首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Polarized human type 1 and type 2 T helper cells not only produce different sets of cytokines, but they also preferentially express certain activation markers, such as lymphocyte activation gene-3 (LAG-3) and CD30, respectively. In this study we have examined the LAG-3 and CD30 expression in relation to the lineage commitment of human naive CD4+ T cells, as assessed at the single-cell level of committed T cells. Purified CD45RA+ umbilical cord blood T lymphocytes were activated with phytohemagglutinin and interleukin (IL)-2 in the absence or presence of interleukin IL-4 or IL-12 and assessed for CD30 and LAG-3 expression, as well as for intracellular cytokine synthesis. Significant numbers of CD30+ cells were only found in CD4+ and CD8+ T lymphocytes of cultures primed with IL-4, which developed into cells able to produce IL-4 and IL-13 in addition to interferon (IFN)-γ. By contrast, LAG-3 expression was strongly up-regulated in CD4+ and CD8+ T cells from cultures primed with IL-12, which developed into high numbers of IFN-γ producers. The addition of a neutralizing anti-IFN-γ antibody to IL-12-primed CD4+ T cell cultures virtually abolished the development of LAG-3-expressing CD4+ T cells. Taken together, these data suggest that CD30 expression is dependent on the presence of IL-4, whereas LAG-3 expression is dependent on the production of IFN-γ during the lineage commitment of human naive T cells.  相似文献   

2.
T regulatory type 1 (Tr1) cells can promote tolerance and suppress inflammation. Atherosclerosis may be induced by the proinflammatory activation of cells in the vasculature and the immune system. Hence, we wondered whether defects in Tr1 function were a contributing factor to coronary artery disease (CAD). Data showed that the frequency of IL-10+ Tr1 cells was significantly lower in CAD patients than in controls. Compared to healthy controls, Tr1 cells from CAD patients presented lower CTLA-4 but higher PD-1 expression, in addition to lower IL-10 secretion. When co-incubated with Tconv cells, the CD4+CD49b+LAG-3+CD45RO+ Tr1 cells presented IL-10-dependent inhibitory effects, and those from CAD patients presented significantly lower suppression capacity than those from healthy controls. Interestingly, the characteristics of Tr1 cells were associated with clinical features of CAD patients. The frequency of Tr1 cells and the IL-10 and LAG-3 expression by Tr1 cells were negatively correlated with the BMI of the CAD patients. In addition, the Tr1 frequency and the LAG-3 and CTLA-4 expression on Tr1 cells were lower in CAD patients with higher numbers of narrowed vessels. Together, these results suggest that in CAD, Tr1 cells present multiple defects, which are associated with the clinical presentation of the disease.  相似文献   

3.
T cell response to its antigen requires recognition by the T cell receptor together with a co-receptor molecule, either CD4 or CD8. Additional molecules have been identified that are capable of delivering the co-stimulatory signals provided by APC. Following T cell priming, a number of T cell activation antigens are expressed that may play a role in the inactivation phase of the T cell response. The lymphocyte activation gene (LAG)-3 protein and its counter-receptors, the major histocompatibility complex (MHC) class II molecules, are such activation antigens whose interaction may result in the down-regulation of the ongoing immune response. To investigate the role of LAG-3/class II molecule interaction, we produced a soluble form of LAG-3 by fusing the extracellular Ig domains of this membrane protein to the constant region of human IgG1 (LAG-31g). Here, we show a direct and specific binding of LAG-3Ig to class II molecules on the cell surface. In addition, we show that LAG-3/class II molecule interaction leads to the down-regulation of CD4+ Ag-specific T cell clone proliferation and cytokine secretion. This inhibitory effect is observed at the level of the effector cells and not the APC and is also found with anti-CD3 mAb, PHA + PMA or low-dose IL-2 driven stimulation in the absence of APC. These functional studies indicate that T cell MHC class II molecules down-regulate T cell proliferation following LAG-3 binding and suggest a role for LAG-3 in the control of the CD4+ T cell response.  相似文献   

4.
In severe respiratory virus infections, including influenza, an exaggerated host immune response has been linked to the severe disease and death. Control of the overwhelming immune response is thus essential. Efforts with broad-spectrum immunosuppressive agents such as steroids are disappointing. A better understanding of host immune response using animal experimental system is required to avoid undesired outcome of experimental manipulation. Following severe influenza virus infection in influenza hemagglutinin antigen-specific transgenic mouse experimental model, step-wise evolving cells from a pool of naïve hemagglutinin-specific CD4+ T cells were studied for phenotypic, genomic, and functional characterization in vivo. Naïve CD4+ T cells respond with Th1 commitment in the absolute majority. They first develop into LAG-3MedIFN-γ-secreting Th1 effectors and then evolve into LAG-3HighIFN-γ-not-secreting regulators with increasing LAG-3 expression upon continuous activation and cell division. The LAG-3MedIFN-γ-secreting effectors contribute to inflammation, boost inflammatory response of cognate antigen-specific CD8+ T cells, and aggravate the disease despite facilitated virus clearance. In contrast, LAG-3High regulators do not contribute to inflammation, suppress CD8+ T cell inflammatory response, alleviate lung pathology, and ameliorate the disease with preserved virus clearance. Moderated CD8+ T cells retain proliferative capacity, and persist beyond virus clearance. Such moderation is distinct from Foxp-3+ regulator-mediated suppression, which suppresses proliferative and inflammatory responses of the CD8+ T cells and impairs virus clearance with inflammation alleviation. Origin of regulatory from the effector cells of LAG-3-marked Th1 immunity alleviates lung inflammation without impairment of virus eradication.  相似文献   

5.

Background

Surgery has been reported to suppress cell-mediated immunity; however, the detailed mechanisms responsible for this remain unclear. This study determined the expression of lymphocyte activation gene 3 (LAG-3) and programmed cell death 1 (PD-1) in lymphocytes following surgery for gastric cancer.

Methods

LAG-3 and PD-1 expression on both CD4+ and CD8+ T cells obtained pre- and post-operatively from gastric cancer patients were evaluated by multicolor flow cytometry.

Results

The total lymphocyte count decreased rapidly from preoperative levels, reaching a minimum on postoperative day 1 and remaining significantly decreased on days 3 and 7. PD-1+CD4+ T cells significantly increased, reaching a maximum on postoperative day 1 and remaining significantly elevated on day 3. PD-1+CD8+ T cells significantly increased and reached a maximum on day 7 before returning to the preoperative level on day 30. There were no statistically significant differences in the frequency of LAG-3+CD4+ or LAG-3+CD8+ T cells after surgery. There were significant positive correlations between PD-1 and LAG-3 expression on both CD4+ andCD8+ T cells.

Conclusion

PD-1 and LAG-3 expression on both CD4+ and CD8+ T cells was up-regulated and might be related to impaired cell-mediated immunity after surgery for gastric cancer.  相似文献   

6.
Immune suppression plays critical roles in the development of chronic osteomyelitis, and the mechanisms underlying the development of immune suppression in chronic osteomyelitis have attracted much attention. LAG-3 is an important suppressor of T cell activation, but the role of LAG-3 in the immune regulation of chronic osteomyelitis is currently unknown. We sought to demonstrate if LAG-3 plays crucial roles in chronic osteomyelitis progression and has effects on immune suppression and exhausting of T cells, and what is the mechanism underlying LAG-3 deregulation in chronic osteomyelitis. We examined the expression of LAG-3 in the T cells of peripheral blood of 50 healthy controls and 50 patients with chronic osteomyelitis by flow cytometry. Clinical data were analyzed to determine the correlation between inflammation index and LAG-3 expression. Moreover, we isolated the CD4+ T cells from healthy controls and chronic osteomyelitis patients to compare cell proliferation and IFN-γ production. Chromatin immunoprecipitation assays were utilized to analyze the epigenetic modification on LAG-3 expression in T cells. We found that LAG-3 was significantly increased in the T cells of peripheral blood from chronic osteomyelitis patients. Subsequently, clinical data analysis suggested that the higher expression of LAG-3 was associated with severer inflammation situation. Consistently, LAG-3+CD4+ T cells exhibited impaired cell proliferation and IFN-γ secretion. Deregulation of histone methylation mediated the increase of LAG-3+ T cells during chronic osteomyelitis. Taken together, our study demonstrates the increase of LAG-3+ T cells and its immune regulatory roles in chronic osteomyelitis progression, suggesting new mechanisms and potential therapeutic targets for chronic osteomyelitis.  相似文献   

7.
8.
The activation requirements for antigen-dependent proliferation of CD4+ T cells are well documented, while the events leading to the inactivation phase are poorly understood. Here, we tested the hypothesis that the lymphocyte-activation gene 3 (LAG-3), a second major histocompatibility complex (MHC) class II ligand, plays a regulatory role in CD4+ T lymphocyte activation. CD4+ class II-restricted T cell clones were stimulated by their relevant antigen (hemagglutinin peptide or diphteria toxoid) and antigen-presenting cells with or without anti-LAG-3 monoclonal antibody (mAb). Kinetic studies were performed to monitor different activation parameters, including the measurement of thymidine incorporation, expression of activation antigens and cytokine secretion. Results showed that the time course from the initial time points up to the peak time point was not modified in the presence of anti-LAG-3 mAb. However, addition of these antibodies, either as whole IgG or as Fab fragments, led to increased thymidine incorporation values for late time points and, hence, to a shift in the decreasing proliferation curve. We also showed that expression of activation antigens, such as CD25, was higher in the presence of anti-LAG-3 mAb, and that cytokine concentrations, i.e. of interferon-γ or interleukin-4, were higher in the corresponding culture supernatants. In addition, we tested whether the effects of anti-LAG-3 mAb were limited to antigen-dependent. MHC class II-restricted responses. The proliferative responses of CD4+ T cell clones following stimulation with either interleukin-2, mitogens, a combination of anti-CD2 mAb, immobilized anti-CD3 or anti-T cell receptor mAb were not altered by anti-LAG-3 mAb. The allogeneic proliferative response of a CD8+ T cell clone was also not affected. Overall, the present analysis reveals a modulating effect of anti-LAG-3 mAb, mediated specifically on antigen-dependent, MHC class II-restricted responses of CD4+ T cell lines. These results support the view that LAG-3/MHC class II interaction down-regulates antigen-dependent stimulation of CD4+ T lymphocytes.  相似文献   

9.
10.
Immune checkpoint inhibitors (antibodies that block the T cell co-inhibitory receptors PD-1/PD-L1 or CTLA-4) have revolutionized the treatment of some forms of cancer. Importantly, combination approaches using drugs that target both pathways have been shown to boost the efficacy of such treatments. Subsequently, several other T cell inhibitory receptors have been identified for the development of novel immune checkpoint inhibitors. Included in this list is the co-inhibitory receptor lymphocyte activation gene-3 (LAG-3), which is upregulated on T cells extracted from tumor sites that have suppressive or exhausted phenotypes. However, the molecular rules that govern the function of LAG-3 are still not understood. Using surface plasmon resonance combined with a novel bead-based assay (AlphaScreenTM), we demonstrate that LAG-3 can directly and specifically interact with intact human leukocyte antigen class II (HLA-II) heterodimers. Unlike the homologue CD4, which has an immeasurably weak affinity using these biophysical approaches, LAG-3 binds with low micromolar affinity. We further validated the interaction at the cell surface by staining LAG-3+ cells with pHLA-II-multimers. These data provide new insights into the mechanism by which LAG-3 initiates T cell inhibition.  相似文献   

11.
CD4+CD25+ forkhead box P3 (FoxP3)+regulatory T (Treg) cells are generated and play a key role in the induction and maintenance of transplant tolerance in organ recipients. It has been proposed that interleukin (IL)-2/IL-2 receptor (IL-2R) signalling was essential for the development and proliferation of antigen-activated T cells that included both effector T cells and Treg cells. Basiliximab (Simulect™), a chimeric monoclonal antibody directed against the α-chain of the IL-2R (CD25), can be expected to not only affect alloreactive effector T cells, but also reduce the number and function of Treg cells. We therefore examined the effect of basiliximab induction therapy on the number and function of the Treg cells in renal recipients. Basiliximab decreased the percentage of CD4+CD25+T cells, but failed to influence the percentage of CD4+FoxP3+ Treg cells. The cellular CD25 expression was decreased significantly by basiliximab injection, but CD4+CD25+ T cells was not depleted from the circulating pool through monoclonal antibody activation-associated apoptosis. Functional analysis revealed that inhibitory function of Treg cells from recipients with basiliximab injection was not significantly different from recipients without injection. These data indicate that the functional Treg population may not be influenced by short-term basiliximab treatment.  相似文献   

12.
Low Foxp3+ regulatory T-cell (Treg) presence in the tumor-infiltrating lymphocytes (TILs) is considered favorable in breast cancer, and numerous CD25-targeting agents have been applied in the attempt to remove Foxp3+ Treg cells, which typically present CD4+CD25+/hi surface phenotype. However, CD25 is not Treg-exclusive and can be upregulated by effector T cells. Hence, CD25 depletion may cause the elimination of activated T cells that are responding to tumor-specific antigens. In this study, the composition and function of CD4+CD25+ cells inside the microenvironment of triple-negative breast carcinoma (TNBC) were investigated. Directly ex vivo, the Foxp3+ Treg cells represented a minor subset in total CD4+CD25+ TILs. Significant differences were observed in the expression of Treg-associated molecules between CD4+CD25+Foxp3+ TILs and CD4+CD25+Foxp3 TILs. While both the CD4+CD25+Foxp3+ and the CD4+CD25+Foxp3 TILs could express CTLA-4 and LAG-3, the expression levels were significantly higher in CD4+CD25+Foxp3+ TILs than in CD4+CD25+Foxp3 TILs. Upon TCR stimulation, the expression of TGF-beta was significantly higher in CD4+CD25+Foxp3+ TILs, while the expression of IL-10 was significantly higher in CD4+CD25+Foxp3 TILs. These differences were conserved in the blood counterparts of these cells. Interestingly, the level of CD25+Foxp3+ cells in circulating CD4+ T cells was positively correlated with the level of CD25+Foxp3+ cells in CD4+ TILs, but the level of CD25+Foxp3 cells in circulating CD4+ T cells was not associated with the level of CD25+Foxp3- cells in CD4+ TILs. Th17-polarizing medium could readily remodel CD4+CD25+Foxp3, but not CD4+CD25+Foxp3+, T cells into RORgammat and IL-17-expressing T cells, demonstrating stronger plasticity of the former subset. Together, these data demonstrated that the CD4+CD25+ TILs were composed of distinctive Foxp3 and Foxp3+ cells, with the former representing the major subset. The antigen specificity and effector molecule expression of the CD4+CD25+Foxp3 thus require further analyses.  相似文献   

13.
CD4+8? or CD4?8+ thymocytes have been regarded as direct progenitors of peripheral T cells. However, recently, we have found a novel NK1.1+ subpopulation with skewed T cell antigen receptor (TcR) Vβ family among heat-stable antigen negative (HSA?) CD4+8? thymocytes. In the present study, we show that these NK1.1+ CD4+8? thymocytes, which represent a different lineage from the major NK1.1? CD4+8? thymocytes or CD4+ lymph node T cells, vigorously secrete interleukin (IL)-4 and interfron (IFN)-γ upon stimulation with immobilized anti-TcR-αβ antibody. On the other hand, neither NK1.1? CD4+8?thymocytes nor CD4+ lymph node T cells produced substantial amounts of these lymphokines. A similar pattern of lymphokine secretion was observed with the NK1.1+ CD4+ T cells obtained from bone marrow. The present findings elucidate the recent observations that HSA? CD4+8? thymocytes secrete a variety of lymphokines including IFN-γ, IL-4, IL-5 and IL-10 before the CD4+8? thymocytes are exported from thymus. Our evidence indicates that NK1.1+ CD4+8? thymocytes are totally responsible for the specific lymphokine secretions observed in the HSA- CD4+8? thymocytes.  相似文献   

14.
15.
《Mucosal immunology》2014,7(2):428-439
Although elevated CD4+Foxp3+ regulatory T cell (Treg) frequencies within tumors are well documented, the functional and phenotypic characteristics of CD4+Foxp3+ and CD4+Foxp3 T cell subsets from matched blood, healthy colon, and colorectal cancer require in-depth investigation. Flow cytometry revealed that the majority of intratumoral CD4+Foxp3+ T cells (Tregs) were Helios+ and expressed higher levels of cytotoxic T-lymphocyte antigen 4 (CTLA-4) and CD39 than Tregs from colon and blood. Moreover, ∼30% of intratumoral CD4+Foxp3 T cells expressed markers associated with regulatory functions, including latency-associated peptide (LAP), lymphocyte activation gene-3 (LAG-3), and CD25. This unique population of cells produced interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), and was ∼50-fold more suppressive than Foxp3+ Tregs. Thus, intratumoral Tregs are diverse, posing multiple obstacles to immunotherapeutic intervention in colorectal malignancies.  相似文献   

16.
17.
《Autoimmunity reviews》2022,21(6):103085
Regulatory T cells (Tregs) comprise a CD4+CD25+Foxp3+ T cell subset for maintaining immune tolerance, and their deficits and/or dysfunction are observed in autoimmune diseases. The lymphocyte activation gene 3 (LAG-3, also known as CD223), which is an immunoglobulin superfamily member expressed on peripheral immune cells, is recognized as an inhibitory regulator of Tregs. LAG-3+ T cells represent a novel protective Tregs subset that produces interleukin-10. Alterations in LAG-3+ Tregs have been reported in several autoimmune diseases, suggesting their potential pathogenic role. Recent studies have indicated that LAG-3+ Tregs may be associated not only with immunopathology but also with response to therapy in several autoimmune and autoinflammatory diseases, such as rheumatoid arthritis, psoriasis, psoriatic arthritis and others. We present a review of Tregs phenotypes and functions, with a focus on LAG-3+ Tregs, and discuss their potential role as biomarkers for treatment response in autoimmune diseases.  相似文献   

18.
CD4+CD25+ regulatory T cells (Treg), if properly expanded from umbilical cord blood (UCB), may provide a promising immunotherapeutic tool. Our previous data demonstrated that UCB CD4+CD25+ T cells with 4-day stimulation have comparable phenotypes and suppressive function to that of adult peripheral blood (APB) CD4+CD25+ T cells. We further examined whether 2-week culture would achieve higher expansion levels of Tregs. UCB CD4+CD25+ T cells and their APB counterparts were stimulated with anti-CD3/anti-CD28 in the presence of IL-2 or IL-15 for 2 weeks. The cell proliferation and forkhead box P3 (FoxP3) expression were examined. The function of the expanded cells was then investigated by suppressive assay. IL-21 was applied to study whether it counteracts the function of UCB and APB CD4+CD25+ T cells. The results indicate that UCB CD4+CD25+ T cells expanded much better than their APB counterparts. IL-2 was superior to expand UCB and APB Tregs for 2 weeks than IL-15. FoxP3 expression which peaked on Day 10–14 was comparable. Most importantly, expanded UCB Tregs showed greater suppressive function in allogeneic mixed lymphocyte reaction. The addition of IL-21, however, counteracted the suppressive function of expanded UCB and APB Tregs. The results support using UCB as a source of Treg cells.  相似文献   

19.
1 α, 25-dihydroxyvitamin D3 (VitD3) has been suggested to have strong modulatory properties in the immune system. Researchers in the present study primarily aimed to understand the effect of VitD3 on human CD4+ T cell proliferation in antigen presenting cells (APCs) free condition in vitro. The effect of VitD3 on intracellular cytokine responses trend to Th1, Th2, Th17 and Th22 was evaluated using the flow cytometry. Moreover the effect of VitD3 on the expression of inhibitory markers such as PD1, PD-L1, and CTLA4 which are induced upon polyclonal T cell receptor (TCR) activation on CD4+ T cells, was assessed. We observed that the stimulation of CD4+ T cells with VitD3, suppressed proliferation capacity, enhanced the expression of PD1, PD-L1 and CTLA4 inhibitory markers on CD4+ T cells, and diminished the percentage of pro-inflammatory cytokines including, IFN-γ, IL-17, and IL-22 except IL-4 in CD4+ T cells. The data suggested a potential insight into the consideration of VitD3 in the prevention/control of pro-inflammatory immune response/autoimmune disorders.  相似文献   

20.
CD3+ T cells expressing the 110-kDa CD57 antigen are found in survivors of renal, cardiac and bone marrow transplants, in patients with acquired immune deficiency syndrome and in patients with rheumatoid arthritis. They are also present in normal individuals and expand upon ageing. They do not grow in culture and their role in the immune response is poorly understood. The expression of the various isoforms of the leukocyte common antigen (CD45) identifies a spectrum of differentiation in CD4+ and CD8+ T cells ranging from naive (CD45RA+CD45RBbrightCD45RO?) through early primed cells (CD45RA?RBbrightROdull) to highly differentiated memory cells which are CD45RA?RBdullRObright. CD45 isoforms expressed by CD57+ T cells showed distinct differences between CD4+ and CD8+ populations, but in each case indicated an advanced state of differentiation. The expression of T cell receptor Vβ families was highly variable between individuals, but both CD57+ and CD57? cells show a full range of the specificities tested. Vβ expression was more closely related within either the CD4+ or the CD8+ subsets, irrespective of CD57 expression, than between these subsets, suggesting a relationship between CD57+ and CD57? cells within the same T cell pool. This possibility was supported by experiments showing that CD3+CD57+ lymphocytes were similar to CD3+CD57? T cells in terms of the production of basic T cell cytokines [interleukin (IL)-2, IL-4, and interferon-γ]. Furthermore, in vitro stimulation of CD3+CD57? T cells in secondary mixed leukocyte reaction or by co-culture with IL-2 and IL-4 induced the appearance of CD3+CD57+ cells with phenotypic and functional similarities to in vivo CD3+CD57+ cells. These data strongly suggest that the expression of CD57 is a differentiation event which occurs on CD57? T cells late in the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号