首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied a series of test conditions in a microtiter system to define the optimal method for determining the susceptibility of Cryptococcus neoformans to antifungal agents. Twenty-one isolates of C. neoformans were grown for 24 or 48 h in four chemically defined media: yeast nitrogen base (BYNB 7); RPMI 1640; synthetic amino acid medium--fungal (SAAMF), buffered at pH 7.0 to select the medium that best supported growth of this fastidious yeast; and yeast nitrogen base, pH 5.4 (YNB 5.4). Maximum growth of C. neoformans, at 35 degrees C, was obtained in YNB 5.4, with the next highest growth levels in BYNB 7, SAAMF, and RPMI. Growth at 24 h was uniformly poor in all media and lacked reproducibility. In contrast, incubation for 48 h gave adequate growth with low standard deviations, and 48 h was selected as the optimal incubation period for this study. Comparison of the relationship between growth kinetics and initial inoculum size for eight cryptococcal isolates showed that 10(4) cells per ml yielded optimal growth in BYNB 7 and YNB 5.4, whereas 10(5) cells per ml was optimal in RPMI and SAAMF. Furthermore, variation of inocula from 10(3) to 10(5) cells per ml showed small but significant inoculum effects in determining MICs of fluconazole, amphotericin B, and flucytosine for C. neoformans. Therefore, 10(4) cells per ml was chosen as the optimal inoculum for susceptibility testing in this study. Mean MICs of fluconazole, amphotericin B, and flucytosine for 21 crytococcal isolates in RPMI and BYNB 7 were low (for example, fluconazole had mean MICs of 1.2 and 1.3 micrograms/ml in RPMI and BYNB 7, respectively) and differed significantly from medium to medium. In contrast, the MICs obtained in SAAMF were significantly higher (e.g., fluconazole had a mean MIC of 2.2 micrograms/ml). Variance in MICs was large with fluconazole and flucytosine but small with amphotericin B, irrespective of the medium used. A microtiter system employing BYNB 7 as the medium, 48 h as the incubation period, and 10(4) cells per ml as the final inoculum is a simple, accurate, and reproducible method for the testing of C. neoformans susceptibility to fluconazole, amphotericin B, and flucytosine.  相似文献   

2.
Although hyphae are the morphological form observed in tissue during invasive Aspergillus fumigatus infections, antifungal susceptibility testing for A. fumigatus utilizes conidial inocula. Previous studies have yielded conflicting results as to whether conidia adequately reflect antifungal susceptibility of hyphae, but the ease of handling and quantification of conidia have prompted their use in such assays. The mold rapid susceptibility assay, which utilizes a conidial inoculum (cRSA), was adapted as a novel method to assess the utility of conidial versus hyphal inocula (hRSA) to further evaluate the susceptibility of A. fumigatus conidia and hyphae to amphotericin B (AMB), itraconazole (ITC), and voriconazole (VRC). Conidial inocula were prepared as previously described for the cRSA and minimum inhibitory values (MIC) were determined. For the hRSA, microtiter test wells lacking antifungal drug were inoculated with a standardized conidial inoculum and incubated for 12 h at 35-37 degrees C to allow formation of hyphae. Following addition of antifungal drug and 48 h incubation at 35-37 degrees C, hRSA antifungal minimum inhibitory concentration (MIC) values were determined by analysing the pattern of residual glucose levels in hRSA test wells. hRSA MIC values of each strain were influenced by hyphal inoculum size, with increasing hyphal inoculum size corresponding to increased AMB, ITC and VRC MIC values. Comparisons between the hRSA and cRSA MIC values demonstrated insignificant differences in conidial and hyphal susceptibility to drug, thus justifying the use of either fungal form in RSA-based susceptibility testing of A. fumigatus isolates. The RSA may be adapted for use of similar testing of other invasive molds that predominate as hyphal forms in tissue.  相似文献   

3.
Standardized, evenly dispersed hyphal suspensions served as the inoculum in a microtiter technique for amphotericin B antifungal susceptibility testing. Preliminary testing with six strains of Aspergillus fumigatus and A. flavus produced consistent and reproducible results at 30 degrees C over 24 h. The observed amphotericin B MICs required for hyphae (0.3 to 0.6 microgram/ml) were comparable to MICs required for conidia (0.16 to 0.6 microgram/ml). The results were evaluated and compared with previously published information.  相似文献   

4.
The influence of several test variables on susceptibility testing of Aspergillus spp. was assessed. A collection of 28 clinical isolates was tested against amphotericin B, itraconazole, voriconazole, and terbinafine. Inoculum size (10(4) CFU/ml versus 10(5) CFU/ml) and glucose supplementation (0.2% versus 2%) did not have significant effects on antifungal susceptibility testing results and higher inoculum size and glucose concentration did not falsely elevate MICs. In addition, antifungal susceptibility testing procedure with an inoculum size of 10(5) CFU/ml distinctly differentiated amphotericin B or itraconazole-resistant Aspergillus strains in vivo from the susceptible ones. Time of incubation significantly affected the final values of MICs, showing major increases (two to six twofold dilutions, P < 0.01 by analysis of variance) between MIC readings at 24 and 48 h, but no differences were observed between antifungal susceptibility testing results obtained at 48 h and at 72 h. Significantly higher MICs were uniformly associated with higher concentrations of Tween (P < 0.01), used as a dispersing agent in the preparation of inoculum suspensions. The geometric mean MICs showed increases of between 1.5- and 10-fold when the Tween concentration varied from 0.1% (the geometric means for amphotericin B, itraconazole, voriconazole, and terbinafine were 1.29, 0.69, 1.06, and 0.64 mug/ml, respectively) to 5% (the geometric means for amphotericin B, itraconazole, voriconazole, and terbinafine were 1.97, 5.79, 1.60, and 4.66 mug/ml, respectively). The inhibitory effect of Tween was clearly increased with inoculum sizes of 10(5) CFU/ml and was particularly dramatic for itraconazole, terbinafine, and Aspergillus terreus. The inoculum effect was not observed when the Tween concentration was below 0.5% (P > 0.01).  相似文献   

5.
To improve objectivity and speed of current antifungal mold susceptibility testing, the yeast Rapid Susceptibility Assay (RSA) was adapted for Aspergillus species. The RSA is based on glucose utilization in the presence of an antifungal drug. Aspergillus fumigatus conidia were incubated in 0.2% glucose RPMI 1640 containing 0.03 to 16 micro g of amphotericin B or itraconazole/ml. Drug-related inhibition of glucose utilization correlated with suppression of conidial germination. Following incubation of conidia with various concentrations of antifungal drug, the percentage of residual glucose in the growth medium was determined colorimetrically and plotted against drug concentration to determine the MIC (MIC(RSA)). National Committee for Clinical Laboratory Standards (NCCLS) M38-P testing was also performed to obtain NCCLS MICs (MIC(NCCLS)) for direct comparison with MIC(RSA)s. Conidial inocula of an optical density at 530 nm (OD(530)) of 0.11 facilitated determination of amphotericin B and itraconazole MIC(RSA)s at 16 h equal to or within a single twofold dilution of MIC(NCCLS)s obtained at 48 h. Preliminary testing with a 0.11-OD(530) conidial inoculum of the slower-growing Aspergillus terreus resulted in itraconazole and amphotericin B MIC(RSA)s at 16 h equal to or within a single twofold dilution of MIC(NCCLS)s obtained at 48 h. These data indicate that the mold RSA provides a more objective and rapid method for Aspergillus spp. susceptibility testing than the NCCLS M38-P assay.  相似文献   

6.
We evaluated a new microtiter assay for antifungal susceptibility testing based on a colorimetric reaction to monitor fungal substrate utilization. This new method (rapid susceptibility assay [RSA]) provides quantitative endpoint readings in less than 8 h compared with visual determination of MIC by the National Committee for Clinical Laboratory Standards (NCCLS) broth microdilution method, which requires a minimum of 48 h of incubation. In this study, we tested clinical isolates from each of the following species: Candida albicans (20 isolates), C. glabrata (20 isolates), C. krusei (19 isolates), C. tropicalis (19 isolates), and C. parapsilosis (28 isolates). RSA and NCCLS broth dilution methods were used to determine the MICs of amphotericin B, fluconazole, itraconazole, and 5-flucytosine for all 106 isolates. RPMI 1640 medium buffered with morpholinopropanesulfonic acid was used for both methods; however, glucose and inoculum concentrations in the RSA were modified. RSA MICs were determined as the lowest drug concentration that prevented glucose consumption by the organism after 6 h of incubation. MICs obtained from the RSA were compared with those obtained from the NCCLS M-27A method read at 24 and 48 h. MIC pairs were considered in agreement when the difference between the pairs was within 2 twofold dilutions. For the 106 isolates tested, amphotericin B and 5-flucytosine demonstrated the highest agreement in MICs between the two methods (100 and 98%, respectively), whereas fluconazole and itraconazole produced less favorable MIC agreement (63.2 and 61.3%, respectively). The azole MIC differences between the two methods were significantly reduced when lower inocula were used with a prolonged incubation time. This preliminary comparison suggests that this rapid procedure may be a reliable tool for the in vitro determination of MICs of amphotericin B and 5-flucytosine and warrants further evaluation.  相似文献   

7.
One hundred clinical isolates of Sporothrix schenckii were tested against voriconazole, itraconazole and amphotericin B using a modification of the NCCLS M27-A in vitro yeast susceptibility testing procedure. NCCLS M38-P for moulds was not used because yeast forms may have been present when the test isolates were incubated at 35 +/- 1 degrees C. The minimum inhibitory concentration (MIC) values were: voriconazole 0.5-8 (geometric mean titer 6.50) microg ml(-1) ; itraconazole 0.03-8 (geometric mean titer 1.56) microg ml(-1); and amphotericin B 0.25-2 (geometric mean titer 1.23) microg ml(-1). The minimum fungicidal concentration (MFC) values were: voriconazole 2-8 (geometric mean titer 7.67) microg ml(-1); itraconazole 0.125-8 (geometric mean titer 7.41) microg ml(-1); and amphotericin B 0.125-2 (geometric mean titer 1.53) microg ml(-1). Based upon MIC values, sensitivity to amphotericin B is strain-dependent. S. schenckii is more sensitive to itraconazole than voriconazole based upon a comparison of MIC geometric means, even though the MIC ranges were essentially the same.  相似文献   

8.
A standardized agar dilution susceptibility testing method was developed for Campylobacter that consisted of testing on Mueller-Hinton medium supplemented with 5% defibrinated sheep blood in an atmosphere of 10% CO2, 5% O2, and 85% N2. Campylobacter jejuni ATCC 33560 was identified as a quality-control (QC) strain. Minimal inhibitory concentration (MIC) QC ranges were determined for two incubation time/temperature combinations: 36 degrees C for 48 hr and 42 degrees C for 24 hr. Quality-control ranges were determined for ciprofloxacin, doxycycline, erythromycin, gentamicin, and meropenem. For all antimicrobial agents tested at both temperatures, 95-100% of the QC MIC results fell within recommended QC ranges. Twenty-one Campylobacter clinical isolates, encompassing five species of Campylobacter (C. jejuni, C. coli, C. jejuni, subsp. doylei, C. fetus, and C. lari) were tested in conjunction with the C. jejuni QC strain. While C. jejuni and C. coli could be reliably tested under both test conditions, growth of C. jejuni subsp. doylei, C. fetus, and C. lari isolates was inconsistent when incubated at 42 degrees C. Therefore, it is recommended that these species only be tested at 36 degrees C.  相似文献   

9.
The NCCLS reference methodology for antifungal susceptibility testing is a new milestone of the evolution of medical mycology. The use of this methodology however, is not problem-free. At present, major limitations are a trailing phenomenon with azoles, unreliable detection of resistance to amphotericin B, poor growth of some organisms and unpractical procedures for the clinical laboratory. Herein a overview of NCCLS guidelines for yeasts and filamentous fungi is presented. Likewise, a review of studies conducted trying to overcome the limitations of reference procedures is also included. Several alternative approaches are reviewed as alternative media, inoculum size and incubation time. Modifications of reading procedure and endpoint determination are also evaluated. Agar diffusion methods and other methods for susceptibility testing are cited. Finally, we discuss the data on correlation of the in vitro results with the in vivo activity.  相似文献   

10.
A collaborative comparison of macro- and microdilution antifungal susceptibility tests was performed in five laboratories. MICs of amphotericin B, fluconazole, flucytosine, and ketoconazole were determined in all five centers against 95 coded isolates of Candida spp., Cryptococcus neoformans, and Torulopsis glabrata. A standard protocol with the following National Committee for Clinical Laboratory Standards Subcommittee on Antifungal Susceptibility Testing recommendations was used: an inoculum standardized by spectrophotometer, buffered (RPMI 1640) medium (pH 7.0), incubation at 35 degrees C, and an additive drug dilution procedure. Two inoculum sizes were tested (1 x 10(4) to 5 x 10(3) to 2.5 x 10(3) CFU/ml) and three scoring criteria were evaluated for MIC endpoint determinations, which were scored as 0 (optically clear), < or = 1 (slightly hazy turbidity), and < or = 2 (prominent decrease in turbidity compared with that of the growth control). Overall intra- and interlaboratory reproducibility was optimal with the low-density inoculum, the second-day readings, and MICs scored as either 1 or 2. The microdilution MICs demonstrated interlaboratory agreement with most of the four drugs higher than or similar to that of the macrodilution MICs. In general, there was good interlaboratory agreement with amphotericin B, fluconazole, and flucytosine; ketoconazole gave more variable results.  相似文献   

11.
We compared relative recoveries of Bordetella pertussis from simulated nasopharyngeal (NP) specimens incubated in three separate transport media at different temperatures. Transport media included one-half-strength Regan-Lowe (RL.5), Regan-Lowe with one-half-strength agar (RL.5A), and buffered charcoal-yeast extract agar supplemented with alpha-ketoglutarate, lincomycin, and anisomycin (BCYE alpha LA). For each transport medium, recovery of B. pertussis was least efficient after storage at 25 degrees C. The highest recovery of B. pertussis from a mixed culture was achieved with RL.5 at 4 degrees C. Overall, RL.5 and RL.5A were comparable as transport media whether held at 4 or 25 degrees C, but fewer organisms were recovered from BCYE alpha LA. In addition, Regan-Lowe (RL), Bordet-Gengou, and cyclodextrin media were compared as primary isolation media for recovering B. pertussis from simulated NP swabs held at 4 and 35 degrees C in RL.5 medium. The highest recovery of B. pertussis was obtained on RL primary isolation medium. Bordet-Gengou medium recovered only 80% and cyclodextrin medium recovered less than 60% of the numbers recovered on RL medium. Based on these results, refrigeration (4 degrees C) of NP swabs shipped in RL.5 transport medium and using RL as the primary isolation medium are recommended for recovering B. pertussis from swab specimens.  相似文献   

12.
The performance of the Etest for voriconazole and amphotericin B susceptibility testing of 162 isolates of Cryptococcus neoformans was assessed against the National Committee for Clinical Laboratory Standards (NCCLS) broth microdilution method. The NCCLS method employed RPMI 1640 broth medium, and MICs were read after incubation for 72 h at 35 degrees C. MICs were determined by Etest for all 162 isolates with RPMI 1640 agar containing 2% glucose (RPG agar) and were read after incubation for 72 h at 35 degrees C. The Etest results for both voriconazole and amphotericin B correlated well with reference MICs. Agreement was 94% for voriconazole and 99% for amphotericin B. When discrepancy was noted between the results obtained by Etest and broth microdilution for voriconazole, the Etest generally provided a higher MIC. The Etest method using RPG agar appears to be a useful method for determining the susceptibility of C. neoformans to voriconazole and amphotericin B.  相似文献   

13.
The influences of inoculum size and glucose supplementation on the growth kinetics of 60 Candida spp. clinical isolates (Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata, Candida krusei, and Candida lusitaniae [10 isolates each]) are assessed. The combined influence of growth and reading method (visual or spectrophotometric) on the determination of the MICs of amphotericin B, flucytosine, fluconazole, itraconazole, ketoconazole, and voriconazole is also analyzed, and the MICs are compared with those determined by the National Committee for Clinical Laboratory Standards standard microdilution method (NCCLS document M27-A). Glucose supplementation and inoculum size had a significant influence on the growth cycles of these yeasts, and a statistically significant denser growth (optical density at 540 nm) was seen for both incubation periods, 24 and 48 h (P < 0.01). A longer exponential phase and shorter lag phase were also observed. The A540 values at 24 h of incubation with medium containing glucose and an inoculum of 10(5) CFU/ml were >0.4 U for all species, with the exception of that for C. parapsilosis (A540 = 0.26 +/- 0.025). The MICs at 24 h determined by testing with 2% glucose and an inoculum of 10(5) CFU/ml showed the strongest agreement (96.83%) with MICs determined by the reference method. MICs were not falsely elevated, and good correlation indexes were obtained. The reproducibility of results with this medium-inoculum combination was high (intraclass correlation coefficient, 0.955). The best agreement and reproducibility of results for spectrophotometric readings were achieved with endpoints of 50% growth inhibition for flucytosine and azoles and 95% for amphotericin B. Supplementation of test media with glucose and an inoculum size of 10(5) CFU/ml yielded a reproducible technique that shows elevated agreement with the reference procedures and a shorter incubation period for obtaining reliable MIC determinations. The spectrophotometric method offers an advantage over the visual method by providing a more objective and automated MIC determination.  相似文献   

14.
Fifty clinical isolates of Trichophyton rubrum were selected to test with ketoconazole, fluconazole, itraconazole, griseofulvin, and terbinafine by following the National Committee for Clinical Laboratory Standards susceptibility testing guidelines for filamentous fungi (M38-A). In addition, other susceptibility testing conditions were evaluated: (i) three medium formulations including RPMI 1640 (standard medium), McVeigh & Morton (MVM), and Sabouraud dextrose broth (SDB); (ii) two incubation temperatures (28 and 35 degrees C); and (iii) three incubation periods (4, 7, and 10 days). The strains Candida parapsilosis (ATCC 22019), Candida krusei (ATCC 6258), T. rubrum (ATCC 40051), and Trichophyton mentagrophytes (ATCC 40004) were included as quality controls. All isolates produced clearly detectable growth only after 7 days of incubation. MICs were significantly independent of the incubation temperature (28 or 35 degrees C) (P < 0.05). Different incubation periods resulted in MICs which were consistently different for each medium when azoles and griseofulvin were tested (P < 0.05). MICs obtained from different media at the same incubation time for the same isolate were significantly different when azoles and griseofulvin were tested (P < 0.05). MICs were consistently higher (usually 1 to 2 dilutions) with RPMI than with MVM or SDB (P < 0.05). When terbinafine was tested, no parameter had any influence on MICs (P < 0.05). RPMI standard medium appears to be a suitable testing medium for determining the MICs for T. rubrum. MICs obtained at different incubation times need to be correlated with clinical outcome to demonstrate which time has better reliability.  相似文献   

15.
A novel formulation of RPMI 1640 medium for susceptibility testing of Malassezia yeasts by broth microdilution (BMD) and Etest is proposed. A modification of the NCCLS M27-A2 BMD method was used to test 53 isolates of Malassezia furfur (12 isolates), M. sympodialis (8 isolates), M. slooffiae (4 isolates), M. globosa (22 isolates), M. obtusa (2 isolates), M. restricta (2 isolates), M. pachydermatis (1 isolates), and M. dermatis (2 isolates) against amphotericin B, ketoconazole, itraconazole, fluconazole, voriconazole, terbinafine, and posaconazole by BMD and Etest. RPMI and antibiotic medium 3 (AM3) were supplemented with glucose, bile salts, a mixture of fatty acids, and n-octadecanoate fatty acids and Tween 20. M. furfur ATCC 14521 and M. globosa ATCC 96807 were used as quality control strains. Depending on the species, MICs were read after 48 or 72 h of incubation at 32 degrees C. Low azole and terbinafine MICs were recorded for all Malassezia species, whereas amphotericin B displayed higher MICs (>/=16 microg/ml) against M. furfur, M. restricta, M. globosa, and M. slooffiae strains, which were AM3 confirmed. Agreement of the two methods was 84 to 97%, and intraclass correlation coefficients were statistically significant (P < 0.001). Because of higher amphotericin B MICs provided by Etest for strains also displaying high BMD MICs (>/=1 microg/ml), agreement was poorer. The proposed media are used for the first time and can support optimum growth of eight Malassezia species for recording concordant BMD and Etest MICs.  相似文献   

16.
In a survey of 350 laboratories, 41 of 210 respondents indicated that they performed antifungal susceptibility tests. Two-thirds performed 20 or fewer tests per year, and most used a broth dilution method to test amphotericin B and flucytosine activity against Candida albicans. The broth dilution procedure of S. Shadomy and A. Espinel-Ingroff (p. 647-653, in E.H. Lennette, ed., Manual of Clinical Microbiology, 3rd ed., 1980) was the method most frequently cited, and therefore this method was used to test the susceptibility of five isolates of C. albicans and one of Saccharomyces cerevisiae to amphotericin B and flucytosine in seven research laboratories. Agreement among replicates performed on the same day by each laboratory was excellent for both drugs, all values being within 1 twofold drug dilution. Precision from week to week for each laboratory was also good, with 95 and 92% of values being within 1 drug dilution for amphotericin B and flucytosine, respectively. Interlaboratory precision, however, was poor. For amphotericin B, values varied 8- to 32-fold, and for flucytosine, they varied 32- to greater than 512-fold. We conclude that antifungal susceptibility testing is currently being performed in small volumes by numerous laboratories in the United States and that results from one laboratory may not agree with results from another. Improved standardization of fungal susceptibility tests is necessary before their results can be generally applied to clinical situations.  相似文献   

17.
There is no ideal laboratory procedure or culture medium in current use for susceptibility testing of pathogenic yeasts. Six candidate growth media (RPMI 1640 with L-glutamine, yeast nitrogen base, Casamino Acids medium, Mueller-Hinton broth, Sabouraud dextrose broth, and minimum essential medium-Eagle salts) were screened by spectrophotometric absorbance for nucleic acid and protein. From these, two media were selected: a chemically defined growth medium (RPMI 1640 with L-glutamine) and a chemically complex medium (Casamino Acids). MICs of four antifungal agents (5-fluorocytosine, miconazole, ketoconazole, and amphotericin B) for 84 clinical isolates of various Candida species were then determined with both media in agar dilution and microtiter broth dilution systems. The resultant MICs were correlated with clinical outcome for those isolates obtained from patients treated with single antifungal agents, and susceptibility cut points were calculated. Derived MIC cut points for susceptibility were validated in a murine model of systemic candidiasis. RPMI 1640 with L-glutamine was found to have the lowest absorbance values for both nucleic acid and protein, while Casamino Acids medium was highest in both categories. We found that RPMI 1640 with L-glutamine was superior to Casamino Acids medium in the yield of MICs which correlated with actual clinical and animal outcome data. While there were no significant differences in MICs when RPMI 1640 medium was used, the microtiter broth dilution technique was superior to agar dilution in efficiency and ease of performance. We conclude that a microtiter broth system containing RPMI 1640 medium with L-glutamine is a simple, precise, and economical technique for susceptibility testing of pathogenic Candida species. We also suggest that the validation of susceptibility cut points with patient and animal outcome data make this microtiter broth system a preferential method for yeast susceptibility testing.  相似文献   

18.
Rapid ATB Staph is a method for four-hour antimicrobial susceptibility testing of staphylococci. The equipment and theoretical basis are identical to those already described for rapid testing of enterobacteriaceae. A standardized procedure is required to perform the test. The inoculum should be prepared from a culture no older than 24 hours and accurately standardized at 10(8). Temperature of incubation should be 35 degrees C to 37 degrees C; otherwise growth is delayed by approximately one hour. Time of incubation should not exceed 5 hours. Using these standardized conditions, rapid ATB Staph was compared with the reference agar dilution method for 22 antibiotics. Overall agreement was 96.3%. The rapid system is more sensitive than the reference method fort the detection of netilmicin and amikacin resistance; it is reliable for detecting penicillin resistance, oxacillin resistance and inducible resistance to erythromycin (agreement 96.7%, 94.8% and 98.4% respectively). A Rapid ATB Staph strip containing 15 antibiotics has been designed for routine susceptibility testing.  相似文献   

19.
Inoculum size is a critical variable in development of methods for antifungal susceptibility testing for filamentous fungi. In order to investigate the influence of different inoculum sizes on MICs of amphotericin B, 5-fluorocytosine, itraconazole, and miconazole, 32 clinical isolates (8 Aspergillus fumigatus, 8 Aspergillus flavus, 5 Rhizopus arrhizus, 8 Pseudallescheria boydii, and 3 Fusarium solani isolates) were studied by the broth microdilution method. Four inoculum sizes were studied: 1 x 10(2) to 5 x 10(2), 1 x 10(3) to 5 x 10(3), 1 x 10(4) to 5 x 10(4), and 1 x 10(5) to 5 x 10(5) CFU/ml. The National Committee for Clinical Laboratory Standards reference method for antifungal susceptibility testing in yeasts was modified and applied to filamentous fungi. The inoculum was spectrophotometrically adjusted, and all tests were performed in buffered medium (RPMI 1640) at pH 7.0 with incubation at 35 degrees C for 72 h. MICs were read at 24, 48, and 72 h. Amphotericin B showed a minimum effect of inoculum size on MICs for all species with the exception of P. boydii (P < 0.05). A significant effect of inoculum size on MICs was observed with 5-fluorocytosine, for which there was an increase of more than 10-fold in MICs against all Aspergillus spp. between inoculum concentrations of 10(2) and 10(4) CFU/ml (P < 0.001). For itraconazole, the results showed a more species-dependent increase of MICs, most strikingly for R. arrhizus and P. boydii. Miconazole, which was tested only with P. boydii, did not demonstrate a significant effect of inoculum size on MICs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Rapid susceptibility testing of Candida albicans by flow cytometry.   总被引:6,自引:0,他引:6       下载免费PDF全文
The emerging magnitude of human fungal infections has renewed interest in developing rapid and standardized methods for susceptibility testing. We demonstrated that susceptibility testing of Candida albicans can be accomplished rapidly by using flow cytometry. Test results were available within 8 to 24 h after C. albicans isolates were incubated with amphotericin B, itraconazole, and flucytosine. This is an improvement of 24 to 60 h in the time to availability of susceptibility test results compared to the time to availability of National Committee for Clinical Laboratory Standards-recommended broth macrodilution test results. In addition, the flow cytometric endpoints, mean channel fluorescence, and number of fluorescence-labeled C. albicans cells were easy to interpret for greater sensitivity and reliability. Flow cytometry provides a more accurate means of obtaining antifungal susceptibility test results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号