelled fibers following iontophoretic injection of the anterogradely transported lectinPhaseolus vulgaris leucoagglutinin (PHA-L) into the medial zona incerta (MZI), the region of the diencephalon containing A13 DA neuronal perikarya. One week after injection, PHA-L labelled fibers were found throughout the brain with the heaviest labelling occurring ipsilateral to the injection site in the anterior hypothalamic area, lateral hypothalamus, lateral preoptic area, horizontal diagonal band of Broca, and parvocellular region of the paraventricular nucleus. Moderate labelling was observed in the ipsilateral median preoptic nucleus, lateral septum, lateral aspect of the bed nucleus of the stria terminalis, and central nucleus of the amygdala. Moderate labelling was also found in the contralateral MZI and parvocellular region of the paraventricular nucleus. Light labelling was detected in the ipsilateral medial preoptic area, supraoptic nucleus, ventromedial nucleus, arcuate nucleus, vertical limb of the diagonal band of Broca, and in the contralateral lateral hypothalamus. Few immunopositive fibers were present in the dorsomedial nucleus of the hypothalamus or the magnocellular region of the paraventricular nucleus. These results reveal that neurons located in the MZI (possibly A13 DA neurons) have ipsilateral efferent axonal projections to a variety of brain regions including the lateral hypothalamus, lateral preoptic area, and the limbic structures at the diencephalic-telencephalic juncture.  相似文献   

7.
The projections of the stria terminalis were traced with the Fink-Heimer stain following lesions at the level of the anterior commissure. The pre-commissural stria terminalis is amygdalofugal only, and projects to the nucleus of the anterior commissure, the medial preoptic area, the ventral portion of the capsule surrounding the ventromedial nucleus, and to the area closely adjacent to the periventricular nucleus by way of the medial corticohypothalamic tract. The postcommissural stria terminalis is both amygdalofugal and amygdalopetal. Its hypothalamic projection is to the lateral preoptic area and the bed nucleus of the stria terminalis, and to the lateral hypothalamus by way of the lateral preoptic area. The amygdaloid projection is mainly to the basolateral nucleus, with fewer terminations to the basomedial nucleus and the area surrounding the central nucleus. The projections of the bed nucleus of the stria terminalis are quite similar to the postcommissural stria, except for an additional projection to the magnocellular paraventricular and dorsal periventricular nuclei by way of the lateral filiform tract. The commissural stria terminalis projects contralaterally to cells within its fiber bundle and the posterior limb of the anterior commissure.  相似文献   

8.
J Bueno  D W Pfaff 《Brain research》1976,101(1):67-78
Single unit activity was recorded with micropipettes in the medial hypothalamus and preoptic area of urethane-anesthetized ovariectomized female rats. Some females had received long-term estradiol treatment, while others had been left untreated. In the medial preoptic region and bed nucleus of the stria terminalis, estrogen-treated rats had fewer cells (compared to untreated rats) with recordable spontaneous activity, due primarily to a loss of cells with very slow firing rates. In the basomedial hypothalamus, estrogen-treated rats had more cells (than untreated rats) with recordable spontaneous activity, due primarily to an increase in the number of cells with slow firing rates. Responsiveness of neurons to somatosensory stimulation was generally low. If present it was depressed by estrogen treatment in medial preoptic area and bed nucleus of stria terminalis, while it tended to be elevated by estrogen treatment in medial anterior hypothalamus and basomedial hypothalamus. Differences in the effects of long-term systemic estrogen treatment on medial preoptic neurons compared to basomedial hypothalamus are paralledled by differences in the control of lordosis by these neurons in female rats.  相似文献   

9.
Chemosensory and hormonal signals, both of which are essential for mating in the male Syrian hamster, are relayed through a distinct forebrain circuit. Immunocytochemistry for tyrosine hydroxylase, a catecholamine biosynthetic enzyme, previously revealed immunoreactive neurons in the anterior and posterior medial amygdaloid nucleus, one of the nuclei within this pathway. In addition, dopamine-immunoreactive neurons were located in the posterior, but not hte anterior, medial amygdala. In the present study, tyrosine hydroxylase-immunostained neurons were also observed in other areas of the chemosensory pathway, including the posteromedial bed nucleus of the stria terminalis and the posterior, lateral part of the medial preoptic area, while dopamine immunostaining was only seen in the posteromedial bed nucleus of the stria terminalis. The colocalization of tyrosine hydroxylase and androgen receptors was examined in these four tyrosine hydroxylase cell groups by a double immunoperoxidase technique. The percentage of tyrosine hydroxylase-immunolabeled neurons that were also androgen receptor-immunoreactive was highest in the posterior medial amygdaloid nucleus (74%) and the bed nucleus of the stria terminalis (79%). Fewer tyrosine hydroxylase-immunostained neurons in the anterior medial amygdala (33%) and the medial preoptic area (4%) contained androgen receptors. Surprisingly, castration resulted in a significant decrease in the number of tyrosine hydroxylase-immunoreactive neurons only in the anterior medial amygdaloid nucleus, and this effect was transient. Six weeks after castratio, the anterior medial amygdala contained 61% fewer tyrosine hydroxylase-immunolabeled neurons, but 12 weeks after gonadectomy, immunostaining returned to intact values. The number of immunostained neurons in testosterone-replaced, castrated hamsters was not significantly different from that of intact or castrated animals at any time. The results of this study indicate that a substantial number of tyrosine hydroxylase-immunostained neurons in the chemosensory pathway are influenced by androgens; the majority of these neurons in the posterior medial amygdala and the posteromedial bed nucleus of the stria terminalis produce androgen receptors, and tyrosine hydroxylase immunoreactivity is altered by castration in the anterior medial amygdala. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Stimulation of the vagina and cervix, by mating or manual probing, elicits many behavioral and endocrine changes associated with female reproduction in rats. We and others have identified neurons in the medial preoptic area, medial division of the bed nucleus of the stria terminalis, posterodorsal portion of the medial amygdala, ventromedial hypothalamus, dorsomedial hypothalamus and midbrain central gray that increase Fos expression in response to vaginal-cervical stimulation (VCS). In the present study, we used a double-label immunofluorescent technique to determine if any of these VCS-responsive neurons also contained estrogen receptor-immunoreactivity. We found that over 80% of the VCS-induced Fos-IR neurons in the medial division of the bed nucleus of the stria terminalis also contained estrogen receptor-immunoreactivity. Furthermore, high percentages of VCS-responsive neurons in the medial preoptic area, posterodorsal medial amygdala, ventromedial hypothalamus and midbrain central gray contained estrogen receptor-immunoreactivity as well. These results suggest that sensory and hormonal information associated with female reproduction converge on specific populations of neurons and may be integrated at the molecular level within these neurons.  相似文献   

11.
Considerable evidence suggests that dynorphin and neurokinin B (NKB) neurons in the hypothalamic arcuate nucleus participate in the sex-steroid regulation of reproduction. In the present study, we used dual-label immunofluorescence to explore the distribution of prodynorphin and proNKB immunoreactivity in the rat hypothalamus. Additionally, we investigated whether arcuate prodynorphin-ir (immunoreactive) neurons expressed the neurokinin 3 receptor (NK3R) or nuclear estrogen receptor-alpha (ERalpha). We found that the majority of prodynorphin-ir neurons in the rat arcuate nucleus expressed proNKB, whereas nearly all (99%) of the proNKB neurons were immunoreactive for prodynorphin. The arcuate nucleus was the only site in the hypothalamus where neuronal somata coexpressing prodynorphin and proNKB-immunoreactivity were identified. A dense plexus of double-labeled prodynorphin/proNKB-ir fibers was found within the arcuate nucleus extending to the median eminence and throughout the periventricular zone of the hypothalamus. Prodynorphin/proNKB fibers were also identified in the paraventricular nucleus, anterior hypothalamic area, medial preoptic area, median preoptic nucleus, anteroventral periventricular nucleus, and bed nucleus of the stria terminalis in a distribution consistent with previously described arcuate nucleus projections. Interestingly, the majority of prodynorphin-ir neurons in the arcuate nucleus expressed NK3R, and nearly 100% of the prodynorphin-ir neurons contained nuclear ERalpha. Our results suggest that there is a close functional relationship between dynorphin and NKB peptides within the arcuate nucleus of the rat, which may include an autofeedback loop mediated through NK3R. The diverse hypothalamic projections of fibers expressing both prodynorphin and proNKB provide evidence that these neurons may participate in a variety of homeostatic and neuroendocrine processes.  相似文献   

12.
Rams and ewes show a negative-feedback response to peripheral treatment with testosterone, with both sexes having a similar degree of suppression in luteinizing hormone (LH) secretion during the breeding season. At least part of the action of testosterone to suppress gonadotropin-releasing hormone/LH secretion is exerted via interaction with an androgen receptor. The distribution of androgen receptor-containing cells in the hypothalamus has been described for the ram, but similar studies have not been performed in the ewe. In the present study, we tested the hypothesis that levels of androgen receptor mRNA expression in the preoptic area and hypothalamus would be similar in rams and ewes. Perfusion-fixed brain tissue was obtained from adult Romney Marsh ewes (luteal phase) and rams during the breeding season (n = 4/sex). Androgen receptor mRNA expression was quantified in hypothalamic sections by in situ hybridization using an (35)S-labelled riboprobe and image analysis. Hybridizing cells were found in the medial preoptic area, bed nucleus of the stria terminalis, anterior hypothalamic area, ventromedial nucleus, arcuate nucleus and premamillary nucleus. The level of androgen receptor mRNA expression was higher in rams than ewes in the rostral preoptic area, caudal preoptic area and rostral portion of the bed nucleus of the stria terminalis, with no sex difference in other regions. The preoptic area and bed nucleus of the stria terminalis are important for reproductive behaviour and the sex differences in androgen receptor mRNA expression at these levels may relate to this. The high level of androgen receptor mRNA expression in the basal hypothalamus, with no sex difference, is consistent with the role of this region in the regulation of gonadotropin secretion.  相似文献   

13.
The distribution of neuropeptide Y (NPY)-like immunoreactivity within the hypothalamus of the adult golden hamster was investigated with conventional immunohistochemical techniques. Neuropeptide Y immunoreactive cell bodies were found in greatest numbers in the arcuate nucleus while a few stained perikarya were seen in the internal and subependymal zones of the median eminence. Isolated perikarya were observed in the anterior commissure and supracommissural portion of the interstitial nucleus of the stria terminalis. Immunoreactive axons were located throughout the hypothalamus with the highest concentrations in the subependymal and internal zones of the median eminence, the interstitial nucleus of the stria terminalis, the medial preoptic area, and in the following nuclei: periventricular, suprachiasmatic, paraventricular, perifornical, median preoptic, and arcuate. Moderate to dense plexuses of immunoreactive fibers were observed in the anterior, lateral, and posterior hypothalamic areas and in the infundibular stalk. The supraoptic nucleus and lateral preoptic area displayed a small number of labeled axons whereas the ventromedial nucleus contained only a few fibers. NPY immunoreactive fibers were present in the optic tract and in the dorsomedial aspect of the optic chiasm. Labeled fibers penetrated the ependymal lining of the third ventricle throughout the ventral aspect of the periventricular zone. Additional fibers were observed in the pia lining the ventral aspect of the hypothalamus. This systematic analysis of hypothalamic NPY immunoreactivity in the adult golden hamster suggests that a portion of the labeled fibers display a distribution that is similar to previously described noradrenergic fibers in the hypothalamus.  相似文献   

14.
By using a combination of monoclonal antibodies to progestin receptors and a double-bridge peroxidase-antiperoxidase technique, a sensitive immunocytochemical method was developed for visualizing progestin receptor immunoreactivity (PR-IR) in brains of estrogen-primed guinea pigs. PR-IR neurons were observed throughout the hypothalamus and preoptic area. They were seen in largest numbers in the arcuate nucleus, periventricular preoptic regions, medial preoptic nucleus, medial preoptic area and in the ventrolateral area of the hypothalamus. Lower numbers of PR-IR positive cells were detected in the bed nucleus of stria terminalis, paraventricular nucleus and lateral hypothalamus with scattered cells seen throughout the hypothalamus and preoptic area. The PR-IR was mostly intranuclear with lighter staining in neuronal processes. Electron microscopy confirmed the predominantly intranuclear localization and further demonstrated that the reaction product was dispersed throughout the nucleus, but not associated with the nucleolus. Few PR-IR cells were observed in the absence of estradiol priming, and the reaction product was much lighter than in the presence of estradiol. Progesterone injection was without apparent effect on intensity of the PR-IR.  相似文献   

15.
The distribution of cholecystokinin (CCK)-immunoreactive nerve fibers and cell bodies was studied in the forebrain of control and colchicine-treated guinea pigs by using an antiserum directed against the carboxyterminus of CCK octapeptide (CCK-8) in the indirect immunoperoxidase technique. Virtually all forebrain areas examined contained immunoreactive nerve fibers. A dense innervation was visualized in; neocortical layers II-III, piriform cortex, the medial amygdala, the medial preoptic area, a circumventricular organ-like structure located at the top of the third ventricle in the preoptic area, the subfornical organ, the posterior bed nucleus of the stria terminalis, the posterior globus pallidus (containing labeled woolly fiber-like profiles), the ventromedial hypothalamus, the median eminence, and the premammillary nucleus. A moderately dense innervation was visualized elsewhere excepted in the septum and thalamus where labeled axons were comparatively few. Immunoreactive perikarya were abundant in: neocortex (especially layers II-III), piriform cortex, amygdala, the median preoptic nucleus, the bed nucleus of the stria terminalis, the hypothalamic paraventricular (parvicellular part), arcuate, and dorsomedial (pars compacta) nuclei, the dorsal and perifornical hypothalamic areas, and throughout the thalamus. Areas also containing a moderate number of labeled cell bodies were the medial preoptic area, the globus pallidus, the caudate-putamen, and the periventromedial area in the hypothalamus. Immunostained perikarya were absent or only occasionally observed in the septum, the suprachiasmatic nucleus, the magnocellular hypothalamoneurohypophyseal nuclei, and the ventral mesencephalon. In the adenohypophysis, corticomelanotrophs were labeled in both males and females, and thyrotrophs were labeled in females only. This distribution pattern of CCK-8 immunoreactivity is compared to those previously recorded in other mammals. This shows that very few features are peculiar to the the guinea pig. It is discussed whether some interspecific differences in immunostaining are real rather than methodological.  相似文献   

16.
The distribution of vasotocin in the brain of the lizard Gekko gecko was studied with immunocytochemical methods. Vasotocinergic cells were found in the nucleus supraopticus, the nucleus paraventricularis, the bed nucleus of the stria terminalis, and in the rhombencephalon. Vasotocinergic fibers were found in the preoptic area, the lateral and ventral hypothalamus, and in many extrahypothalamic brain areas. Furthermore, evidence was obtained of a conspicuous sex difference with regard to vasotocinergic innervation of the lateral septum, the ventrocaudal telencephalon (nucleus sphericus), and the periaqueductal gray; in these areas vastocinergic innervation is much denser in males than in females. The results are discussed in relation to the sexually dimorphic vasopressinergic innervation of the rat brain. It is suggested that the vasotocinergic fiber system in the sexually dimorphic brain areas in Gekko gecko is related to the bed nucleus of the stria terminalis.  相似文献   

17.
18.
RF‐(Arg‐Phe) related peptides (RFRP‐1 and ‐3) are considered to play a role in the seasonal regulation of reproduction; however, the effect of the peptides depends on species and gender. This study aimed at comparing the RFRP system in male and female Syrian hamsters over long and short photoperiods to investigate the neuroanatomical basis of these differential effects. The neuroanatomical distribution of RFRP neurons and fibers, revealed using an antiserum recognizing RFRP‐1 and ‐3, as well as GPR147 mRNA, are similar in male and female Syrian hamsters. RFRP neurons are mainly found in the medial hypothalamus, whereas RFRP projections and GPR147 mRNA are observed in the preoptic area, anteroventral–periventricular nucleus, suprachiasmatic nucleus, paraventricular nucleus, bed nucleus of the stria terminalis, ventromedial hypothalamus, habenular nucleus, and arcuate nucleus. The number of RFRP neurons is higher in females than in males, and in both sexes, the number of RFRP neurons is reduced in short photoperiods. GPR147 mRNA levels are higher in females than in males and are downregulated in short photoperiods, particularly in females. Interestingly, the number of RFRP‐positive fibers in the anteroventral–periventricular nucleus is higher only in females adjusted to a short photoperiod. Our results suggest that the RFRP system, which is strongly regulated by photoperiod in both male and female Syrian hamsters, is particularly important in females, with a distinct role in the anteroventral–periventricular nucleus, possibly in the regulation of the preovulatory luteinizing hormone surge via kisspeptin neurons. J. Comp. Neurol. 524:1825–1838, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
The present study reports for the first time the distribution of androgen receptor immunoreactivity (AR-ir) in the human hypothalamus of ten human subjects (five men and five women) ranging in age between 20 years and 39 years using the antibody PG21. Prolonged postmortem delay (72:00 hours) or fixation time (100 days) did not influence the AR-ir. In men, intense nuclear AR-ir was found in neurons of the horizontal limb of the diagonal band of Broca, in neurons of the lateromamillary nucleus (LMN), and in the medial mamillary nucleus (MMN). An intermediate nuclear staining was found in the diagonal band of Broca, sexually dimorphic nucleus of the preoptic area, paraventricular nucleus, suprachiasmatic nucleus, ventromedial nucleus, and infundibular nucleus, whereas weaker labeling was found in the bed nucleus of the stria terminalis, medial preoptic area, dorsal and ventral zones of the periventricular nucleus, supraoptic nucleus, and nucleus basalis of Meynert. In most brain areas, women revealed less staining than men. In the LMN and the MMN, a strong sex difference was found. Cytoplasmic labeling was observed in neurons of both sexes, although women showed a higher variability in the intensity of such staining. However, no sex differences in AR-ir were observed in the bed nucleus of the stria terminalis, the nucleus basalis of Meynert, or the islands of Calleja. Species differences and similarities of the AR-ir distribution are discussed. The present results suggest the participation of androgens in the regulation of various hypothalamic processes that are sexually dimorphic.  相似文献   

20.
Immunohistochemical single- and double-labeling studies were performed on the hypothalami of postmortem human brains to elucidate the distribution of corticotropin-releasing hormone (CRH)-immunoreactive (IR) neuronal elements and their interaction with the neuropeptide Y (NPY)-ergic neuronal system. The great majority of CRH-IR perikarya were found in the paraventricular nucleus (PVN), whereas a considerable number of CRH-IR neurons were also observed in the periventricular and infundibular nuclei. The dorsomedial nucleus and the perifornical region contained only scattered CRH-IR neurons. Dense CRH-IR fiber networks were found throughout the hypothalamus. However, the medial preoptic, the dorsolateral part of the supraoptic, the suprachiasmatic, the ventromedial, and the different mammillary nuclei showed a relative paucity of fibers. The terminal fields of NPY-IR axons overlapped the distribution of CRH-IR neurons in the hypothalamus. NPY-IR axon varicosities were juxtaposed to both dendrites and perikarya of the majority of CRH-IR neurons residing in the paraventricular, periventricular, and infundibular nuclei. These neurons were frequently contacted by multiple NPY axons that either formed baskets around their perikarya or completely ensheathed the emanating CRH dendrites. Because NPY and agouti-related protein (AGRP) are co-contained in neurons of the human infundibular nucleus, we used AGRP as a marker of NPY fibers originating exclusively from the infundibular nucleus. Only a small proportion of CRH neurons in the PVN was contacted by AGRP-IR axon varicosities, suggesting that NPY-IR innervation of CRH neurons in the PVN derive mainly from regions outside the infundibular nucleus. The present morphological findings support the view that NPY regulates the CRH system of the human hypothalamus and therefore at least some of the effects of NPY on metabolic, autonomic, and endocrine functions may be mediated through CRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号