首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
目的:探讨制备中国青山羊胫骨骨缺损模型的新方法。方法:中国青山羊9只,制备胫骨中段20mm的骨膜与骨缺损,7孔AO自动加压钢板内固定,术后4、8、12周处死动物。用放射学、组织学方法评价骨缺损的修复情况。结果:术后所有动物的20mm骨缺损均未自行修复,遗留骨缺损。结论:钢板固定的成年山羊胫骨20mm缺损模型可以满足骨组织工程实验的要求。  相似文献   

2.
组织工程用山羊胫骨骨缺损模型的制备   总被引:6,自引:1,他引:5  
目的 :制备骨组织工程用中国青山羊胫骨骨缺损模型。方法 :中国青山羊 9只随机分 3组制备单侧胫骨 2 0mm的骨膜与骨缺损 ,钢板内固定 ,术后放射性同位素、放射学检查、组织学方法评价骨缺损自行修复情况。结果 :术后同位素ROI记数 (p >0 .0 5)与摄取比值T/NT(p >0 .0 5)显示无骨代谢 ,所有动物骨缺损处X线片Lane评分均为 0分 ,组织学显示无骨组织长入。结论 :山羊胫骨2 0mm缺损模型不能自主成骨 ,符合骨组织工程实验的要求。  相似文献   

3.
目的探讨骨髓基质干细胞(MSCs)与生物衍生骨复合修复山羊胫骨的长段骨-骨膜缺损,以及修复负重骨缺损的可行性. 方法将18只12月龄健康杂种青山羊(雌雄不限),制备成双侧胫骨中段20 mm骨-骨膜缺损模型,常规钢板螺钉固定;MSCs与生物衍生骨于体外复合培养;对同一只山羊将复合物植入右侧胫骨缺损处作为实验组,以单纯材料植入左侧胫骨缺损处作为对照组,空白组不植入任何材料;在8、12、16和24周各时间点分别行标本的大体观察、X线片观察和骨密度测试,比较其修复骨缺损的能力. 结果大体观察、X线片和骨密度测试显示:实验组8周骨缺损部分修复,12、16周骨缺损完全修复,8、12和16周其骨密度较对照组高,差异有统计学意义(P<0.05);24周实验组与对照组骨密度差异无统计学意义;空白组骨缺损未修复. 结论组织工程骨早期修复骨缺损能力较强,且较单纯材料成骨量大、迅速,能够对负重骨缺损进行有效的修复.  相似文献   

4.
目的:探讨胫骨骨折术后骨,钢板外露的治疗方法。方法:拆除原内固定钢板,应用单臂多功能外固定架胫骨结合小腿内侧皮瓣移位术治疗术治疗胫骨骨折术后骨及钢板外露20例。结果:20例小腿创面一期修复,胫骨骨折顺利愈合,患肢功能完全恢复。结论:外固定架固定胫骨结合小腿内侧皮瓣移位术是治疗胫骨骨折术后骨及钢板外露的良好方法。  相似文献   

5.
[目的]介绍诱导膜技术(Masquelet)联合双钢板固定胫骨骨干大段骨缺损的手术技术和初步效果.[方法]2016年1月-2019年1月,采用诱导膜技术联合双钢板固定18例胫骨骨干大段骨缺损患者.术前评估畸形,胫骨骨缺损部彻底清创,控制感染后填塞骨水泥,并同时覆盖创面,必要时皮瓣修复.待诱导膜形成后,去除骨水泥,缺损处...  相似文献   

6.
异种脱蛋白骨管移植修复大段骨缺损的力学评估   总被引:2,自引:1,他引:1  
目的研究异种脱蛋白骨管移植修复大段骨缺损的生物力学变化。方法建立山羊双侧胫骨大段骨缺损模型,36只山羊(72只后肢)随机分为2组,实验组:异种脱蛋白骨管;对照组:异种脱蛋白骨粒;两组均在移植骨中添加了骨形态发生蛋白(BMP),并采用骨板、钢板双重固定修复骨缺损。术后5、10、15周对羊胫骨行影像学观察和生物力学的变化。结果影像学显示实验组在骨缺损修复及成骨方面较对照组高。生物力学测试结果表明,术后5、10、15周时实验组力学强度较对照组明显增高,差异有统计学意义(P<0.05);术后15周,实验组的生物力学强度与正常胫骨已无差异。结论应用异种脱蛋白骨管支撑复合BMP修复大段骨缺损,能够有效加强移植骨修复负重骨缺损区的力学结构。  相似文献   

7.
兔股骨干缺损模型的制备及在组织工程骨实验中的应用   总被引:10,自引:11,他引:10  
目的为组织工程骨修复负重骨缺损的研究提供标准化的实验动物模型.方法测量兔股骨干基本解剖数据,用于指导制备模型.在解剖学研究的基础上,取4~5个月龄成年新西兰大白兔18只,随机分为三组,每组6只,分别制备10、15、20mm的股骨干中段骨和骨膜缺损,并用普通钢板螺丝钉固定股骨.4、8、12周时分别摄X线侧位片进行定性分析,双能量X线骨密度测量仪(DXA)做骨密度扫描进行定量分析,并在每个时间点分别取2只动物取材做大体观察和组织学检查.结果兔股骨解剖数据:兔股骨长94.1 mm;股骨干中点横径7.4 mm,矢状径5.8 mm;骨皮质厚度:屈侧最厚,内、外两侧次之,伸侧最薄,平均1.2 mm;髓腔略呈椭圆形,其横径与矢状径相差约1mm,取其平均值,髓腔直径4.1 mm.骨缺损动物大体观察、X线片、骨密度检查和组织学检查显示:10 mm骨缺损组均于8~12周出现骨性愈合;15 mm和20 mm骨缺损组直至12周仍未见骨愈合.结论在不桥接和填充任何材料的情况下,钢板螺钉固定的兔股骨干15 mm以上的实验性骨缺损不能自行愈合,可用于组织工程骨修复负重骨缺损的实验研究.  相似文献   

8.
目的 观察用组织工程方法修复中国青山羊胫骨大段骨与骨膜缺损3年后的远期效果。方法 中国青山羊3只,制备单侧胫骨20mm的骨与骨膜缺损模型,缺损内植入组织工程骨珊瑚羟基磷灰石/骨髓基质干细胞(CHAP/BMSCs),术后3年采用普通x线片、组织学观察以及血管铸型等方法对其进行远期观察检测,与健侧正常骨对照,观察其成骨及血管化效果。结果 X线片骨吸光度测定与健侧比较差异无统计学意义(P〉0.05);血管灌注后大体解剖观察示组织工程骨血管来源于周围软组织、髓腔血管及两端正常皮质骨;灌注后未脱钙骨磨片显示组织工程骨内微血管沿哈佛管和伏克曼管分布交织成网状,横切面磨片采用图像分析仪分析与正常骨血管相对面积比较差异无统计学意义(P〉0.05)。脱钙后的组织切片HE、硫堇染色示组织工程骨具有与正常骨一致的显微结构。结论 CHAP/BMSCs具有良好的修复山羊胫骨大段骨缺损能力,其远期显微结构和血管化效果与正常骨生理无异。  相似文献   

9.
目的 探讨利用自体带骨膜髂骨移植加胫骨远端锁定钢板内固定治疗Ⅲ型胫骨Pilon骨折合并关节软骨缺损的疗效.方法 对21例Ⅲ型胫骨Pilon骨折合并关节软骨缺损,根据胫骨远端骨缺损范围以距骨为模板取自体带骨膜髂骨移植修复关节面,锁定钢板内固定.结果 本组随访23~53个月,平均32个月.根据Tornella评价标准:优12例,良6例,可3例.结论 Ⅲ型胫骨Pilon骨折合并关节软骨缺损,利用自体带骨膜髂骨移植加胫骨远端镇定钢板内固定治疗,可获得满意疗效.  相似文献   

10.
目的探讨双切口双钢板法治疗胫骨平台骨折的效果。方法对20例复杂胫骨平台骨折患者实施双切口双钢板固定,骨缺损者给予植骨。术后尽早实施膝关节功能康复锻炼。结果本组患者均获3~28个月随访,骨折愈合时间4~8个月。依据Rasmussen膝关节功能评分法:优良率90.00%(18/20)。结论实施双切口双钢板内固定治疗复杂胫骨平台骨折,关节面解剖复位复位好、固定确切。早期实施关节功能康复训练,可提高复杂胫骨平台骨折术后恢复效果。  相似文献   

11.
目的比较研究不同缺损直径对小鼠胫骨中段1/3单层骨皮质缺损模型愈合的影响,为组织工程材料研究、骨缺损修复及其分子机制研究和骨缺损基因治疗研究等提供动物模型。方法取8周龄雄性C57BL/6J小鼠10只,体重(20±2)g,随机分为A、B两组,每组5只。利用牙科磨钻分别制备直径为0.8 mm(A组)和1.0 mm(B组)小鼠胫骨中段1/3单层骨皮质缺损模型。于造模后7、21、28 d摄钼靶X线片观察缺损修复情况;28 d对骨缺损修复行Micro CT扫描及骨组织三维成像;28 d取材行HE染色观察。结果 B组5只小鼠造模7 d内均发生二次骨折,A组无骨折发生。X线片、Micro CT和HE染色均显示A组胫骨单层骨皮质缺损可在28 d达骨性愈合。Micro CT定量分析骨小梁示,A组骨小梁数目、骨小梁密度、骨体积显著高于B组,骨质密度显著低于B组,差异均有统计学意义(P<0.05);两组骨小梁分离度、骨小梁厚度差异无统计学意义(P>0.05)。结论小鼠胫骨中段1/3单层直径0.8 mm骨皮质缺损模型是研究胫骨缺损无外固定缺损修复机制和骨替代植入材料的理想动物模型。  相似文献   

12.
目的探讨珊瑚羟基磷灰石(CHAP)体外复合经扩增的骨髓基质细胞(BMSc)在大动物大段骨缺损中的修复能力及放射性核素骨显像技术在此过程中的应用价值.方法中国青山羊6只分为实验组和对照组,每组3只.分别造成左侧胫骨2cm骨缺损,实验组缺损区植入CHAP和BMSc复合体,对照组不植入任何填充物.术后2、4、8周分别通过放射性核素骨显像进行监测.结果放射性核素骨显像中感兴趣区(ROI)计数和摄取比值显示对照组在3个时间点均未见再血管化的表现及明显的成骨活动,而实验组则随着时间的延长再血管化的数量和成骨的质量呈现出上升的趋势.结论CHAP和BMSc复合体具有良好的修复大动物大段骨缺损的能力,放射性核素骨显像在修复过程中有非常准确的预测效果.  相似文献   

13.
Introduction The vascularity of surrounding soft tissues, which is related to muscle cover, is important for the healing of traumatic bone loss. Muscle cover on the distal tibia is limited compared to the diaphyseal and proximal tibia, and delayed healing of fractures in this area is common. We evaluated the healing of traumatic bone loss in the proximal, diaphyseal, and distal tibia.

Patients and methods 23 open tibial fractures with substantial bone loss (mean 52 (34-104) mm) were treated using a staged method with antibiotic-impregnated beads and later autologous bone grafting at second-stage surgery on average 8 weeks after the injury.

Results 22 fractures healed after mean 40 (20-79) weeks. The average healing time in the distal tibia (mean 30 weeks) was 7 weeks shorter (95% CI: 12-26 weeks) than in the proximal tibia (37 weeks), and 16 weeks shorter (95% CI: 3-29 weeks) than in the tibial shaft (47 weeks). The length of the bone and the type of soft tissue cover (free muscle or secondary suture) had no effect on healing time.

Interpretation Our study suggests that the method we used is applicable in all parts of the tibia, although the healing of bone loss is slower in the diaphyseal tibia than in the proximal and distal tibia.  相似文献   

14.
《Acta orthopaedica》2013,84(4):520-527
Introduction The vascularity of surrounding soft tissues, which is related to muscle cover, is important for the healing of traumatic bone loss. Muscle cover on the distal tibia is limited compared to the diaphyseal and proximal tibia, and delayed healing of fractures in this area is common. We evaluated the healing of traumatic bone loss in the proximal, diaphyseal, and distal tibia.

Patients and methods 23 open tibial fractures with substantial bone loss (mean 52 (34–104) mm) were treated using a staged method with antibiotic-impregnated beads and later autologous bone grafting at second-stage surgery on average 8 weeks after the injury.

Results 22 fractures healed after mean 40 (20–79) weeks. The average healing time in the distal tibia (mean 30 weeks) was 7 weeks shorter (95% CI: 12–26 weeks) than in the proximal tibia (37 weeks), and 16 weeks shorter (95% CI: 3–29 weeks) than in the tibial shaft (47 weeks). The length of the bone and the type of soft tissue cover (free muscle or secondary suture) had no effect on healing time.

Interpretation Our study suggests that the method we used is applicable in all parts of the tibia, although the healing of bone loss is slower in the diaphyseal tibia than in the proximal and distal tibia.  相似文献   

15.
目的研究生物衍生骨与骨髓基质干细胞(marrow stromal stem cells, MSCs)复合修复山羊胫骨缺损的血管化过程,了解其修复长段管状负重骨缺损的血管化情况. 方法制备生物衍生骨作为支架材料,培养、诱导MSCs作为种子细胞,二者在体外复合构建组织工程骨.20只山羊双侧胫骨中段制备成20 mm长的骨-骨膜缺损模型,采取自身左右侧对照,实验侧(右侧)缺损处植入组织工程骨,对照侧(左侧)植入单纯支架材料,采用钢板内固定.术后2、4、6及8周用墨汁灌注透明标本及血管面积图像分析方法观察血管化过程,组织学观察血管形成及成骨情况. 结果术后2、4周,实验侧血管形成较对照侧少(P<0.05);术后8周,两侧均完全血管化,差异无统计学意义(P>0.05).实验侧于术后6、8周新骨形成逐渐增加,材料降解吸收较对照组快;对照侧术后8周材料孔隙内仍无明显新骨形成. 结论生物衍生骨作为骨组织工程的支架材料,能够较快发生血管化;组织工程骨成骨能力较单纯支架材料强.  相似文献   

16.
Changes in bone-mass after tibial shaft fracture   总被引:1,自引:0,他引:1  
We studied 20 patients who had suffered tibial shaft fractures 30 months previously. The bone-mineral content in diaphyseal and metaphyseal bone of the femur and tibia was determined by photon absorptiometry. There was a moderate, but significant, deficit of bone-mineral in metaphyseal bone at the knee and distal tibia. This loss was, however, far smaller than that previously reported. Persisting bone-mineral changes in diaphyseal bone were insignificant except in the fracture area where there was a 28 per cent increase. This may indicate that bone may, under some circumstances, locally increase in strength after remodelling of the fracture.  相似文献   

17.
Changes in bone-mass after tibial shaft fracture   总被引:1,自引:0,他引:1  
We studied 20 patients who had suffered tibial shaft fractures 30 months previously. The bone-mineral content in diaphyseal and metaphyseal bone of the femur and tibia was determined by photon absorptiometry. There was a moderate, but significant, deficit of bone-mineral in metaphyseal bone at the knee and distal tibia. This loss was, however, far smaller than that previously reported. Persisting bone-mineral changes in diaphyseal bone were insignificant except in the fracture area where there was a 28 per cent increase. This may indicate that bone may, under some circumstances, locally increase in strength after remodelling of the fracture.  相似文献   

18.
Intercalary femur and tibia segmental allografts were implanted in 59 consecutive patients after segmental resection-52 for malignant and seven for benign aggressive bone tumors. The patients were followed up for an average of 5 years. Allograft survival was determined with the Kaplan-Meier method. Infection, fracture, and nonunion rates were determined. The overall 5-year survivorship for the 59 intercalary allografts was 79%, and we found no significant differences between allograft survival in patients receiving or not receiving adjuvant chemotherapy. Infection and fracture rates were 5% and 7% respectively. From 118 host-donor junctions, 11 did not initially heal (9%). The nonunion rate (10 of 69 osteotomies) for diaphyseal junctions was higher than the rate (one of 49 osteotomies) for metaphyseal junctions. Although some patients required reoperations because of allograft complications, it seems that the use of intercalary allograft clearly has a place in the reconstruction of a segmental defect created by the resection of a tumor in the diaphyseal and /or metaphyseal portion of the femur or tibia.  相似文献   

19.
BACKGROUND: With the advent of modern limb salvage techniques, segmental bone loss in the lower extremity has become more common. METHODS: To aid preoperative planning when dealing with segmental bone loss in the femur and tibia, we performed a cadaveric study to estimate the volume of autogenous or allograft material required to fill defects located in various areas of the bones. RESULTS: The greatest volume was generally required in metaphyseal defects, with an average of 12 cc/cm in the distal femur and proximal tibia, 11 cc/cm in the proximal femur, and 6 cc/cm in the distal tibia. Diaphyseal defects were found to have the least variability with regard to the volume of graft material required for different specimens. Femoral diaphyseal defects required 7 cc/cm and tibial diaphyseal defects required 5 cc/cm. A slightly larger volume of allograft material was needed to fill all defects compared with autograft. CONCLUSION: This method allows one to estimate the amount of graft required for a defect of the femur and the tibia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号