首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of galectin-9 (Gal-9) in maturation of dendritic cells (DC). Culture of immature DCs with exogenous Gal-9 markedly increased the surface expression of CD40, CD54, CD80, CD83, CD86, and HLA-DR in a concentration-dependent manner, although Gal-9 had no effect on differentiation of human monocytes into immature DCs. Gal-9-treated DCs secreted IL-12 but not IL-10, and they elicited the production of Th1 cytokines (IFN-gamma and IL-2), but not that of the Th2 cytokines (IL-4 and IL-5) by allogeneic CD4(+) T cells. These effects of Gal-9 on immature DCs were not essentially dependent on its lectin properties, given that they were only slightly inhibited by lactose. We further found that a Gal-9 mutant that lacks beta-galactoside binding activity reproduced the above activities, and that an anti-Gal-9 mAb suppressed them. Gal-9 induced phosphorylation of the p38 MAPK and ERK1/2 in DCs, and an inhibitor of p38 signaling, but not inhibitors of signaling by either ERK1/2 or phosphatidylinositol 3-kinase, blocked Gal-9-induced up-regulation of costimulatory molecule expression and IL-12 production. These findings suggest that Gal-9 plays a role not only in innate immunity but also in acquired immunity by inducing DC maturation and promoting Th1 immune responses.  相似文献   

2.
Dendritic cells (DCs) are potent antigen-presenting cells that play a pivotal role in the initiation of T cell-dependent immune responses. Immature DCs obtained from peripheral blood CD14+ monocytes by culture with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) differentiate into mature DCs upon stimulation with lipopolysaccharide (LPS). At least three families of mitogen-activated protein kinases (MAPKs), that is, extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK) and p38 MAPK, are involved in the DC maturation process. We report investigations of the role of JNK in the maturation of human monocyte-derived DCs. SP600125, a specific inhibitor of JNK, inhibited the LPS-induced up-regulation of CD80, CD83, CD86 and CD54, but augmented the up-regulation of HLA-DR. SP600125 slightly inhibited the down-regulation of FITC-dextran uptake during DC maturation. However, SP600125 did not affect the LPS induced up-regulation of allostimulatory capacity of DCs. SP600125 inhibited the release of IL-12 p70 and TNF-alpha from mature DCs. Although autologous T cells primed by the ovalbumin (OVA)-pulsed mature DCs produced IFN-gamma, but not IL-4, OVA-pulsed SP600125-treated mature DCs could initiate IL-4 production from autologous T cells. In contrast, a p38 MAPK inhibitor, SB203580, profoundly inhibited the phenotypic and functional maturation of DCs, while an ERK inhibitor, PD98059, had little or no effect. Taken together, the JNK signaling pathway appears to have a role that is distinct from the p38 MAPK and ERK cascades in the maturation process of DCs, and may be involved in the augmentation of Th2-prone T cell responses when it is suppressed.  相似文献   

3.
Interferon-beta (IFN-beta) exposure during tumour necrosis factor-alpha (TNF-alpha)-induced human monocyte-derived dendritic cell (DC) maturation augments the capacity of DC to promote the generation of T helper 1 (Th1) cells, while IFN-beta exposure during naive Th cell stimulation inhibits Th1 cell generation (Nagai et al., J Immunol, 2003 171:5233-43). Investigating these contradictory outcomes of IFN-beta exposure, we find that isolated DC matured with both TNF-alpha and IFN-beta secrete more IL-12 p70 upon CD40L stimulation than DC matured with TNF-alpha alone. mAb blocking studies indicate that the basis for this enhanced IL-12 p70 production is augmentation of two successive CD40-dependent autocrine pathways in the DC: (1) a pathway in which low levels of IL-12 p70, IL-27, IL-18 and, possibly, IL-23 act to mediate autocrine induction of DC IFN-gamma secretion; and (2) an IFN-gamma-initiated autocrine pathway promoting optimal DC IL-12 p70 secretion. In contrast to the IL-12 p70 promoting effects of IFN-beta during DC maturation, IFN-beta pre-treatment before CD40L stimulation was found to inhibit IFN-gamma-mediated enhancement of DC IL-12 p70 secretion. Thus, IFN-beta exposure during TNF-alpha-mediated DC maturation may promote Th1 polarization by increasing DC IL-12 p70 secretion, through enhancement of autocrine-acting IFN-gamma production by the DC. Moreover, IFN-beta exposure during naive Th cell stimulation may inhibit Th1 cell generation by blocking the IFN-gamma-induced signals required for optimal CD40L-induced DC IL-12 p70 secretion. IFN-beta pre-treatment was also observed to inhibit CD40L-induced DC IL-23 secretion. Our findings may account for some of the beneficial effects of IFN-beta therapy in patients with relapsing remitting multiple sclerosis.  相似文献   

4.
Using a murine spleen-derived dendritic cell (DC) line (BC1) CD40-mediated interleukin (IL)-12 production was analyzed and compared between immature and mature DC. BC1 cells, immature DC (iDC), were maturated by treatment with lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-alpha. IL-12 production of LPS-treated DC (LPS/DC) was markedly enhanced by treatment with an anti-CD40 monoclonal antibody (mAb). Although the anti-CD40 mAb also enhanced IL-12 productions of iDC and TNF-alpha-treated DC (TNF/DC), these production levels were considerably low compared with that of LPS/DC. CD40-mediated IL-12-productions by iDC and TNF/DC were significantly enhanced by treatment with PD98059, a specific inhibitor of extracellular signal-related kinase (ERK) pathway. In contrast, PD98059 showed no significant effects on CD40-mediated IL-12-production by LPS/DC. These results demonstrated that ERK pathway was involved in negative regulation of the IL-12 productions by iDC and TNF/DC but not by LPS/DC. On the other hand, SB203580, a specific inhibitor of p38 mitogen activated protein kinase (MAPK) pathway, completely inhibited CD40-mediated IL-12-production by iDC, while not affecting those of TNF/DC and LPS/DC. Thus, p38 MAPK pathway appeared to positively regulate the IL-12 production in iDC but not in mature DC. It seems that roles of ERK and p38 MAPK for IL-12 production are developmentally changed in murine DC.  相似文献   

5.
Yanagawa Y  Onoé K 《Immunology》2006,117(4):526-535
The role of mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-kappaB) pathways, especially NF-kappaB-inducing kinase (NIK)-mediated alternative pathway, in CD40-mediated interleukin (IL)-6 and IL-12 productions by immature or mature dendritic cells (DCs) was investigated. Murine myeloid DCs were matured by treatment with lipopolysaccharide. CD40 ligation induced modest or vigorous cytokine productions in immature or mature DCs, respectively. After CD40 ligation, p38 MAPK was significantly activated in either immature or mature DCs. SB203580, a p38 MAPK inhibitor, markedly decreased CD40-mediated IL-6 and IL-12 productions in immature DCs. In mature DCs, SB203580 significantly decreased CD40-mediated IL-6 but not IL-12 production. On the other hand, CD40 ligation induced vigorous activation of the NF-kappaB alternative pathway including p100 phosphorylation and subsequent nuclear translocations of p52, a processed form of p100, and RelB in mature but not immature DCs. The CD40-mediated phosphorylation of p100 was completely abolished in NIK-mutated mature DCs. The NIK mutation markedly reduced CD40-mediated IL-12 but not IL-6 production by mature DCs. Taken together, we concluded that IL-6 and IL-12 productions in response to CD40 ligation were controlled by p38 MAPK and NIK mediated alternative pathway, respectively, in mature DCs.  相似文献   

6.
Brucella abortus is a Gram-negative intracellular bacterium that induces MyD88-dependent IL-12 production in dentritic cells (DCs) and a subsequent protective Th1 immune response. Previous studies have shown that the Toll-like receptor 2 (TLR2) is required for tumor-necrosis factor (TNF) production, whereas TLR9 is responsible for IL-12 induction in DCs after exposure to heat-killed Brucella abortus (HKBA). TLR2 is located on the cell surface and is required for optimal microorganism-induced phagocytosis by innate immune cells; thus, phagocytosis is an indispensable preliminary step for bacterial genomic DNA recognition by TLR9 in late-endosomal compartments. Here, we hypothesized that TLR2-triggered signals after HKBA stimulation might cross-regulate TLR9 signaling through the indirect modulation of the phagocytic function of DCs or the direct modulation of cytokine gene expression. Our results indicate that HKBA phagocytosis was TLR2-dependent and an essential step for IL-12p40 induction. In addition, HKBA exposure triggered the TLR2-mediated activation of both p38 and extracellular signal-regulated kinase 1/2 (ERK1/2). Interestingly, although p38 was required for HKBA phagocytosis and phagosome maturation, ERK1/2 did not affect these processes but negatively regulated IL-12 production. Although p38 inhibitors tempered both TNF and IL-12 responses to HKBA, pre-treatment with an ERK1/2 inhibitor significantly increased IL-12p40 and abrogated TNF production in HKBA-stimulated DCs. Further experiments showed that the signaling events that mediated ERK1/2 activation after TLR2 triggering also required HKBA-induced Ras activation. Furthermore, Ras-guanine nucleotide-releasing protein 1 (RasGRP1) mediated the TLR2-induced ERK1/2 activation and inhibition of IL-12p40 production. Taken together, our results demonstrated that HKBA-mediated TLR2-triggering activates both the p38 and ERK1/2 signaling subpathways, which divergently regulate TLR9 activation at several levels to induce an appropriate protective IL-12 response.  相似文献   

7.
Red blood cells infected with Plasmodium falciparum (iRBCs) have been shown to modulate maturation of human monocyte-derived dendritic cells (DCs), interfering with their ability to activate T cells. Interaction between Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and CD36 expressed by DCs is the proposed mechanism, but we show here that DC modulation does not require CD36 binding, PfEMP1, or contact between DCs and infected RBCs and depends on the iRBC dose. iRBCs expressing a PfEMP1 variant that binds chondroitin sulfate A (CSA) but not CD36 were phagocytosed, inhibited lipopolysaccharide (LPS)-induced phenotypic maturation and cytokine secretion, and abrogated the ability of DCs to stimulate allogeneic T-cell proliferation. CD36- and CSA-binding iRBCs showed comparable inhibition. P. falciparum lines rendered deficient in PfEMP1 expression by targeted gene knockout or knockdown also inhibited LPS-induced phenotypic maturation, and separation of DCs and iRBCs in transwells showed that inhibition was not contact dependent. Inhibition was observed at an iRBC:DC ratio of 100:1 but not at a ratio of 10:1. High doses of iRBCs were associated with apoptosis of DCs, which was not activation induced. Lower doses of iRBCs stimulated DC maturation sufficient to activate autologous T-cell proliferation. In conclusion, modulation of DC maturation by P. falciparum is dose dependent and does not require interaction between PfEMP1 and CD36. Inhibition and apoptosis of DCs by high-dose iRBCs may or may not be physiological. However, our observation that low-dose iRBCs initiate functional DC maturation warrants reevaluation and further investigation of DC interactions with blood-stage P. falciparum.  相似文献   

8.
DC-SIGN is a C-type lectin selectively expressed by certain types of DCs, including monocyte-derived DCs. Many reports have described the impact of DC-SIGN engagement with concomitant TLR signaling in tailoring of the DC maturation process, but so far, none has addressed the importance of DC-SIGN engagement during their differentiation from blood progenitors. We therefore examined the role of DC-SIGN engagement limited to the stage of IL-4-guided differentiation of DCs from human peripheral blood monocytes but not during maturation. We used two different anti-DC-SIGN antibodies with reported DC-SIGN-engaging activities. In cultures with DC-SIGN ligands, the resulting iDCs displayed abrogated expression of differentiation markers CD1a and DC-SIGN. Without further DC-SIGN activation, such DCs matured with low CD80/CD86 and high ILT3 expression, along with the appearance of macrophage marker CD14. Additionally, treated DCs indicated a tolerogenic potential by possessing a low, allostimulatory capacity and inducing na?ve, allogeneic CD4(+) T cells to produce low levels of IFN-γ. Upon activation, IL-10 production was greatly increased by such DCs; however, the use of IL-10-blocking antibodies could not completely reverse alternative DC activation. This suggests an alternative activation response that is a result of a different elementary state of DCs generated with concomitant ligation of DC-SIGN. During differentiation, IL-4-induced pSTAT6 was reduced by DC-SIGN ligands. Furthermore, during LPS-induced maturation, treated DCs displayed lowered activation levels of p38 MAPK, STAT1, as well as STAT6, compared with controls. Collectively, evidence is presented confirming a crucial role for DC-SIGN signaling in DC generation from monocytes.  相似文献   

9.
10.
Toll-like receptor (TLR) ligands, i.e. lipopolysaccharide (LPS), induce dendritic cell (DC) production of both inflammatory and anti-inflammatory cytokines including interleukin (IL)-12, tumor necrosis factor (TNF)-, and IL-10. The balance of inflammatory versus anti-inflammatory cytokines appears to be crucial to control immune homeostasis. In the present study, we investigated TLR-mediated regulation of inflammatory versus anti-inflammatory cytokine production using murine bone marrow derived conventional DCs. Standard LPS (sLPS) that contains lipoprotein, a TLR2 ligand, induced vigorous production of both IL-10 and IL-12 p40 by DCs. Highly purified LPS (ultra-pure LPS, upLPS) also induced vigorous production of IL-12 p40, but markedly low IL-10 production. Thus, signal deficiency through TLR2 appeared to result in marked reduction in DC production of IL-10 but not IL-12 p40 upon stimulation with upLPS. To examine this possibility, DCs were stimulated with Pam3CSK4, a synthetic ligand of TLR2, in addition to stimulation with upLPS. It was shown that Pam3CSK4 alone failed to induce IL-10 production. However, Pam3CSK4 synergistically enhanced upLPS-induced DC production of IL-10 but neither IL-12 p40 nor TNF-. Extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK)1/2 in DCs were significantly activated by upLPS stimulation. The upLPS-induced activities of these MAPKs were considerably enhanced by additional stimulation with Pam3CSK4. Blocking either p38 MAPK or JNK1/2 pathway completely inhibited the synergistic enhancement of the IL-10 production by DCs upon upLPS and Pam3CSK4 stimulation. Thus, cooperated stimulation of these MAPKs via TLR4 and TLR2 appeared to induce selective synergy in anti-inflammatory cytokine production by murine conventional DCs.  相似文献   

11.
Ganoderma lucidum, a fungus native to China, has been widely used to promote health and longevity in the Chinese. The polysaccharide component with a branched (1-->6)-beta-D-glucan moiety of G. lucidum (PS-G) has been reported to exert anti-tumor activity and activation of natural killer cells. In this study, we investigated the effects of PS-G on human monocyte-derived dendritic cells (DC). Treatment of DC with PS-G resulted in the enhanced cell-surface expression of CD80, CD86, CD83, CD40, CD54, and human leukocyte antigen (HLA)-DR, as well as the enhanced production of interleukin (IL)-12p70, p40, and IL-10 and also IL-12p35, p40, and IL-10 mRNA expression, and the capacity for endocytosis was suppressed in DC. In addition, treatment of DC with PS-G resulted in enhanced T cell-stimulatory capacity and increased T cell secretion of interferon-gamma and IL-10. Neutralization with antibodies against Toll-like receptor (TLR)-4 inhibited the PS-G-induced production of IL-12 p40 and IL-10, suggesting a vital role for TLR-4 in signaling DC upon incubation with PS-G. Further study showed that PS-G was able to augment inhibitor of kappaB (IkappaB) kinase and nuclear factor (NF)-kappaB activity and also IkappaB alpha and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Further, inhibition of NF-kappaB by helenalin and p38 MAPK by SB98059 prevented the effects of PS-G in the expression of CD80, CD86, CD83, CD40, CD54, and HLA-DR and production of IL-12p70, p40, and IL-10 in various degrees. Taken together, our data demonstrate that PS-G can effectively promote the activation and maturation of immature DC, suggesting that PS-G may possess a potential in regulating immune responses.  相似文献   

12.
Mycophenolic acid (MPA) is an immunosuppressive drug which induces resistance to several maturation signals in human dendritic cells (DC) by unknown mechanisms. As mitogen-activated protein kinases (MAPK) are involved in the maturation process, we studied whether MPA affected p38MAPK and extracellular signal-regulated kinase (ERK1/2) in human DC. We first showed that MPA reduced TNFα-induced phenotype maturation, whereas it had no effect after LPS activation, suggesting that MPA preferentially affects the signaling pathway used by TNFα. We found that TNFα preferentially used p38MAPK to induce phenotype maturation in DC, whereas LPS preferentially activated NF-κB. Importantly, we showed that MPA more strongly inhibited p38MAPK phosphorylation induced by TNFα than by LPS. This difference in inhibition may therefore explain its different effect on DC phenotype. Interestingly, MPA inhibited the inflammatory cytokine synthesis and allostimulatory capacity induced by both stimuli. Exogenous guanosine antagonized the effect of MPA on the phenotype of TNFα-matured-DC as well as the IL-12p70 and IFNγ secretion induced by both stimuli, without affecting p38MAPK phosphorylation. The action of MPA on human DC phenotype maturation appears mainly to be due to its ability to inhibit p38MAPK. Furthermore, the difference between LPS and TNFα emphasizes that the DC microenvironment strongly influences DC sensitivity to MPA.  相似文献   

13.
目的: 研究体外LPS刺激及CD40的配基化对可溶性CD40(sCD40)基因修饰树突状细胞TLR4-MD2表达及IL-12分泌的影响,为有效利用树突状细胞诱导特异性移植免疫耐受提供实验依据。方法: 脂质体法将质粒pEGFP-N1/sCD40及空质粒pEGFP-N1转染DC2.4细胞株;应用LPS及抗CD40单抗刺激6 h,流式细胞仪检测DC表面TLR4-MD2的表达,RT-PCR法检测DC 的TLR4 mRNA 表达水平,并用ELISA法检测细胞因子IL-12p70的分泌。结果: LPS刺激下调DC表面TLR4-MD2的表达,同时给予CD40配基化可引起TLR4-MD2的表达显著增高;CD40配基化对DC TLR4mRNA 水平表达无影响,但可部分地增高LPS引起的TLR4mRNA 表达降低;此外,CD40的配基化可显著诱导LPS刺激后IL-12分泌增加。sCD40基因修饰DC可拮抗以上作用。结论: 体外LPS及抗CD40单抗刺激下,sCD40基因修饰树突状细胞可显著下调其表面TLR4-MD2的表达,IL-12p70分泌减少,可能与阻断胞浆内的TLR4-MD2的转运过程有关。  相似文献   

14.
ABSTRACT: DC are among the first antigen presenting cells encountering bacteria at mucosal surfaces, and play an important role in maintenance of regular homeostasis in the intestine. Upon stimulation DC undergo activation and maturation and as initiators of T cell responses they have the capacity to stimulate naive T cells. However stimulation of naive murine DC with B. vulgatus or LPS at low drives DC to a semimature (sm) state with low surface expression of activation-markers and a reduced capacity to activate T-cells. Additionally semimature DC are nonresponsive to subsequent TLR stimulation in terms of maturation, TNF-alfa but not IL-6 production. Ligation of CD40 is an important mechanism in enhancing DC maturation, function and capacity to activate T-cells. We investigated whether the DC semimaturation can be overcome by CD40 ligation. Upon CD40 ligation smDC secreted IL-12p40 but not the bioactive heterodimer IL-12p70, additionally CD40 ligation of smDC resulted in increased levels of IL-6 but not an increase expression of CD40. Analysis of the phosphorylation pattern of MAP kinases showed, that in smDC the CD40 ligation induced p38 phosphorylation is inhibited, in contrast phosphorylation of ERK upon CD40 ligation was independent of the DC maturation state. Our data show that the semimature differentiation state of DC can not be overcome by CD40 ligation. We suggest that the inability of CD40 ligation in overcoming DC semimaturation might contribute to the tolerogenic phenotype of semimature DC and at least partially account for maintenance of intestinal immune homeostasis.  相似文献   

15.
Adenylate cyclase toxin (CyaA) of Bordetella pertussis binds to CD11b/CD18 on macrophages and dendritic cells (DC) and confers virulence to the bacteria by subverting innate immune responses of the host. We have previously demonstrated that CyaA promotes the induction of IL-10-secreting regulatory T cells in vivo by modulating DC activation. Here, we examine the mechanism of immune subversion, specifically, the modulation of TLR signaling pathways in DC. We found that CyaA synergized with LPS to induce IL-10 mRNA and protein expression in DC but significantly inhibited IL-12p70 production. CyaA enhanced LPS-induced phosphorylation of p38 MAPK and ERK in DC, and inhibitors of p38 MAPK, MEK, or NF-kappaB suppressed IL-10 production in response to LPS and CyaA. However, inhibition of p38 MAPK, MEK, and NF-kappaB did not reverse the inhibitory effect of CyaA on TLR agonist-induced IL-12 production. Furthermore, CyaA suppression of IL-12 was independent of IL-10. In contrast, CyaA suppressed LPS- and IFN-gamma-induced IFN-regulatory factor-1 (IRF-1) and IRF-8 expression in DC. The modulatory effects of CyaA were dependent on adenylate cyclase activity and induction of intracellular cAMP, as an enzyme-inactive mutant of CyaA failed to modulate TLR-induced signaling in DC, whereas the effects of the wild-type toxin were mimicked by stimulation of the DC with PGE2. Our findings demonstrate that CyaA modulates TLR agonist-induced IL-10 and IL-12p70 production in DC by, respectively, enhancing MAPK phosphorylation and inhibiting IRF-1 and IRF-8 expression and that this is mediated by elevation of intercellular cAMP concentrations.  相似文献   

16.
The mechanisms by which CD40 controls the maturation and antigen presentation functions of dendritic cells (DC) remains largely undefined in this critical cell type. To examine this question, we have employed retroviral transduction of primary bone marrow-derived mouse DC. Mutation of the distinct binding sites for TNF receptor-associated factor 6 (TRAF6) and for TRAF 2, 3, and 5 in the CD40 cytoplasmic domain revealed their independent contributions to DC maturation and activation of NF-kappaB. In contrast, disruption of the TRAF6 but not the TRAF 2,3,5 binding site markedly decreased IL-12 p40 secretion along with p38 and JNK activation in response to CD154 stimulation. These data document a clear bifurcation of the CD40 signaling cascade in primary DC at the level of the receptor's two distinct and autonomous TRAF binding sites, and reveal the predominant role of the TRAF6 binding site in CD40-induced pro-inflammatory cytokine production by these cells.  相似文献   

17.
Monocyte-derived dendritic cells (DCs) differentiate in the presence of Toll-like-receptor (TLR) ligands in the course of ongoing infections. A single-stranded RNA (ssRNA) sequence, corresponding to the sequence of the U5 region of human immunodeficiency virus type 1 RNA, was used to mimic viral activation of TLR7 in human DCs. We determined the effector potential of DCs differentiated in the presence of this ssRNA molecule (ssRNA-DCs). ssRNA-DCs phenotypically resembled mature DCs. In contrast, their capacity to allostimulate naive CD4(+) T cells resembled that of conventional immature DCs and could be increased by TLR4 stimulation. Th1 polarization of CD4(+) T cells and production of interleukin 12p70 (IL-12p70) by ssRNA-DCs were selectively abrogated in response to a late TLR4, but not in response to a CD40, maturation signal. Inhibition of p38 mitogen-activated protein kinase partially restored IL-12p70 secretion but did not restore Th1 polarization, whereas addition of exogenous IL-12 led to recovery of Th1 polarization. In contrast to lipopolysaccharide, ssRNA induced IL-12p70 production at the very earliest stages of DC differentiation, indicating a particular role for TLR7 in monocyte-derived DCs recently engaged in differentiation. These data demonstrate generation of phenotypically mature DCs with the ability to expand CD4(+) T lymphocytes lacking Th1/2-polarizing capacity.  相似文献   

18.
Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (p < 0.05) on HLA-DP Glu69+ moDCs after 100 μM BeSO4-stimulation. BeSO4 induced p38MAPK phosphorylation, while IκB-α was degraded in Be-stimulated moDCs. The p38 MAPK inhibitor SB203580 blocked Be-induced NF-κB activation in moDCs, suggesting that p38MAPK and NF-κB are dependently activated by BeSO4. Furthermore, in BeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases.  相似文献   

19.
NKR-P2/NKG2D is the chief tumor recognition receptor of NK cells and some T cells, which recognizes stress inducible ligands on tumors and mediates cell activation. We have recently reported the involvement of NKR-P2 in rat dendritic cell (DC) activation. We demonstrate the potential of agonistic anti-NKR-P2 mAb (1A6), which mimics the NKR-P2 ligand and induces activation and maturation of DCs. Interaction of DCs with 1A6 enhances nitric oxide-mediated apoptosis in tumor cells. Cross-linking of NKR-P2 with mAb1A6 up-regulates MHC II, CD86, CD1a, antigen-presentation function and decreases endocytic activity of DC, thus drives DCs to play a pivotal role in adaptive immune responses. NKR-P2 cross-linking with 1A6 also induced the secretion of inflammatory cytokines, IL-1beta, tumor necrosis factor-alpha, IFN-gamma and IL-12 by DCs. Blocking of 1A6-mediated activation and maturation with inhibitors of PI3K, p38K and ERK1/2K suggests involvement of MAP kinase in signal transduction. 1A6 cross-linking activates nuclear factor kappa B, which acts as key executioner of DC activation. Administration of 1A6 antibody induces rapid regression and protective immune responses against transplantable tumors, suggesting mAb induced activation and maturation of DCs, leading to enhanced anti-tumor immune response.  相似文献   

20.
Activation of dendritic cells (DCs) by viruses is critical for both innate and adaptive immune responses. In this report, we investigated the role of type I interferon (IFN) in the activation of DCs by respiratory syncytial virus (RSV). Using DCs from type I IFNR-/- mice, these studies indicate that maturation, including upregulation of co-stimulatory molecules and optimal cytokine production, by RSV infection was dependent on type I IFN receptor signaling. Subsequently, studies using DCs from wild type mice demonstrate that continued production of type I IFN during later stages of DC maturation could alter their activation profiles. IFN-alpha and IFN-beta were upregulated in DCs grown from bone marrow of wild type mice after infection with RSV. In order to determine their function in competent DCs, blocking antibodies were used to specifically inhibit IFN-alpha/beta . The data demonstrate that production of IFN-beta, but not IFN-alpha, in RSV-infected wild type DCs promotes chemokine production and toll-like receptor (TLR) expression, while limiting IL-12 production. The inhibition of IL-12p70 by IFN-beta correlated with suppressed IL-12p40 expression levels. Furthermore, the addition of recombinant IFN-beta potently inhibited IL-12p40 expression in mature DC subsets during RSV infection, while only the highest dose of IFN-alpha had any inhibitory effect. Together, our studies provide insight into the complex regulation of DC maturation and IL-12 production co-ordinated by type I interferons in RSV-infected dendritic cells, and demonstrate that type I IFN has specific roles depending upon the stage of DC maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号