首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《Drug delivery》2013,20(4):187-207
Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight < 500?Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN.  相似文献   

2.
Introduction: The skin, as the largest organ, is a better option for drug delivery in many diseases. However, most transdermal delivery is difficult due to the low permeability of therapeutics across the various skin layers. There have been many innovations in transdermal drug delivery to enhance the therapeutic efficacy of the drugs administered. Microneedles (MN), micron sized needles, are of great interest to scientists as a new therapeutic vehicle through transdermal routes, especially for vaccines, drugs, small molecules, etc.

Areas covered: This review covers new insights into different types of MNs such as solid, hollow, coated and dissolving MNs (SMNs, HMNs, CMNs, and DMNs) for selected biomedical applications in detail. Specific focus has been given to CMNs and DMNs for vaccine and drug delivery applications with recent developments in new MNs covered.

Expert opinion: This review explores the feasibility of innovative MNs used as a drug delivery carrier. Because most of the SMNs and HMNs have many limitations, it is difficult to achieve therapeutic efficacy. Therefore, many scientists are investigating functional modifications of MNs through covalent and non-covalent methods, especially for CMNs and DMNs. The biomedical applications of MNs are growing and new exciting improvements could be achieved, thus resulting in better micro/nano technologies in the near future.  相似文献   

3.
Phase-transition microneedles (PTMNs)-based transdermal drug delivery (TDD) is gaining popularity due to its non-invasiveness and ability to deliver a wide range of drugs. PTMNs absorb interstitial skin fluid (ISF) and transport drugs from microneedle (MNs) domain to the skin without polymer dissolution. To establish PTMNs for practical use, one needs to understand and optimise the key parameters governing drug transport mechanisms to achieve controlled drug delivery. In addressing this point, we have developed a coupled diffusion-binding-deformation model to understand the effect of physicochemical parameters (e.g., swelling capacity, drug binding) of MN and skin mechanical properties on overall drug transport behaviour. The contact mechanics at the MN and skin interface is introduced to account for the resistive force exerted by the deformed skin to MN swelling. The model is validated with the reported data of in vitro insulin delivery using polyvinyl alcohol (PVA) MN. The drug binding parameters are estimated from the fitting of the cumulative release of insulin within 6 hours of MN insertion. To predict the in vivo data of insulin delivery using the PVA MN, one-compartment model of drug pharmacokinetics is incorporated. It is shown in the paper that the model is able to predict the final insulin concentration in blood and in good agreement with the reported experimental data. The proposed model is concluded to be a tool for the predictive design and development of PTMNs-based TDD systems.  相似文献   

4.
Microneedles (MNs) system for transdermal drug delivery has the potential to improve therapeutic efficacy, proving an approach that is more convenient and acceptable than traditional medication systems. This study systematically researched dissolving polymer MNs fabricated from various common FDA-approved biocompatible materials, including gelatine, chitosan, hyaluronic acid (HA) and polyvinyl alcohol (PVA). Upon application of MN patches to the porcine cadaver skin, the MNs effectively perforated the skin and delivered drugs to subcutaneous tissue on contact with the interstitial fluid. Both the in vitro and in vivo drug release tests showed the similar trends but different release rates among the prepared MNs. Interestingly, the drug-release kinetics of PVA MNs were able to be altered by changing the molecular weight. To evaluate the feasibility using the proposed MNs for treating diabetes, an in vivo insulin absorption study in diabetic mice was performed. The results showed different insulin release properties of MNs fabricated from various kinds of polymer, leading to different decrease in blood glucose levels. We made a systematic and comprehensive study of some drug-loaded polymer MNs, and anticipated that dissolving polymer MNs have potential to improve therapeutic efficacy through controlled drug release.  相似文献   

5.
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery. Microneedles have been fabricated with a range of sizes, shapes, and materials. Most in vitro drug delivery studies have shown these needles to increase skin permeability to a broad range of drugs that differ in molecular size and weight. In vivo studies have demonstrated satisfactory release of oligonucleotides and insulin and the induction of immune responses from protein and DNA vaccines. Microneedles inserted into the skin of human subjects were reported to be painless. For all these reasons, microneedles are a promising technology to deliver drugs into the skin. This review presents the main findings concerning the use of microneedles in transdermal drug delivery. It also covers types of microneedles, their advantages and disadvantages, enhancement mechanisms, and trends in transdermal drug delivery.  相似文献   

6.
Veterinary drug delivery: potential for skin penetration enhancement   总被引:4,自引:0,他引:4  
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SC), one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These are important considerations when formulating a veterinary transdermal product when such compounds are added, either intentionally or otherwise, for their penetration enhancement ability.  相似文献   

7.
Transdermal drug delivery (TDD) is the administration of therapeutic agents through intact skin for systemic effect. TDD offers several advantages over the conventional dosage forms such as tablets, capsules and injections. Currently there are about eight drugs marketed as transdermal patches. Examples of such products include nitroglycerin (angina pectoris), clonidine (hypertension), scopolamine (motion sickness), nicotine (smoking cessation), fentanil (pain) and estradiol (estrogen deficiency). Since skin is an excellent barrier for drug transport, only potent drugs with appropriate physicochemical properties (low molecular weight, adequate solubility in aqueous and non-aqueous solvents, etc) are suitable candidates for transdermal delivery. Penetration enhancement technology is a challenging development that would increase significantly the number of drugs available for transdermal administration. The permeation of drugs through skin can be enhanced by physical methods such as iontophoresis (application of low level electric current) and phonophoresis (use of ultra sound energy) and by chemical penetration enhancers (CPE). In this review, we have discussed about the CPE which have been investigated for TDD. CPE are compounds that enhance the permeation of drugs across the skin. The CPE increase skin permeability by reversibly altering the physicochemical nature of the stratum corneum, the outer most layer of skin, to reduce its diffusional resistance. These compounds increase skin permeability also by increasing the partition coefficient of the drug into the skin and by increasing the thermodynamic activity of the drug in the vehicle. This review compiles the various CPE used for the enhancement of TDD, the mechanism of action of different chemical enhancers and the structure-activity relationship of selected and extensively studied enhancers such as fatty acids, fatty alcohols and terpenes. Based on the chemical structure of penetration enhancers (such as chain length, polarity, level of unsaturation and presence of some special groups such as ketones), the interaction between the stratum corneum and penetration enhancers may vary which will result in significant differences in penetration enhancement. Our review also discusses the various factors to be considered in the selection of an appropriate penetration enhancer for the development of transdermal delivery systems.  相似文献   

8.
Available formulations of sumatriptan succinate (SS) have low bioavailability or are associated with site reactions. We developed various types of self-dissolving microneedle arrays (MNs) fabricated from sodium hyaluronate as a new delivery system for SS and evaluated their skin permeation and irritation in terms of clinical application. In vitro permeation studies with human skin, physicochemical properties (needle length, thickness and density), and penetration enhancers (glycerin, sodium dodecyl sulfate and lauric acid diethanolamide) were investigated. SS-loaded high-density MNs of 800?µm in length were the optimal formulation and met clinical therapeutic requirements. Penetration enhancers did not significantly affect permeation of SS from MNs. Optical coherence tomography images demonstrated that SS-loaded high-density MNs (800?µm) uniformly created drug permeation pathways for the delivery of SS into the skin. SS-loaded high-density MNs induced moderate primary skin irritations in rats, but the skin recovered within 72?h of removal of the MNs. These findings suggest that high-density MNs of 800?µm in length are an effective and promising formulation for transdermal delivery of SS. To our knowledge, this is the first report of SS permeation across human skin using self-dissolving MNs.  相似文献   

9.
We have recently described an innovative drug delivery system, a water-based and vapor permeable film intended for dermal and/or transdermal delivery. The aim of this work was to modulate the delivery of the model drug lidocaine hydrochloride from the transdermal film across rabbit ear skin. The effect of drug loading, of film-forming polymer type and content, of adhesive and plasticizer on lidocaine transport across the skin was evaluated. Additional objective was to evaluate the effect of occlusion on the kinetics of lidocaine transport, by applying an occlusive backing on the surface of the transdermal film. From the data obtained it can be concluded that the transdermal film acts as a matrix controlling drug delivery. The film-forming polymer molecular weight had a negligible effect on drug penetration, while its content was more effective. The choice of the adhesive seems to be the most important variable governing drug transport. In particular, the presence of lauric acid combined with a basic drug, such as lidocaine, can produce a relevant improvement in permeation, because of the formation of an ion pair. Concerning the kinetics, drug depletion is responsible for the declining permeation rates observed in the late times of permeation.  相似文献   

10.
Karmen Cheung 《Drug delivery》2016,23(7):2338-2354
In recent years, there has been a surge in the research and development of microneedles (MNs), a transdermal delivery system that combines the technology of transdermal patches and hypodermic needles. The needles are in the hundreds of micron length range and therefore allow relatively little or no pain. For example, biodegradable MNs have been researched in the literature and have several advantages compared with solid or hollow MNs, as they produce non-sharp waste and can be designed to allow rapid or slow release of drugs. However, they also pose a disadvantage as successful insertion into the stratum corneum layer of the skin relies on sufficient mechanical strength of the biodegradable material. This review looks at the various technologies developed in MN research and shows the rapidly growing numbers of research papers and patent publications since the first invention of MNs (using time series statistical analysis). This provides the research and industry communities a valuable synopsis of the trends and progress being made in this field.  相似文献   

11.
Introduction: Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin’s protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below.

Areas covered: MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered.

Expert opinion: MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.  相似文献   

12.
Cardiovascular disease is the leading cause of global mortality, with anticoagulant therapy being the main prevention and treatment strategy. Recombinant hirudin (r-hirudin) is a direct thrombin inhibitor that can potentially prevent thrombosis via subcutaneous (SC) and intravenous (IV) administration, but there is a risk of haemorrhage via SC and IV. Thus, microneedle (MN) provides painless and sanitary alternatives to syringes and oral administration. However, the current technological process for the micro mould is complicated and expensive. The micro mould obtained via three-dimensional (3D) printing is expected to save time and cost, as well as provide a diverse range of MNs. Therefore, we explored a method for MNs array model production based on 3D printing and translate it to micro mould that can be used for fabrication of dissolving MNs patch. The results show that r-hirudin-loaded and hyaluronic acid (HA)-based MNs can achieve transdermal drug delivery and exhibit significant potential in the prevention of thromboembolic disease without bleeding in animal models. These results indicate that based on 3D printing technology, MNs combined with r-hirudin are expected to achieve diverse customizable MNs and thus realize personalized transdermal anticoagulant delivery for minimally invasive and long-term treatment of thrombotic disease.  相似文献   

13.
Vesicular systems have shown their ability to increase dermal and transdermal drug delivery. Their mechanism of drug transport into and through the skin has been investigated but remains a much debated question. Several researchers have outlined that drug penetration can be influenced by modifying the surface charge of liposomes. In the present work we study the influence of particle surface charge on skin penetration. The final purpose is the development of a carrier system which is able to enhance the skin delivery of two model drugs, betamethasone and betamethasone dipropionate. Liposomes were characterised by their size, morphology, zeta potential, encapsulation efficiency and stability. Ex vivo diffusion studies using Franz diffusion cells were performed. Confocal microscopy was performed to visualise the penetration of fluorescently labelled liposomes into the skin. This study showed the potential of negatively charged liposomes to enhance the skin penetration of betamethasone and betamethasone dipropionate.  相似文献   

14.
The objective of this article was to investigate the enhancing effect of menthone, menthol and pulegone on the transdermal absorption of drugs with different lipophilicity and probe their mechanisms of action at molecular level. Five model drugs, namely osthole, tetramethylpyrazine, ferulic acid, puerarin and geniposide, which were selected based on their lipophilicity denoted by logKo/w, were tested using in vitro permeation studies in which Franz diffusion cells and rat skin were employed. Infrared spectroscopy and molecular dynamic simulation were used to investigate the effect of these enhancers on the stratum corneum (SC) lipids, respectively. Three compounds could effectively promote the transdermal absorption of drugs with different lipophilicity, and the overall promoting capacities were in the following increasing order: pulegone?<?menthol?<?menthone. The penetration enhancement ratio was roughly in parabolic curve relationships with the drug lipophilicity after treatment with menthol or menthone, while the penetration enhancement effect of pulegone hardly changed with the alteration of the drug lipophilicity. The molecular mechanism studies suggested that menthone and menthol enhanced the skin permeability by disordering the ordered organization of SC lipids and extracted part of SC lipids, while pulegone appeared to promote drug transport across the skin only by extracting part of SC lipids.  相似文献   

15.
《Toxicology in vitro》2010,24(7):1971-1978
Microneedle (MN) arrays have attracted considerable attention in recent years due to their ability to facilitate effective transdermal drug delivery. Despite appreciable research, there is still debate about how different MN dimensions or application modes influence permeabilization. This study aimed to investigate this issue by taking transepidermal water-loss measurements of dermatomed human skin samples following the insertion of solid polymeric MNs. Insertions caused an initial sharp drop in barrier function followed by a slower incomplete recovery – a paradigm consistent with MN-generation of microchannels that subsequently contract due to skin elasticity. While 600 μm-long MNs were more skin-perturbing than 400 μm MNs, insertion of 1000 μm-long MNs caused a smaller initial drop in integrity followed by a degree of long term permeabilization. This is explainable by the longest needles compacting the tissue, which then decompresses over subsequent hours. Multiple insertions had a similar effect as increasing MN length. There was some evidence that increasing MN density suppressed the partial barrier recovery caused by tissue contraction. Leaving MNs embedded in skin seemed to reduce the initial post-insertion drop in barrier function. Our results suggest that this in vitro TEWL approach can be used to rapidly screen MN-effects on skin.  相似文献   

16.
The development of a transdermal delivery system for drug molecules of high molecular weight (peptides or proteins) is nowadays a great scientific and commercial challenge. For these molecules, the passive transport through the skin is generally very low and should be enhanced by the application of the electrical current (a method called iontophoresis). A very important component of a transdermal iontophoretic system is the artificial membrane, which acts as the interface between the drug reservoir and the skin. The optimum membrane should (i) provide an effective drug delivery; (ii) have low electrical resistance and (ii) have low drug adsorption. In this work, the selection of membrane(s) for a transdermal iontophoretic salmon calcitonin (sCT, MW approximately 3500) system is performed. The passive and iontophoretic transport of sCT through porous artificial membranes, the sCT adsorption to them and the electrical resistance of all porous membranes in iontophoretic experiments is studied. The sCT transport through the membranes is compared with that through human skin, and based on the above three criteria the optimum membranes are selected for the sCT transdermal system.  相似文献   

17.
《药学学报(英文版)》2021,11(8):2326-2343
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity. However, the inherent properties of these drugs, such as large molecular weight, poor stability, and conformational flexibility, make them difficult to be formulated and delivered. Injection is the primary route for clinical administration of protein and peptide drugs, which usually leads to poor patient's compliance. As a portable, minimally invasive device, microneedles (MNs) can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation. In this review, we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs. Emphasis was given to the latest development in representative MNs design and fabrication. We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery, especially in the field of infectious disease, diabetes, cancer, and other disease therapy. Finally, the current status of clinical translation and a perspective on future development are also provided.  相似文献   

18.
Transdermal drug delivery has many advantages over the oral administration of drugs. This is the reason why many researchers have extensively investigated the transdermal absorption of drugs. However, a much smaller number of drugs are marketed using this route of delivery, compared to oral dosage forms, because drug absorption across the skin is very low due to the stratum corneum (the main barrier for drug absorption across the skin). Overcoming the penetration barrier would significantly improve the development of an efficient transdermal drug delivery system. Several techniques have been developed, or are under development, to bypass the stratum corneum. Approaches that have been made to overcome the stratum corneum fit into five different categories: (i) device and formulation; (ii) modification of stratum corneum by chemical enhancers; (iii) ablation; (iv) bypassing the stratum corneum via appendages; and (v) electrically assisted methods such as iontophoresis and electroporation. Furthermore, possible combinatorial uses of several approaches have been studied. Although the safety issues of these synergistic approaches still require clarification, several combinations could be promising. Finally, there is a necessity to regulate the intradermal disposition of drugs to develop a more efficient transdermal drug delivery system after overcoming the skin barrier.  相似文献   

19.

Purpose  

Transdermal delivery of drugs is often limited by formidable barrier properties of stratum corneum (SC). Microneedles (MN) enable creation of transient microchannels in the SC and bypass this barrier. Many reports have focused on the great effectiveness of MN in improving percutaneous flux values of a variety of drugs over a large molecular size spectrum. The objective of the present study is to evaluate the influence of formulation on MN-enhanced transdermal transport of naltrexone hydrochloride (NTX HCl).  相似文献   

20.
The effect of lipophilicity of drug on the microneedle (MN)-mediated iontophoretic delivery across dermatomed human skin was studied. Beta blockers with similar pKa but varied log P values were selected as model drugs in this study. Iontophoresis (ITP) or MNs, when used independently, increased the transdermal flux of beta blockers as compared with passive delivery (PD). ITP across the MN-treated skin (MN + ITP) increased the permeation rate of all beta blockers as compared with PD (p < 0.001). The enhancement ratios (ER) for hydrophilic molecules (atenolol and sotalol) were 71- and 78-fold higher for ITP + MN as compared with PD. However, for lipophilic molecule such as propranolol, there was 10-fold increase in the ER as compared with PD. These observations were further substantiated by the skin retention data; an inverse relationship between the skin retention and the hydrophilicity of the drug was observed. The results in the present study point out that the lipophilicity of the molecule plays a significant role on the electrically assisted transdermal delivery of drugs across the microporated skin. Using the combination of ITP + MN, hydrophilic drugs (atenolol and sotalol) were delivered at a much higher rate as compared with lipophilic molecules (propranolol and acebutolol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号