首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Background: Numerous classes of anesthetic agents have been shown to enhance the effects mediated by the postsynaptic gamma-aminobutyric acid A (GABAA) receptor-coupled chloride channel in the mammalian central nervous system. However, presynaptic actions of anesthetics potentially relevant to clinical anesthesia remain to be clarified. Therefore, in this study, the effects of intravenous and volatile anesthetics on both the uptake and the depolarization-evoked release of GABA in the rat stratum were investigated.

Methods: Assay for specific GABA uptake was performed by measuring the radioactivity incorporated in purified striatal synaptosomes incubated with3 H-GABA (20 nM, 5 min, 37 degrees Celsius) and increasing concentrations of anesthetics in either the presence or the absence of nipecotic acid (1 mM, a specific GABA uptake inhibitor). Assay for GABA release consisted of superfusing3 H-GABA preloaded synaptosomes with artificial cerebrospinal fluid (0.5 ml *symbol* min sup 1, 37 degrees Celsius) and measuring the radioactivity obtained from 0.5 ml fractions over 18 min, first in the absence of any treatment (spontaneous release, 8 min), then in the presence of either KCl alone (9 mM, 15 mM) or with various concentrations of anesthetics (5 min), and finally, with no pharmacologic stimulation (5 min). The following anesthetic agents were tested: propofol, etomidate, thiopental, ketamine, halothane, enflurane, isoflurane, and clonidine.

Results: More than 95% of3 H-GABA uptake was blocked by a 10 sup 3 -M concentration of nipecotic acid. Propofol, etomidate, thiopental, and ketamine induced a dose-related, reversible, noncompetitive, inhibition of3 H-GABA uptake: IC50 = 4.6 plus/minus 0.3 x 105 M, 5.8 plus/minus 0.3 x 10 sup -5 M, 2.1 plus/minus 0.4 x 10 sup -3 M, and 4.9 plus/minus 0.5 x 10 sup -4 M for propofol, etomidate, thiopental, and ketamine, respectively. Volatile agents and clonidine had no significant effect, even when used at concentrations greater than those used clinically. KCl application induced a significant, calcium-dependent, concentration-related, increase from basal3 H-GABA release, +34 + 10% (P < 0.01) and +61 plus/minus 13% (P < 0.001), respectively, for 9 mM and 15 mM KCl. The release of3 H-GABA elicited by KCl was not affected by any of the anesthetic agents tested.  相似文献   


2.
The purpose of this study was to determine whether volatile anesthetics modify the release of endothelium-derived relaxing factor. We examined the effects of halothane and isoflurane on endothelium-dependent relaxation and 3',5'-cyclic guanosine monophosphate formation elicited by acetylcholine and ionophore A23187 in isolated rat aorta. Halothane and isoflurane (1%-2%) significantly attenuated acetylcholine-induced relaxation of the phenylephrine-contracted aorta but had no significant effect on relaxation induced by A23187, nitroprusside, and nitroglycerin. Basal and A23187 (10(-7) M)-stimulated levels of 3',5'-cyclic guanosine monophosphate were slightly lowered by halothane and isoflurane (2%). In contrast, the increase of 3',5'-cyclic guanosine monophosphate elicited by acetylcholine (10(-5) M) was significantly attenuated by halothane (2%) and abolished by isoflurane (2%). These findings indicate that halothane and isoflurane strongly inhibit the release of endothelium-derived relaxing factor elicited by acetylcholine.  相似文献   

3.
Background: Dopamine (DA) is released in large amounts during cerebral ischemia and may exacerbate tissue damage. Riluzole (54274 RP) is a recently developed agent that depresses glutamate neurotransmission in the central nervous system (CNS) and that may protect against ischemic injury in some animal models. Because glutamate stimulates the release of DA in the striatum, the authors hypothesized that riluzole could antagonize DA release in this structure.

Methods: Assay for DA release consisted of superfusing3 H-DA preloaded synaptosomes with artificial cerebrospinal fluid (1 ml/min, 37 [degree sign] Celsius) and measuring the radioactivity obtained from 1-min fractions over 22 min, first in the absence of any treatment (spontaneous release, 8 min), then in the presence of depolarizing agents combined with riluzole (0.1-100 micro Meter, 5 min), and finally with no pharmacologic stimulation (9 min). The following depolarizing agents were tested: KCl (9, 15 mM), veratridine (0.01-1 micro Meter), N-methyl-D-aspartate (NMDA, 0.1-1 mM), kainate (0.1-1 mM), and nicotine (0.01-0.5 mM). Assay for DA uptake was performed by measuring the radioactivity incorporated in synaptosomes incubated with3 H-DA (44 nM; 5 min; 37 [degree sign] Celsius).

Results: All depolarizing agents produced a significant, concentration-related increase from basal3 H-DA release. Riluzole was found to decrease the release induced by veratridine (1 micro Meter), NMDA (1 mM), and kainate (1 mM) in a significant, concentration-related manner (IC50 = 9.5 micro Meter, 1.6 micro Meter, and 5.8 micro Meter for veratridine, NMDA, and kainate, respectively). In contrast, it did not affect the release elicited by either KCl or nicotine. Riluzole had no significant effect on the specific3 H-DA uptake.  相似文献   


4.
Background: Thromboxane A2 (TXA2) is a member of the prostaglandin family; activation of its receptor induces several important effects, including platelet aggregation and smooth muscle contraction. Because volatile anesthetics interfere with aggregation and contraction, the authors investigated effects of halothane, isoflurane, and sevoflurane on TXA2 signaling in an isolated receptor model.

Methods: mRNA encoding TXA2 receptors was prepared in vitro and expressed in Xenopus oocytes. The effects of halothane, isoflurane, and sevoflurane on Ca2+ -activated Cl sup - currents induced by the TXA2 agonist U-46619 and on those induced by intracellular injection of inositol 1-4-5 trisphosphate or guanosine 5'-O-(2-thiodiphosphate) were measured using the voltage-clamp technique.

Results: Expressed TXA2 receptors were functional (half maximal effect concentration [EC50], 3.2 x 10 sup -7 +/- 1.1 x 10 sup -7 M; Hill coefficient (h), 0.8 +/- 0.2). Halothane and isoflurane inhibition of TXA2 signaling was reversible and concentration dependent (halothane half maximal inhibitory concentration [IC50], 0.46 +/- 0.04 mM; h, 1.6 +/- 0.21; isoflurane IC50, 0.69 +/- 0.12 mM; h, 1.3 +/- 0.27). 0.56 mM halothane (1%) right-shifted the U-46619 concentration-response relationship by two orders of magnitude (EC50, 1 x 10 sup -5 M). That h and maximal effect (Emax) were unchanged indicates that halothane acts in a competitive manner. In contrast, isoflurane acted noncompetitively, decreasing Emax by 30% (h and EC50 were unchanged). Both halothane and isoflurane had no effect on intracellular signaling pathways. Sevoflurane (0-1.3 mM) did not affect TXA2 signaling.  相似文献   


5.
Background: Volatile general anesthetics increase agonist-mediated ion flux through the gamma-aminobutyric acidA, glycine, and 5-hydroxytryptamine3 (5-HT3) receptors. This action reflects an anesthetic-induced increase in the apparent agonist affinity of these receptors. In contrast, volatile anesthetics block ion flux through the nicotinic acetylcholine receptor (nAcChoR). The authors tested the hypothesis that in addition to blocking ion flux through the nAcChoR, isoflurane also increases the apparent affinity of the nAcChoR for agonist.

Methods: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana. The apparent agonist affinity of the nAcChoR was determined using a new stopped-flow fluorescence assay. This assay derives the apparent agonist affinity of the nAcChoR from the apparent rates with which agonists convert nAcChoRs from the resting state to the desensitized state.

Results: Isoflurane significantly increased the apparent affinity (decreased the apparent dissociation constant) of acetylcholine for the nAcChoR at clinically relevant concentrations. The apparent dissociation constant decreased exponentially with the isoflurane concentration from a control value of 44 +/- 4 [micro sign]M to 1.0 +/- 0.1 [micro sign]M in the presence of 1.5 mM isoflurane, the highest concentration studied.  相似文献   


6.
Rada EM  Tharakan EC  Flood P 《Anesthesia and analgesia》2003,96(1):108-11, table of contents
In previous studies we and others have demonstrated that the activation of nicotinic acetylcholine receptors (nAChRs) is inhibited by subanesthetic concentrations of volatile anesthetics. The mechanism by which activation is inhibited is unknown. Studies of the evolutionarily related nAChRs from the electric fish Torpedo have suggested that volatile anesthetics alter the affinity of the agonist for the receptor. We studied the effect of two volatile anesthetics, isoflurane and sevoflurane, on equilibrium binding of the high-affinity nicotinic agonist epibatidine to nicotinic receptors from mouse brain. We studied binding to male and female brain separately, because sex differences in nicotine responses have been reported. Male and female brains have equal epibatidine binding without anesthetic. Isoflurane and sevoflurane reduce the binding of [(3)H]epibatidine to male and female nicotinic receptors, but only at concentrations at and above those required for anesthesia. The 50% inhibitory concentration for isoflurane inhibition of [(3)H]epibatidine binding to male brain was 0.58 +/- 0.07 mM and to female brain was 1.62 +/- 0.30 mM. The 50% inhibitory concentration for sevoflurane inhibition of [(3)H]epibatidine binding to male brain was 0.77 +/- 0.05 mM and to female brain was 0.77 +/- 0.04 mM. There was no statistically significant difference in the effect of either drug between sexes (P > 0.05). Although there is a slight decrease in agonist affinity at anesthetic concentrations, the marked reductions in nAChR function at subanesthetic concentrations cannot be attributed to changes in agonist affinity. IMPLICATIONS: Volatile anesthetics reduce the activation of nicotinic acetylcholine receptors by an unknown mechanism. We have demonstrated that although isoflurane and sevoflurane inhibit agonist affinity, the concentrations required are too large to be responsible for the dynamic changes observed.  相似文献   

7.
Background: Both halothane and isoflurane evoke cerebral vasodilation. One of the potential mechanisms for arterial vasodilation is enhanced Potassium sup + efflux resulting from an increased opening frequency of membrane Potassium sup + channels. The current study was designed to determine the effects of volatile anesthetics on Potassium sup + channel current in single vascular smooth muscle cells isolated from dog cerebral arteries.

Methods: Patch clamp recording techniques were used to investigate the effects of volatile anesthetics on macroscopic and microscopic Potassium sup + channel currents.

Results: In the whole-cell patch-clamp mode, in cells dialyzed with pipette solution containing 2.5 mM EGTA and 1.8 mM CaCl2, depolarizing pulses from 60 to +60 mV elicited an outward Potassium sup + current that was blocked 65 plus/minus 5% by 3 mM tetraethylammonium (TEA). Halothane (0.4 and 0.9 mM) depressed the amplitude of this current by 18 plus/minus 4% and 34 plus/minus 6%, respectively. When 10 mM EGTA was used in the pipette solution to strongly buffer intracellular free Calcium2+, an outward Potassium sup + current insensitive to 3 mM TEA was elicited. This Potassium sup + current, which was reduced 51 plus/minus 4% by 1 mM 4-aminopyridine, was also depressed by 17 plus/minus 5 and 29 plus/minus 7% with application of 0.4 and 0.9 mM halothane, respectively. In cell-attached patches using 145 mM KCl in the pipette solution and 5.2 mM KCl in the bath, the unitary conductance of the predominant channel type detected was 99 pS. External application of TEA (0.1 to 3 mM) reduced the unitary current amplitude of the 99 pS Potassium sup + channel in a concentration-dependent manner. The open state probability of this 99 pS Potassium sup + channel was increased by 1 micro Meter Calcium2+ ionophore (A23187). These findings indicate that the 99 pS channel measured in cell-attached patches was a TEA-sensitive, Calcium2+ -activated Potassium sup + channel. Halothane and isoflurane reversibly decreased the open state probability (NPo), mean open time, and frequency of opening of this 99 pS Potassium sup + channel without affecting single channel amplitude or the slope of the current-voltage relationship.  相似文献   


8.
BACKGROUND: It is well established that neuronal nicotinic acetylcholine receptors (nAChRs) are sensitive to inhalational anesthetics. The authors previously reported that halothane potently blocked alpha4beta2-type nAChRs of rat cortical neurons. However, the effect of isoflurane, which is widely used clinically, on nAChRs largely remains to be seen. The authors studied the effects of isoflurane as compared with sevoflurane and halothane on the human alpha4beta2 nAChRs expressed in human embryonic kidney cells. METHODS: The whole-cell and single-channel patch clamp techniques were used to record currents induced by acetylcholine. RESULTS: Isoflurane, sevoflurane, and halothane suppressed the acetylcholine-induced currents in a concentration-dependent manner with 50% inhibitory concentrations of 67.1, 183.3, and 39.8 microM, respectively, which correspond to 0.5 minimum alveolar concentration or less. When anesthetics were coapplied with acetylcholine, isoflurane and sevoflurane decreased the apparent affinity of receptor for acetylcholine, but halothane, in addition, decreased the maximum acetylcholine current. When isoflurane was preapplied and coapplied, its inhibitory action was independent of acetylcholine concentration. Isoflurane blocked the nAChR in both resting and activated states. Single-channel analyses revealed that isoflurane at 84 microM decreased the mean open time and burst duration without inducing "flickering" during channel openings. Isoflurane increased the mean closed time. As a result, the open probability of single channels was greatly reduced by isoflurane. CONCLUSIONS: Isoflurane, sevoflurane, and halothane potently blocked the alpha4beta2 nAChR. Isoflurane suppression of whole-cell acetylcholine currents was a result of decreases in the open time, burst duration, and open probability and an increase in the closed time of single channels. The high sensitivity of neuronal nAChRs to inhalational anesthetics is expected to play an important role in several stages of anesthesia.  相似文献   

9.
Background: It is well established that neuronal nicotinic acetylcholine receptors (nAChRs) are sensitive to inhalational anesthetics. The authors previously reported that halothane potently blocked [alpha]4[beta]2-type nAChRs of rat cortical neurons. However, the effect of isoflurane, which is widely used clinically, on nAChRs largely remains to be seen. The authors studied the effects of isoflurane as compared with sevoflurane and halothane on the human [alpha]4[beta]2 nAChRs expressed in human embryonic kidney cells.

Methods: The whole-cell and single-channel patch clamp techniques were used to record currents induced by acetylcholine.

Results: Isoflurane, sevoflurane, and halothane suppressed the acetylcholine-induced currents in a concentration-dependent manner with 50% inhibitory concentrations of 67.1, 183.3, and 39.8 [mu]m, respectively, which correspond to 0.5 minimum alveolar concentration or less. When anesthetics were coapplied with acetylcholine, isoflurane and sevoflurane decreased the apparent affinity of receptor for acetylcholine, but halothane, in addition, decreased the maximum acetylcholine current. When isoflurane was preapplied and coapplied, its inhibitory action was independent of acetylcholine concentration. Isoflurane blocked the nAChR in both resting and activated states. Single-channel analyses revealed that isoflurane at 84 [mu]m decreased the mean open time and burst duration without inducing "flickering" during channel openings. Isoflurane increased the mean closed time. As a result, the open probability of single channels was greatly reduced by isoflurane.  相似文献   


10.
Volatile anesthetics are potent bronchodilators, but the site of action for the dilation is unclear. To determine the site of action of halothane, enflurane, and isoflurane on the peripheral vagal motor pathway, isolated strips of canine trachealis muscle were stimulated before and during exposure to halothane at 0.3, 1.0, 1.7, or 2.4 MAC, enflurane at 1 MAC, or isoflurane at 1 MAC. The sites and methods of stimulation were: 1) postsynaptic nicotinic cholinergic receptors in the intramural parasympathetic ganglia, with 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP); 2) postganglionic cholinergic nerve fibers, with electrical field stimulation (EFS); and 3) muscarinic cholinergic receptors of the smooth muscle, with acetylcholine (ACh). The concentration-response curve to DMPP was significantly shifted to the right by 0.3 MAC halothane, whereas 0.3 MAC halothane had no significant effect on the concentration-response curves to ACh and EFS. At concentrations greater than 1 MAC of halothane, enflurane, or isoflurane, concentration-response curves to all three stimuli were shifted significantly to the right; i.e., the contractile responses to ACh, EFS, and DMPP were reduced. At all concentrations of halothane the force of contraction was significantly more reduced during stimulation with DMPP than during stimulation with ACh, and at halothane concentrations greater than or equal to 1.7 MAC the response to EFS was significantly more reduced than that to ACh. We conclude that halothane, enflurane, and isoflurane attenuated airway constriction by several mechanisms, including 1) reduced excitability of the postsynaptic nicotinic receptors of the intramural parasympathetic ganglia and 2) an effect on the smooth muscle and/or on the muscarinic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of halothane, isoflurane, sevoflurane (0.5, 1 and 2 MAC) and pentobarbital (10(-5) M, 10(-4) M and 3 x 10(-4) M) on hypocapnia- and bicarbonate-induced constriction of isolated dog middle cerebral arteries were investigated in vitro. The isometric tension of isolated cerebral arterial rings was measured in an organ bath containing Krebs bicarbonate solution, aerated with 5% CO2 and 95% O2. Hypocapnia, induced by replacing the bathing solution with one that had been equilibrated with 2.5% CO2 and 97.5% O2, produced a sustained vasoconstriction (268 +/- 36 mg, mean +/- SEM). Exposure of arterial rings to a bathing solution that contained double the concentration of NaHCO3 (50 mM) elicited a phasic constriction followed by a gradual decrease in tension (309 +/- 34 mg). Although halothane, isoflurane, and sevoflurane attenuated both hypocapnia- and bicarbonate-induced constrictions in a dose-dependent manner, the inhibition of these constrictions was greater in rings treated with halothane than in those treated with isoflurane or sevoflurane when compared at equipotent concentrations. These alkaline-induced constrictions were attenuated by pentobarbital only at the highest concentration of 3 x 10(-4) M. Halothane (1 and 2 MAC) attenuated the constriction induced by hypocapnia to a greater extent than that induced by 15 mM KCl, whereas pentobarbital (10(-4) M and 3 x 10(-4) M) attenuated hypocapnia-induced constriction less than KCl-induced constriction. These results indicate that alkaline-induced constriction is more vulnerable to halothane than other volatile anesthetics and pentobarbital. The mechanisms of the inhibitory effects of halothane and pentobarbital on alkaline-induced cerebral vasoconstriction seem to differ; the inhibitory effect of pentobarbital, but not of halothane may be, in part, ascribed to its inhibitory effect on the Ca++ influx.  相似文献   

12.
Background: Volatile anesthetics have been found to interfere with the functioning of several G protein-coupled receptors, effects that may be relevant to the mechanism of anesthetic action. Lysophosphatidate (1-acyl-2-sn-glycero-3-phosphate; LP) is the simplest natural phospholipid. It has pronounced biological effects and signals through a specific G protein-coupled receptor. Because of its lipophilicity, the LP receptor is a feasible site of anesthetic interaction. Therefore, the authors investigated the effects of halothane and isoflurane on LP signaling using Xenopus oocytes.

Methods: Mature oocytes were harvested from Xenopus frogs, isolated, and defolliculated manually. Lysophosphatidate receptors are endogenously present in these cells. Angiotensin receptors were expressed recombinantly to study anesthetic effects on intracellular signaling. Oocytes were studied individually with a two-electrode voltage clamp at room temperature. Integrated Ca2+ -activated Cl sup - currents (ICl(Ca)) were used to evaluate the effects of anesthetics on changes in intracellular Ca2+ concentration in response to receptor agonists (10 sup -7 M LP or 10 sup -7 M angiotensin II) or intracellular inositoltrisphosphate (IP3) injection.

Results: Halothane depressed LP signaling in a concentration-dependent manner, with half-maximal inhibition at 0.23 mM and virtually complete inhibition at 0.34 mM. Responses could be recovered after an anesthetic-free wash. Oocyte injection with heparin, an IP3 receptor antagonist, completely blocked LP and angiotensin signaling, indicating similar IP3 -dependent pathways. However, ICl(Ca) induced by angiotensin receptor activation or intracellular IP3 injection were not inhibited by halothane. Isoflurane, at comparable concentrations, did not depress LP responses in oocytes significantly.  相似文献   


13.
Background: Cardiac dysrhythmias during inhalational anesthesia in association with catecholamines are well known, and halothane is more "sensitizing" than isoflurane. However, the underlying mechanisms of action of volatile anesthetics with or without catecholamines on cardiac Na channels are poorly understood. In this study, the authors investigated the effects of halothane and isoflurane in the absence and presence of beta-stimulation (isoproterenol) on the cardiac Na sup + current (INa) in ventricular myocytes enzymatically isolated from adult guinea pig hearts.

Methods: A standard whole-cell patch-clamp technique was used. The INa was elicited by depolarizing test pulses from a holding potential of -80 mV in reduced Na sup + solution (10 mM).

Results: Isoproterenol alone depressed peak INa significantly by 14.6 +/- 1.7% (means +/- SEM). Halothane (1.2 mM) and isoflurane (1.0 mM) also depressed peak INa significantly by 42.1 +/- 3.4% and 21.3 +/- 1.9%, respectively. In the presence of halothane, the effect of isoproterenol (1 micro Meter) was potentiated, further decreasing peak I sub Na by 34.7 +/- 4.1%. The halothane effect was less, although significant, in the presence of a G-protein inhibitor (GDP beta S) or a specific protein kinase A inhibitor [PKI-(6-22)-amide], reducing peak I sub Na by 24.2 +/- 3.3% and 24 +/- 2.4%, respectively. In combination with isoflurane, the effect of isoproterenol on INa inhibition was less pronounced, but significant, decreasing current by 12.6 +/- 3.9%. GDP beta S also reduced the inhibitory effect of isoflurane. In contrast, PKI-(6-22)-amide had no effect on isoflurane INa inhibition.  相似文献   


14.
Background: After tracheal intubation, lung resistance and therefore respiratory system resistance (Rrs) routinely increase, sometimes to the point of clinical bronchospasm. Volatile anesthetics generally have been considered to be effective bronchodilators, although there are few human data comparing the efficacy of available agents. This study compared the bronchodilating efficacy of four anesthetic maintenance regimens: 1.1 minimum alveolar concentration (MAC) end-tidal sevoflurane, isoflurane or halothane, and thiopental/nitrous oxide.

Methods: Sixty-six patients underwent tracheal intubation after administration of 2 micro gram/kg fentanyl, 5 mg/kg thiopental, and 1 mg/kg succinylcholine. Vecuronium or pancuronium (0.1 mg/kg) was then given to ensure paralysis during the rest of the study. Postintubation R sub rs was measured using the isovolume technique. Maintenance anesthesia was then randomized to thiopental 0.25 mg [center dot] kg sup -1 [center dot] min sup -1 plus 50% nitrous oxide, or 1.1 MAC end-tidal isoflurane, halothane, or sevoflurane. The Rrs was measured after 5 and 10 min of maintenance anesthesia. Data were expressed as means +/- SD.

Results: Maintenance with thiopental/nitrous oxide failed to decrease Rrs, whereas all three volatile anesthetics significantly decreased Rrs at 5 min with little further improvement at 10 min. Sevoflurane decreased Rrs more than either halothane or isoflurane (P < 0.05; 58 +/- 14% of the postintubation Rrs vs. 69 +/- 20% and 75 +/- 13%, respectively).  相似文献   


15.
Although volatile anesthetics result in cerebral arterial dilation, the precise mechanisms underlying this effect are not known. In vitro tension recordings were used to study the vasodilating potencies of halothane and isoflurane in isolated cerebral vessels and to examine the possible role of the endothelium in modulating any effects observed. Cylindrical segments of the rabbit basilar artery and midline ear artery from the same animal were placed in a flow-through bath of 37 degrees C oxygenated (95% O2/5% CO2) physiologic salt solution and stretched to a resting tension of approximately 2,000 dynes. They were then constricted with 3.0 x 10(-2) M K+, 1.0 x 10(-3) M norepinephrine, or 5.0 x 10(-6) M serotonin and exposed to either halothane or isoflurane at concentrations of approximately 0.5, 1.0, 1.5, and 2.0 MAC in varied order for 15 min at each concentration. A 30-min period of perfusion with anesthetic-free, vasoconstrictor-containing perfusate separated successive exposures to an anesthetic. Vessels prepared in this fashion retained their responsiveness to both vasoconstrictors and volatile anesthetics for as long as 4 h. They also relaxed appropriately to acetylcholine, indicating that the endothelium was intact. Concentrations of volatile anesthetic in the tissue perfusate were directly measured using gas chromatography, and the relationship between bath concentrations (expressed as MAC fractions) and the degree of relaxation were determined. The data were analyzed by parallel line regression. Halothane was found to be a significantly more potent vasodilator of the isolated basilar artery than was isoflurane. For example, in K(+)-constricted vessels, the concentration of halothane needed to produce a 50% reduction in tension was 1.32 MAC, compared with 1.66 MAC for isoflurane. Comparable differences were found in the basilar artery in the presence of other constrictors. However, there was no significant difference between the two agents in their effects upon the ear artery. In a separate series of experiments, the endothelium of basilar artery segments was removed by drying. Removal was confirmed by observing a diminished dilator response to acetylcholine. These vessels were subsequently constricted with K+, and relaxation dose-response curves were obtained for both halothane and isoflurane. There were no differences in the dose-response curves for deendothelialized versus intact vessels, with halothane still the more potent relaxant after endothelial removal. These data demonstrate that halothane and isoflurane cause a dose-dependent relaxation of rabbit cerebral vessels, regardless of the vasoconstrictor used. Halothane was a more potent relaxant of the basilar artery when expressed on a MAC-fraction basis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Zhang Y  Laster MJ  Hara K  Harris RA  Eger EI  Stabernack CR  Sonner JM 《Anesthesia and analgesia》2003,96(1):97-101, table of contents
Many inhaled anesthetics potentiate the effect of glycine on inhibitory strychnine-sensitive glycine receptors in vitro, supporting the view that this receptor could mediate the immobility produced by inhaled anesthetics during noxious stimulation (i.e., would underlie minimum alveolar anesthetic concentration [MAC]). There are quantitative differences between anesthetics in their capacity to potentiate glycine's effect in receptor expression systems: halothane (most potentiation), isoflurane (intermediate), and cyclopropane (minimal). If glycine receptors mediate MAC, then their blockade in the spinal cord should increase the MAC of halothane more than that of isoflurane and isoflurane MAC more than cyclopropane MAC; the increases in MAC should be proportional to the receptor potentiation produced in vitro. Rats with chronically implanted intrathecal catheters were anesthetized with halothane, isoflurane, or cyclopropane. During intrathecal infusion of artificial cerebrospinal fluid, MAC was determined. Then MAC was re-determined during an infusion of 3, 12, 24, or 48 (isoflurane only) micro g/min of strychnine (strychnine blocks glycine receptors) in artificial cerebrospinal fluid. Strychnine infusion increased MAC in proportion to the enhancement of glycine receptors found in vitro. The maximum effect was with an infusion of 12 micro g/min. For the combined results at 12 and 24 micro g/min of strychnine, the increase in MAC correlated with the extent of in vitro potentiation (r(2) = 0.82). These results support the hypothesis that glycine receptors mediate part of the immobilization produced by inhaled anesthetics. IMPLICATIONS: In vitro, halothane potentiates glycine's effect on strychnine-sensitive glycine receptors more than isoflurane and isoflurane more than cyclopropane. The present in vivo work indicates that antagonism of the glycine receptor with strychnine increases minimum alveolar anesthetic concentration for halothane more than isoflurane and isoflurane more than cyclopropane. Such results support the notion that glycine receptors may mediate part of the immobility produced by inhaled anesthetics.  相似文献   

17.
Background: The activity of the plasma membrane Calcium2+ - transporting adenosine triphosphatase (PMCA) is inhibited by volatile anesthetics at clinical concentrations. The goal of the current study was to determine whether the inhibition is selective as compared to other adenosine triphosphatases (ATPases) and another group of general anesthetics, barbiturates. In addition, the authors determined whether the response to anesthetics of the enzymes in neuronal membranes is similar to that in erythrocyte membranes.

Methods: The effects of halothane, isoflurane, and sodium pentobarbital on four different ATPase activities were studied at 37 degrees C in two distinct plasma membrane preparations, human red blood cells and synaptosomal membranes from rat cerebellum.

Results: Inhibition patterns of the PMCA by halothane and isoflurane at anesthetic concentrations were very similar in red blood cells and synaptosomal membranes. The half-maximal inhibition (I50) occurred at 0.25-0.30 mM halothane and 0.30-0.32 mM isoflurane. The PMCA in both membranes was significantly more sensitive to the inhibitory action of volatile anesthetics (I50 = 0.75-1.15 minimum alveolar concentration) than were other ATPases, such as the Sodium sup +, Potassium sup + -ATPase (I50 [nearly equal] 3 minimum alveolar concentration) or Magnesium sup 2+ -ATPase (I50 greater or equal to 5 minimum alveolar concentration). In contrast, sodium pentobarbital inhibited the PMCA in both membranes only at [nearly equal] 100-200-fold above its anesthetic concentrations. The other ATPases were inhibited at similar pentobarbital concentrations (I50 = 11-22 mM).  相似文献   


18.
BACKGROUND: Experimental data suggest that volatile anesthetics induce significant changes in extracellular dopamine concentrations in the striatum, a restricted but functionally important brain area. In the present study, the authors used a superfused slice preparation to examine the effects of halothane and isoflurane on both spontaneous and N-methyl-D-aspartate (NMDA)-evoked dopamine release in the striatum, and whether these effects involved actions of these anesthetics mediated by gamma-aminobutyric acid receptors in this structure. METHODS: Radioactivity collected from 5-min fractions was compared in the absence (basal release) or presence (evoked release) of NMDA alone and combined with various pharmacologic or anesthetic agents in slices of the dorsolateral striatum and synaptosomes of the whole striatum preloaded with 3H-dopamine and superfused with artificial cerebrospinal fluid. RESULTS: In tetrodotoxin-treated striatal slices, halothane and isoflurane significantly increased dopamine basal release (EC50 = 0.33 mM and 0.41 mM for halothane and isoflurane, respectively). Both agents decreased the NMDA-evoked dopamine release in both the absence (IC50 = 0.15 mM and 0.14 mM for halothane and isoflurane, respectively) and presence (IC50 = 0.15 mM for both halothane and isoflurane) of tetrodotoxin in slices, and in synaptosomes (IC50 = 0.19 mM for both halothane and isoflurane). NMDA-induced dopamine release was significantly enhanced by bicuculline, a gamma-aminobutyric acid receptor antagonist. Halothane and isoflurane inhibitory effects on NMDA-evoked dopamine release were significantly reduced in the presence of bicuculline. CONCLUSION: These results indicate that halothane and isoflurane decrease the NMDA-evoked dopamine release by acting directly at dopamine terminals in striatal slices. They support the involvement of both depression of presynaptic NMDA receptor-mediated responses and enhancement of gamma-aminobutyric acid receptor-mediated responses in these effects.  相似文献   

19.
Background: Experimental data suggest that volatile anesthetics induce significant changes in extracellular dopamine concentrations in the striatum, a restricted but functionally important brain area. In the present study, the authors used a superfused slice preparation to examine the effects of halothane and isoflurane on both spontaneous and N-methyl-D-aspartate (NMDA)-evoked dopamine release in the striatum, and whether these effects involved actions of these anesthetics mediated by [gamma]-aminobutyric acid receptors in this structure.

Methods: Radioactivity collected from 5-min fractions was compared in the absence (basal release) or presence (evoked release) of NMDA alone and combined with various pharmacologic or anesthetic agents in slices of the dorsolateral striatum and synaptosomes of the whole striatum preloaded with 3H-dopamine and superfused with artificial cerebrospinal fluid.

Results: In tetrodotoxin-treated striatal slices, halothane and isoflurane significantly increased dopamine basal release (EC50 = 0.33 mM and 0.41 mM for halothane and isoflurane, respectively). Both agents decreased the NMDA-evoked dopamine release in both the absence (IC50 = 0.15 mM and 0.14 mM for halothane and isoflurane, respectively) and presence (IC50 = 0.15 mM for both halothane and isoflurane) of tetrodotoxin in slices, and in synaptosomes (IC50 = 0.19 mM for both halothane and isoflurane). NMDA-induced dopamine release was significantly enhanced by bicuculline, a [gamma]-aminobutyric acid receptor antagonist. Halothane and isoflurane inhibitory effects on NMDA-evoked dopamine release were significantly reduced in the presence of bicuculline.  相似文献   


20.
Background: Interactions between volatile anesthetics and muscarinic acetylcholine receptors have been studied primarily in binding assays or in functional systems derived from tissues or cells, often containing multiple receptor subtypes. Because interactions with muscarinic signaling systems may explain some effects and side effects of anesthetics and form a model for anesthetic-protein interactions in general, the author studied anesthetic inhibition of muscarinic signaling in an isolated system.

Methods: mRNA encoding the m1 muscarinic receptor subtype was prepared in vitro and expressed in Xenopus oocytes. Effects of halothane on methylcholine-induced intracellular Calcium2+ release was measured. Angiotensin II receptors were expressed to evaluate anesthetic effects on intracellular signaling.

Results: m1 Receptors expressed in oocytes were functional, and could be inhibited by atropine and pirenzepine. Halothane depressed m1 muscarinic signaling in a dose-dependent manner: half-maximal inhibition of 10 sup -7 M methylcholine was obtained with 0.3 mM halothane. The effect was reversible and could be overcome by high concentrations of muscarinic agonist. Angiotensin II signaling was unaffected by 0.34 mM halothane.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号