首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We sequenced approximately 23 kb genomic regions containing all the coding exons and their franking introns of two breast cancer susceptibility genes, BRCA1 and BRCA2, of 55 individuals from 50 unrelated Japanese breast cancer families. We identified 55 single-nucleotide polymorphisms (SNPs) (21 in BRCA1 and 34 in BRCA2) containing nine pathogenic protein-truncating mutations (four in BRCA1 and five in BRCA2 from ten patients). Among the remaining 46 SNPs, allele frequencies of 40 were examined in both the breast cancer patients and 28 healthy volunteers with no breast cancer family history by PCR-RFLP or by direct DNA sequencing. Twenty-eight SNPs were common and were also found in the healthy volunteers and/or a SNP database. The remaining 18 were rare (allele frequency <0.05) and were not found in the healthy volunteers and/or the database. The pathogenic significance of these coding SNPs (cSNPs) remains to be clarified. The SNP information from this study will be useful in the future genetic testing of both BRCA1 and BRCA2 genes in the Japanese population.The first two authors contributed equally to this study.  相似文献   

3.
An estimated 5–10% of all breast and ovarian cancers are due to an inherited predisposition, representing a rather large number of patients. In Spain 1/13–1/14 women will be diagnosed with breast cancer during their lifetime. Two major breast cancer genes, BRCA1 and BRCA2 , have been identified. To date, several hundred pathogenic mutations in these two genes have been published or reported to the Breast Cancer Information Core, BIC database ( http://www.nhgri.nih.gov/Intramural_research_Labtransfer/Bic/index.html ). In the present study, 30 Spanish breast and breast/ovarian cancer families (29 from Galicia, NW Spain, and 1 from Catalonia, NE Spain) were screened for mutations in the BRCA1 and BRCA2 genes. The analysis of these genes was carried out by SSCP for shorter exons and direct sequencing in the case of longer ones. Mutations were found in 8 of the 30 families studied (26.66%). It is important to note that all mutations were detected within the BRCA1 gene: 330 A>G, 910_913delGTTC, 2121 C>T, 3958_3962delCTCAGinsAGGC, and 5530 T>A. The BRCA1 330 A>G mutation was found in four unrelated families and accounted for 50% of all identified mutations.  相似文献   

4.
In this study we genotyped Turkish breast/ovarian cancer patients for BRCA1/BRCA2 mutations: protein truncation test (PTT) for exon 11 BRCA1 of and, multiplex PCR and denaturing gradient gel electrophoresis (DGGE) for BRCA2, complemented by DNA sequencing. In addition, a modified restriction assay was used for analysis of the predominant Jewish mutations: 185delAG, 5382InsC, Tyr978X (BRCA1) and 6174delT (BRCA2). Eighty three breast/ovarian cancer patients were screened: twenty three had a positive family history of breast/ovarian cancer, ten were males with breast cancer at any age, in eighteen the disease was diagnosed under 40 years of age, one patient had ovarian cancer in addition to breast cancer and one patient had ovarian cancer. All the rest (n=30) were considered sporadic breast cancer cases. Overall, 3 pathogenic mutations (3/53-5.7%) were detected, all in high risk individuals (3/23-13%): a novel (2990insA) and a previously described mutation (R1203X) in BRCA1, and a novel mutation (9255delT) in BRCA2. In addition, three missense mutations [two novel (T42S, N2742S) and a previously published one (S384F)] and two neutral polymorphisms (P9P, P2532P) were detected in BRCA2. Notably none of the male breast cancer patients harbored any mutation, and none of the tested individuals carried any of the Jewish mutations. Our findings suggest that there are no predominant mutations within exon 11 of the BRCA1 and in BRCA2 gene in Turkish high risk families.  相似文献   

5.
Since the identification of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2, a large number of different germline mutations in both genes have been found by conventional PCR-based mutation detection methods. Complex germline rearrangements such as those reported in the BRCA1 gene are often not detectable by these standard diagnostic techniques. To detect large deletions or duplications encompassing one or more exons of the BRCA1 gene and in order to estimate the frequency of BRCA1 rearrangements in German breast or ovarian cancer families, a semi-quantitative multiplex PCR method was developed and applied to DNA samples of patients from families negatively tested for disease causing mutations in the BRCA1 and BRCA2 coding regions by direct sequencing. Out of 59 families analysed, one family was found to carry a rearrangement in the BRCA1 gene (duplication of exon 13). The results indicate that the semi-quantitative multiplex PCR method is useful for the detection of large rearrangements in the BRCA1 gene and therefore represents an additional valuable tool for mutation analysis of BRCA1 and BRCA2.  相似文献   

6.
One hundred breast and breast-ovarian cancer families identified at the Helsinki University Central Hospital in southern Finland and previously screened for mutations in the BRCA2 gene were now analyzed for mutations in the BRCA1 gene. The coding region and splice boundaries of BRCA1 were analyzed by protein truncation test (PTT) and heteroduplex analysis (HA)/SSCP in all 100 families, and 70 were also screened by direct sequencing. Contrary to expectations based on Finnish population history and strong founder effects in several monogenic diseases in Finland, a wide spectrum of BRCA1 and BRCA2 mutations was found. In the BRCA1 gene, 10 different protein truncating mutations were found each in one family. Six of these are novel Finnish mutations and four have been previously found in other European populations. Six different BRCA2 mutations were found in 11 families. Altogether only 21% of the breast cancer families were accounted for by mutations in these two genes. Linkage to both chromosome 17q21 (BRCA1) and 13q12 (BRCA2) was also excluded in a subset of seven mutation-negative families with four or more cases of breast or ovarian cancer. These data indicate that additional breast and breast-ovarian cancer susceptibility genes are likely to be important in Finland.   相似文献   

7.
The two major hereditary breast/ovarian cancer predisposition tumor suppressor genes, BRCA1 and BRCA2 that perform apparently generic cellular functions nonetheless cause tissue-specific syndromes in the human population when they are altered, or mutated in the germline. However, little is known about the contribution of BRCA1 and BRCA2 mutations to breast and/or ovarian cancers in the Indian population. We have screened for mutations the entire BRCA1 and BRCA2 coding sequences, and intron-exon boundaries, as well as their flanking intronic regions in sixteen breast or breast and ovarian cancer families of Indian origin. We have also analyzed 20 female patients with sporadic breast cancer regardless of age and family history, and 69 unrelated normal individuals as control. Thus a total of 154 samples were screened for BRCA1 and BRCA2 mutations using a combination of polymerase chain reaction-mediated site directed mutagenesis (PSM), polymerase chain reaction-single stranded conformation polymorphism assay (PCR-SSCP) and direct DNA sequencing of PCR products (DS). Twenty-one sequence variants including fifteen point mutations were identified. Five deleterious pathogenic, protein truncating frameshift and non-sense mutations were detected in exon 2 (c.187_188delAG); and exon 11 (c.3672G>T) [p.Glu1185X] of BRCA1 and in exon 11 (c.5227dupT, c.5242dupT, c.6180dupA) of BRCA2 (putative mutations - four novel) as well as fourteen amino acid substitutions were identified. Twelve BRCA1 and BRCA2 missense variants were identified as unique and novel. In the cohort of 20 sporadic female patients no mutations were found.  相似文献   

8.
A sample of 64 high-risk breast and/or ovarian cancer families from Chile were screened for germline mutations in the coding sequences and exon-intron boundaries of BRCA1 (MIN no. 113705) and BRCA2 (MIN no. 600185) genes using conformation-sensitive gel electrophoresis, and the mutations found were confirmed with direct sequencing. Seven families (10.9%) were found to carry BRCA1 mutations and three families (4.7%) had BRCA2 mutations. Six different pathogenic mutations were detected in BRCA1, four that had been reported previously (c.187_188delAG; c.300T-->G, c.3450_3453delCAAG and IVS17-1G-->A) and two novel mutations (c.2605_2606delTT and c.4185_4188delCAAG). In BRCA2, we found three different pathogenic mutations, two previously described (c.6174delT and c.6503_6504delTT) and one novel mutation (c.5667delT). We also identified nine variants of unknown significance (five in BRCA1 and four in BRCA2). These findings indicate that the Chilean population has a heterogeneous spectrum of prevalent BRCA mutations. Given the results obtained in our study, the screening of the entire BRCA1 and BRCA2 coding regions is necessary for the molecular genetic testing of Chilean high-risk breast/ovarian cancer patients. To our knowledge, this is the first genetic study of BRCA gene mutations conducted in Chile. The Chilean population has a well-known admixed Amerindian-Caucasian ratio and, therefore, our findings are not only important per se, but they constitute the basis for improved and more specific genetic counselling, as well as to support for preventive campaigns geared toward the Chilean population.  相似文献   

9.
Germline mutations in breast cancer susceptibility genes, BRCA1 and BRCA2, are responsible for a substantial proportion of high‐risk breast and breast/ovarian cancer families. To characterize the spectrum of BRCA1 and BRCA2 mutations, we screened Czech families with breast/ovarian cancer using the non‐radioactive protein truncation test, heteroduplex analysis and direct sequencing. In a group of 100 high‐risk breast and breast/ovarian cancer families, four novel frame shift mutations were identified in BRCA1 and BRCA2 genes. In BRCA1, two novel frame shift mutations were identified as 3761‐3762delGA and 2616‐2617ins10; in BRCA2, two novel frame shift mutations were identified as 5073‐5074delCT and 6866delC. Furthermore, a novel missense substitution M18K in BRCA1 gene in a breast/ovarian cancer family was identified which lies adjacent just upstream of the most highly conserved C3HC4 RING zinc finger motif. To examine the tertiary structure of the RING zinc finger domain and possible effects of M18K substitution on its stability, we used threading techniques according to the crystal structure of RAG1 dimerization domain of the DNA‐binding protein. © 2000 Wiley‐Liss, Inc.  相似文献   

10.
The entire coding regions of the two breast cancer susceptibility genes BRCA1 and BRCA2 from breast cancer patients from 40 Cypriot families with multiple cases of breast and ovarian cancer were sequenced. A total of four protein-truncating mutations were found in six families. In BRCA1, a novel truncating mutation 5429delG was found in exon 21. In BRCA2, three truncating mutations were detected: a frameshift 8984delG in exon 22 and two nonsense mutations C1913X in exon 11 and K3326X in exon 27. It is noted that mutation 8984delG was found in three separate families, and haplotype analysis showed that this may be a founder mutation in the Cypriot population. In addition, a pair of rare variants, Q356R and S1512I, was detected in BRCA1 in patients belonging to two Cypriot families. The simultaneous presence of this pair of missense mutations may be associated with the breast cancer phenotype in the Cypriot population. We conclude that the BRCA2 gene appears to play a more important role in familial breast cancer in the Cypriot population than BRCA1.  相似文献   

11.
In Ashkenazi (East European) Jews, three predominant mutations in BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT) account for the majority of germline mutations in high-risk breast and/or ovarian cancer families. Among non-Ashkenazi Jews, the 185delAG, Tyr978Ter, and a handful of "private" mutations have been reported anecdotally within both genes. In this study we attempted to determine the spectrum of BRCA1 and BRCA2 mutations in high-risk Jewish individuals, non-carriers of any of the predominant Jewish mutations. We employed multiplex PCR and denaturing gradient gel electrophoresis (DGGE) analysis for BRCA2, and combined denaturing high performance liquid chromatography (DHPLC) and protein truncation test (PTT) for BRCA1, complemented by DNA sequencing. We screened 47 high-risk Jewish individuals, 26 Ashkenazis, and 21 non-Ashkenazis. Overall, 13 sequence alterations in BRCA1 and eight in BRCA2 were detected: nine neutral polymorphisms and 12 missense mutations, including five novel ones. The novel missense mutations did not co-segregate with disease in BRCA1 and were detected at rates of 6.25% to 52.5% in the general population for BRCA2. Our findings suggest that except for the predominant mutations in BRCA1 and BRCA2 in Jewish individuals, there are only a handful of pathogenic mutations within these genes. It may imply novel genes may underlie inherited susceptibility to breast/ovarian cancer in Jewish individuals.  相似文献   

12.
Familial aggregation is thought to account for 5-10% of all breast cancer cases, and high penetrance breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 explain < or =20% of these. Hundreds of mutations among breast/ovarian cancer families have been found in these two genes. The mutation spectrum and prevalence, however, varies widely among populations. Thirty-six breast/ovarian cancer families were identified from a population sample of breast and ovarian cancer cases among a relatively isolated population in Eastern Finland, and the frequency of BRCA1/BRCA2 germline mutations were screened using heteroduplex analysis, protein truncation test and sequencing. Five different mutations were detected in seven families (19.4%). Two mutations were found in BRCA1 and three in BRCA2. One of the mutations (BRCA2 4088insA) has not been detected elsewhere in Finland while the other four, 4216-2nt A-->G and 5370 C-->T in BRCA1 and 999del5 and 6503delTT in BRCA2, are recurrent Finnish founder mutations. These results add to the evidence of the geographical differences in distribution of Finnish BRCA1/BRCA2 mutations. This screen also provides further evidence for the presumption that the majority of Finnish BRCA1/BRCA2 founder mutations have been found and that the proportion of BRCA1/BRCA2 mutations in Finnish breast/ovarian cancer families is around 20%.  相似文献   

13.
We screened index cases from 410 Spanish breast/ovarian cancer families and 214 patients (19 of them males) with breast cancer for germ-line mutations in the BRCA1 and BRCA2 genes, using SSCP, PTT, CSGE, DGGE, and direct sequencing. We identified 60 mutations in BRCA1 and 53 in BRCA2. Of the 53 distinct mutations observed, 11 are novel and 12 have been reported only in Spanish families (41.5%). The prevalence of mutations in this set of families was 26.3%, but the percentage was higher in the families with breast and ovarian cancer (52.1%). The lowest proportion of mutations was found in the site-specific female breast cancer families (15.4%). Of the families with male breast cancer cases, 59.1% presented mutations in the BRCA2 gene. We found a higher frequency of ovarian cancer associated with mutations localized in the 5' end of the BRCA1 gene, but there was no association between the prevalence of this type of cancer and mutations situated in the ovarian cancer cluster region (OCCR) region of exon 11 of the BRCA2 gene. The mutations 187_188delAG, 330A>G, 5236G>A, 5242C>A, and 589_590del (numbered after GenBank U14680) account for 46.6% of BRCA1 detected mutations whereas 3036_3039del, 6857_6858del, 9254_9258del, and 9538_9539del (numbered after GenBank U43746) account for 56.6% of the BRCA2 mutations. The BRCA1 330A>G has a Galician origin (northwest Spain), and BRCA2 6857_6858del and 9254_9258del probably originated in Catalonia (northeast Spain). Knowledge of the spectrum of mutations and their geographical distribution in Spain will allow a more effective detection strategy in countries with large Spanish populations.  相似文献   

14.
The BRCA1 and BRCA2 genes are involved in breast and ovarian cancer susceptibility. About 2 to 4% of breast cancer patients with positive family history, negative for point mutations, can be expected to carry large rearrangements in one of these two genes. We developed a novel diagnostic genetic test for the physical mapping of large rearrangements, based on molecular combing (MC), a FISH-based technique for direct visualization of single DNA molecules at high resolution. We designed specific Genomic Morse Codes (GMCs), covering the exons, the noncoding regions, and large genomic portions flanking both genes. We validated our approach by testing 10 index cases with positive family history of breast cancer and 50 negative controls. Large rearrangements, corresponding to deletions and duplications with sizes ranging from 3 to 40 kb, were detected and characterized on both genes, including four novel mutations. The nature of all the identified mutations was confirmed by high-resolution array comparative genomic hybridization (aCGH) and breakpoints characterized by sequencing. The developed GMCs allowed to localize several tandem repeat duplications on both genes. We propose the developed genetic test as a valuable tool to screen large rearrangements in BRCA1 and BRCA2 to be combined in clinical settings with an assay capable of detecting small mutations.  相似文献   

15.
Germ-line mutations in BRCA1 and BRCA2 genes result in a significantly increased risk of breast and ovarian cancer. Other genes involved in an increased predisposition to breast cancer include the TP53 gene, mutated in Li-Fraumeni syndrome. To estimate the frequency of germ-line mutations in these three genes in Upper Silesia, we have analyzed 47 breast/ovarian cancer families from that region. We found five different disease predisposing mutations in 17 (36%) families. Twelve families (25.5%) carried known BRCA1 mutations (5382insC and C61G), four families (8.5%) carried novel BRCA2 mutations (9631delC and 6886delGAAAA), and one family (2%) harbored novel mutation 1095del8 in the TP53 gene, which is the largest germline deletion in coding sequence of this gene identified thus far. The 5382insC mutation in BRCA1 was found in 11 families and the 9631delC mutation in BRCA2 occurred in three families. These two mutations taken together contribute to 82% of all mutations found in this study, and 30% of the families investigated harbor one of these mutations. The very high frequency of common mutations observed in these families can only be compared to that reported for Ashkenazi Jewish, Icelandic, and Russian high-risk families. This frequency, however, may not be representative for the entire Polish population. The observed distribution of mutations will favor routine pre-screening of predisposed families using a simple and cost-effective test.  相似文献   

16.
We present a comprehensive analysis of 1,506 German families for large genomic rearrangements (LGRs) in the BRCA1 gene and of 450 families in the BRCA2 gene by the multiplex ligation-dependent probe amplification (MLPA) technique. A total of 32 pathogenic rearrangements in the BRCA1 gene were found, accounting for 1.6% of all mutations, but for 9.6% of all BRCA1 mutations identified in a total of 1,996 families, including 490 with small pathogenic BRCA1/2 mutations. Considering only high risk groups for hereditary breast/ovarian cancer, the prevalence of rearrangements is 2.1%. Interestingly, deletions involving exon 17 of the BRCA1 gene seem to be most frequent in Germany. Apart from recurrent aberrations like del ex17, dupl ex13, and del ex22, accounting for more than 50% of all BRCA1 LGRs, we could fully characterize 11 novel deletions. Moreover, one novel deletion involving exons 1-7 and one deletion affecting the entire BRCA1 gene were identified. All rearrangements were detected in families with: 1) at least two breast cancer cases prior to the age of 51 years; 2) breast and ovarian cancer cases; 3) ovarian cancer only families with at least two ovarian cancer cases; or 4) a single breast cancer case prior to the age of 36 years, while no mutations were detected in breast cancer only families with no or only one breast cancer case prior to the age of 51 years. Analysis for gross rearrangements in 412 high-risk individuals, revealed no event in the BRCA2 gene and only two known CHEK2 mutations. However, in an additional 38 high-risk families with cooccurrence of female breast/ovarian and male breast cancer, one rearrangement in the BRCA2 gene was found. In summary, we advise restricting BRCA1 MLPA screening to those subgroups that revealed LGRs and recommend BRCA2 MLPA screening only for families presenting with cooccurrence of female and male breast cancer.  相似文献   

17.
In most families with multiple cases of breast and ovarian cancer, the cancer appears to be associated with germline alterations in BRCA1 or BRCA2. However, somatic mutations in BRCA1 and BRCA2 in sporadic breast and ovarian tumors are rare, even though loss of heterozygosity in BRCA1 and BRCA2 loci in these tumors appears frequently. This may be attributed to mutation detection assays that detect alterations in the coding regions and splice site junctions, but that miss large gene rearrangements. To look specifically for mutations such as large gene rearrangements that span several kilobases (kb) of genomic DNA, we have developed a fluorescence DNA microarray assay. This assay rapidly and simultaneously screens for such rearrangements along the entire gene. In our screen of 15 malignant ovarian tumors, we found one sample with a novel 3-kb deletion encompassing exon 17 of BRCA1 that leads to a frameshift mutation. This deletion was not detected in the corresponding constitutive DNA. Our results indicate that, whereas somatic mutations in BRCA1 appear to be rare in ovarian cancers, the search for large gene rearrangements should be included in any BRCA1 mutational analysis. Furthermore, the method described in this report has the potential to screen clinical tumor samples for genomic rearrangements simultaneously in a large number of cancer-associated genes.  相似文献   

18.
An estimated 7% of all breast cancers and 10% of all ovarian cancers are associated with inherited mutations in BRCA1 and BRCA2 genes. The mutations of a breast cancer-susceptible gene, BRCA1, confers increased risk of breast cancer in young women. Numerous studies have reported specific mutations in the BRCA1 and BRCA2 genes in the white population. However, there are very few studies on African-American and other ethnic minority groups. The goal of this study is to identify whether African-American patients with breast cancer carry some common mutations reported in other ethnic groups and whether they carry some novel mutations. We screened hot-region mutations on exons 2, 5, 11, 16, and 20 of BRCA1 gene in 54 African-American patients with breast cancer by NIRCA and SSCP methods. Our data revealed one novel frameshift mutation (3331 insG) and three missense sequence variants (A3537G, A3667G, and C4009T) on exon 11. Each sequence change was confirmed by automatic DNA sequencing. One rare sequence variant, A3537G, has been revealed in high frequency (3/54). Our data suggested that African-American patients with breast cancer carry some unique BRCA1 gene mutations.  相似文献   

19.
Germline mutations in the BRCA1 and BRCA2 genes are responsible for the predisposition and development of familial breast and/or ovarian cancer. Most mutations of BRCA1 and BRCA2 associated with breast and/or ovarian cancer result in truncated proteins. To investigate the presence of BRCA1 and BRCA2 germline mutations in Korean breast and/or ovarian cancer families, we screened a total of 27 cases from 21 families including two or more affected first- or second-degree relatives with breast and/or ovarian cancer. PTT, PCR-SSCP, and DHPLC analysis, followed by sequencing were used in the screening process. In nine families, we found BRCA1 and BRCA2 germline mutations that comprised four frameshift mutations and five nonsense mutations. All nine mutations led to premature termination producing shortened proteins. Among the nine mutations, three novel BRCA1 mutations (E1114X, Q1299X, 4159delGA) and two novel BRCA2 mutations (K467X, 8945delAA) were identified in this work.  相似文献   

20.
Eighty-six women fulfilling specific selection criteria were studied for germline mutations in two breast cancer susceptibility genes, BRCA1 and BRCA2, using the protein truncation test (PTT). Nine germline mutations were identified, six in BRCA1 and three in BRCA2. Of the six BRCA1 mutations, three have previously been described and three are new, and for BRCA2, one is a new mutation and the other two appear to occur at a site that has been described several times. Four kindreds were breast cancer families, one a breast/ovarian cancer family, and the sixth an ovarian cancer family. The three kindreds with BRCA2 mutations were classified as one breast/ovarian cancer family, one breast cancer family, and one family which harboured one early onset breast cancer patient and two melanoma patients. The mutations in BRCA1 were either insertions, deletions, or transitions which all resulted in a premature stop codon. Mutations in BRCA2 were all frameshift mutations as a result of either 2 or 4 bp deletions. Two BRCA2 mutations were identical, suggesting a Swiss founder effect which was confirmed by haplotype sharing. The 10% mutation detection rate is compatible with the relaxed criteria used for patient selection. Considering the relative ease with which coding sequences can be screened by PTT, this assay is useful as a first screen for BRCA1 and BRCA2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号