首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Pentamidine is an antiprotozoal and fungicide drug used in the treatment of leishmaniasis and African trypanosomiasis. Despite its extensive use as antiparasitic drug, little evidence exists about the effect of pentamidine in Trypanosoma cruzi, the etiological agent of Chagas’ disease. Recent studies have shown that pentamidine blocks a polyamine transporter present in Leishmania major; consequently, its might also block these transporters in T. cruzi. Considering that T. cruzi lacks the ability to synthesize putrescine de novo, the inhibition of polyamine transport can bring a new therapeutic target against the parasite. In this work, we show that pentamidine decreases, not only the viability of T. cruzi trypomastigotes, but also the parasite burden of infected cells. In T. cruzi-infected mice pentamidine decreases the inflammation and parasite burden in hearts from infected mice. The treatment also decreases parasitemia, resulting in an increased survival rate. In addition, pentamidine strongly inhibits the putrescine and spermidine transport in T. cruzi epimastigotes and amastigotes. Thus, this study points to reevaluate the utility of pentamidine and introduce evidence of a potential new action mechanism. In the quest of new therapeutic strategies against Chagas disease, the extensive use of pentamidine in human has led to a well-known clinical profile, which could be an advantage over newly synthesized molecules that require more comprehensive trials prior to their clinical use.  相似文献   

2.
Trypanosoma (Schizotrypanum) dionisii is a non-pathogenic bat trypanosome closely related to Trypanosoma cruzi, the etiological agent of Chaga's disease. Both kinetoplastids present similar morphological stages and are able to infect mammalian cells in culture. In the present study we examined 3D ultrastructure aspects of the two species by serial sectioning epimastigote and trypomastigote forms, and identified common carbohydrate epitopes expressed in T. dionisii, T. cruzi and Leishmania major. A major difference in 3D morphology was that T. dionisii epimastigote forms present larger multivesicular structures, restricted to the parasite posterior region. These structures could be related to T. cruzi reservosomes and are also rich in cruzipain, the major cysteine-proteinase of T. cruzi. We analyzed the reactivity of two monoclonal antibodies: MEST-1 directed to galactofuranose residues of glycolipids purified from Paracoccidioides brasiliensis, and BST-1 directed to glycolipids purified from T. cruzi epimastigotes. Both antibodies were reactive with T. dionisii epimastigotes by indirect immunofluorescense, but we noted differences in the location and intensity of the epitopes, when compared to T. cruzi. In summary, despite similar features in cellular structure and life cycle of T. dionisii and T. cruzi, we observed a unique morphological characteristic in T. dionisii that deserves to be explored.  相似文献   

3.
Sierra Nevada of Santa Marta is one of the most endemic regions of Chagas disease in Colombia. In this study, we compared the biological behavior and genetic features of Trypanosoma cruzi stocks that were isolated from domestic and sylvatic insects in this area. Rhodnius prolixus (from domestic environments) and Triatoma dimidiata (from sylvatic, peridomestic and domestic environments) are the most important vectors in this region. Genetic characterization showed that all stocks corresponded to T. cruzi I, but LSSP-PCR analyses indicated that some genotypes were present in both environments. Biological characterization in vitro showed a low growth rate in sylvatic T. cruzi stocks and in some domestic T. cruzi stocks, possibly indicating the presence of stocks with similar behavior in both transmission cycles. In parallel, in vivo behavioral analysis also indicated that T. cruzi stocks are variable and this species did not show a correlation between the environments where they were isolated. In addition, all stocks demonstrated a low mortality rate and histopathological lesions in heart, skeletal muscle and colon tissue. Moreover, our data indicated that experimentally infected chagasic mice displayed a relation between their myocardial inflammation intensity, parasitism tissue and parasite load using the qPCR.In conclusion, our results indicate that the T. cruzi stocks present in SNSM have similar biological behavior and do not show a correlation with the different transmission cycles. This could be explained by the complex transmission dynamics of T. cruzi in Sierra Nevada of Santa Marta, where hosts, vectors (e.g., T. dimidiata) and reservoirs circulate in both environments due to the close contact between the two transmission cycles, favoring environment overlapping. This knowledge is an important key to understanding the epidemiology and pathology of Chagas disease in this Colombian region. Furthermore, our findings could be of significant use in the design of control strategies restricted to a specified endemic region.  相似文献   

4.
Several β-carboline compounds were evaluated for in vitro trypanocidal activity against Trypanosoma cruzi and their potential toxic effects was also assessed. β-Carboline derivative 4 showed good activity against epimastigote, trypomastigote, and amastigote forms of T. cruzi, with a dose-dependent inhibitory effect. It showed an IC50 of 14.9 μM against the epimastigote form and an EC50 of 45 μM and 33 μM against trypomastigote and amastigote forms, respectively. Additionally, 4 was able to be active on mammalian cell-protozoan interaction, reducing the number of infected cells and the number of internalized parasites. The compound showed low cytotoxicity, with a selective index 31 times higher to the parasite than for mammalian cells. In human red-blood cells β-Carboline 4 at 14.9 μM not caused haemolysis. Observed at electron microscopy 4-treated epimastigotes showed abnormal swelling of the mitochondrion, a diffuse kinetoplast, and distortions of the parasite cell body. The present data support the potential effect of this class of compounds against T. cruzi and encourage further experiments in vitro to evaluate the action mechanism of this drug and also with in vivo models.  相似文献   

5.
Trypanosoma cruzi congenital transmission in wild bats (Molossus molossus), associated with infected Rhodnius prolixus in a natural habitat from a rural locality in western Venezuela, is reported. T. cruzi blood circulating trypomastigotes in a pregnant bat were detected by parasitological methods. Polymerase chain reaction (PCR) assays carried out in samples from the heart and the fetus of the same infected female, revealed the presence of T. cruzi-specific DNA in both of the tissues, demonstrating transmission of the infection from the mother to the offspring. Eighty percent of the captured bats and 100% of the examined fetuses from pregnant specimens were shown to be infected by T. cruzi, indicating that M. molossus is a very susceptible species for this parasite, and that T. cruzi congenital transmission is a common phenomenon in nature. To our knowledge, this seems to be the first report on congenital T. cruzi transmission in wild bats in Venezuela. The circulation of T. cruzi lineage I in the study area was demonstrated by typing the isolates from bats and triatomine bugs captured in the same habitat. The potential epidemiological implication of these findings in areas where Chagas disease is endemic is discussed.  相似文献   

6.
The phylogenetic proximity between Trypanosoma cruzi and Trypanosoma (Schizotrypanum) dionisii suggests that these parasites might explore similar strategies to complete their life cycles. T. cruzi is the etiological agent of the life threatening Chagas’ disease, whereas T. dionisii is a bat trypanosome and probably not capable of infecting humans. Here we sought to compare mammalian cell invasion and intracellular traffic of both trypanosomes and determine the differences and similarities in this process. The results presented demonstrate that T. dionisii is highly infective in vitro, particularly when the infection process occurs without serum and that the invasion is similarly affected by agents known to interfere with T. cruzi invasion process. Our results indicate that the formation of lysosomal-enriched compartments is part of a cell-invasion mechanism retained by related trypanosomatids, and that residence and further escape from a lysosomal compartment may be a common requisite for successful infection. During intracellular growth, parasites share a few epitopes with T. cruzi amastigotes and trypomastigotes. Unexpectedly, in heavily infected cells, amastigotes and trypomastigotes were found inside the host cell nucleus. These findings suggest that T. dionisii although sharing some features in host cell invasion with T. cruzi, has unique behaviors that deserve to be further explored.  相似文献   

7.
Trypanosoma cruzi genetic diversity was investigated in 25 isolates (vectors and humans) from the semiarid zone of the State of Rio Grande do Norte, Brazil. Molecular markers (3′ region of the 24Sα rRNA; mitochondrial cytochrome oxidase subunit 2 (COII) gene; spliced leader intergenic region (SL-IR) gene; allelic size microsatellite polymorphism) identified 56% TcIII (100% Panstrongyluslutzi; 50% Triatomabrasiliensis); 40% TcII (91.7% humans; 50% T. brasiliensis) and 4% TcI (human). Microsatellite analysis revealed monoclonal and heterozygous patterns on one or more microsatellite loci in 64% of T. cruzi isolates (92.3% triatomines; 33.3% humans) and 36% putative polyclonal populations (66.7% humans; 7.7% triatomines) by loci SCLE10, SCLE11, TcTAT20, TcAAAT6, all belonging to TcII. Identical T. cruzi polyclonal profiles (88.9%) were detected, mostly from humans. The adaptative natural plasticity of TcII and TcIII and their potential for maintaining human infection in T. brasiliensis were confirmed. Intraspecific and phylogenetic T. cruzi diversity in the sylvatic and domestic transmission cycles in this specific region will provide exclusive control strategies.  相似文献   

8.

Background

Kissing bugs, vectors of Trypanosoma cruzi, the parasite that causes Chagas disease, are common in the desert Southwest. After a dispersal flight in summer, adult kissing bugs occasionally gain access to houses where they remain feeding on humans and pets. How often wild, free-roaming kissing bugs feed on humans outside their homes has not been studied. This is important because contact of kissing bugs with humans is one means of gauging the risk for acquisition of Chagas disease.

Methods

We captured kissing bugs in a zoological park near Tucson, Arizona, where many potential vertebrate hosts are on display, as well as being visited by more than 300,000 humans annually. Cloacal contents of the bugs were investigated for sources of blood meals and infection with T. cruzi.

Results

Eight of 134 captured bugs were randomly selected and investigated. All 8 (100%) had human blood in their cloacae, and 7 of 8 (88%) had fed on various vertebrates on display or feral in the park. Three bugs (38%) were infected with T. cruzi. Three specimens of the largest species of kissing bug in the United States (Triatoma recurva) were captured in a cave and walking on a road; 2 of 3 (67%) had fed on humans. No T. recurva harbored T. cruzi.

Conclusions

This study establishes that free-roaming kissing bugs, given the opportunity, frequently feed on humans outside the confines of their homes in the desert Southwest and that some harbored T. cruzi. This could represent a hitherto unrecognized potential for transmission of Chagas disease in the United States.  相似文献   

9.
The factors involved in the reactivation of chronic Chagas disease infection are not clear enough and may be related to host immune unbalance and/or parasite genetic diversity. To evaluate the role of the Trypanosoma cruzi genetic background in the Chagas disease reactivation, we inoculated Cyclophosphamide-immunosupressed (CyI) Swiss mice with clonal stocks from T. cruzi I (Cuica cl1, P209 cl1, Gamba cl1, SP104 cl1), T. cruzi II (IVV cl4, MVB cl8) and T. cruzi (Bug2148 cl1, MN cl2) lineages. We used the parasitemia as the parameter for Chagas disease reactivation and observed that CyI animals infected with T. cruzi stocks showed no reactivation and those infected with T. cruzi II stocks showed only 5% of reactivation. In contrast, immunosuppressed mice infected with stocks from T. cruzi I lineage showed 77.5 and 51.25% reactivation of the infection when Cyclophosphamide treatment was performed 60 and 180 days after inoculation, respectively. Next, we evaluated the efficacy of the Benznidazole (Bz) pre-treatment in reducing or preventing the recurrence of the infection in these CyI animals. In general, the percentage of the parasite recurrence was not altered among the CyI mice that received the Bz pre-treatment during the acute phase of the infection. Interestingly, when pre-Bz treatment was performed during the chronic phase, we observed two different patterns of response: (i) an increased protection among the animals inoculated with the SP104 cl1 (genotype 19) and Cuica cl1 (genotype 20) stocks; (ii) an increased percentage of parasitemia reactivation among mice inoculated with Gamba cl1 (genotype 19) and P209 cl1 (genotype 20) T. cruzi stocks. Our results corroborate our hypothesis by showing that the T. cruzi genetic background in combination with specific Bz treatment has an important role in the Chagas disease reactivation in immunosuppressed animals.  相似文献   

10.
It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1 × 10−5 M was incubated for 24 and 48 h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1 × 10−6 M ShPI-I, in the same periods of time, reduced parasite viability about 91–95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents.  相似文献   

11.
Thioridazine (TDZ) is a phenothiazine that has been shown to be one of the most potent phenothiazines to inhibit trypanothione reductase irreversibly. Trypanothione reductase is an essential enzyme for the survival of Trypanosoma cruzi in the host. Here, we reviewed the use of this drug for the treatment of T. cruzi experimental infection. In our laboratory, we have studied the effect of TDZ for the treatment of mice infected with different strains of T. cruzi and treated in the acute or in the chronic phases of the experimental infection, using two different schedules: TDZ at a dose of 80 mg/kg/day, for 3 days starting 1 h after infection (acute phase), or TDZ 80 mg/kg/day for 12 days starting 180 days post infection (d.p.i.) (chronic phase). In our experience, the treatment of infected mice, in the acute or in the chronic phases of the infection, with TDZ led to a large reduction in the mortality rates and in the cardiac histological and electrocardiographical abnormalities, and modified the natural evolution of the experimental infection. These analyses reinforce the importance of treatment in the chronic phase to decrease, retard or stop the evolution to chagasic myocardiopathy. Other evidence leading to the use of this drug as a potential chemotherapeutic agent for Chagas disease treatment is also revised.  相似文献   

12.
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major cause of morbidity and mortality in Central and South America. Geographic variations in the sensitivity of serologic diagnostic assays to T. cruzi may reflect differences in T. cruzi exposure. We measured parasite-specific T-cell responses among seropositive individuals in two populations from South America with widely varying antibody titers against T. cruzi. Antibody titers among seropositive individuals were significantly lower in Arequipa, Peru compared with Santa Cruz, Bolivia. Similarly, the proportion of seropositive individuals with positive T-cell responses was lower in Peru than Bolivia, resulting in overall lower frequencies of interferon-γ (IFNγ)-secreting cells from Peruvian samples. However, the magnitude of the IFNγ response was similar among the IFNγ responders in both locations. These data indicate that immunological discrepancies based on geographic region are reflected in T-cell responses as well as antibody responses.  相似文献   

13.
Trypanosoma rangeli, a non-pathogenic hemoflagelate that in Central and South America infects humans, shares with Trypanosoma cruzi reservoirs and triatomine vectors, as well as geographical distribution. Recently, we have described in T. rangeli a truncated gene copy belonging to the group II of the trans-sialidase superfamily (TrGP). This superfamily, collectively known in T. cruzi as gp85/TS, includes members that are involved in host cell invasion and infectivity. To confirm the presence of this superfamily in the genome of T. rangeli and obtain a better knowledge of its characteristics, we designed a PCR and RT-PCR cloning strategy to allow sequence analysis of both genomic and transcribed copies. We identified two full-length copies of TrGP, some pseudogenes, and N- and C-terminal sequences of several genes. We also analyzed the expression and cellular localization of these proteins in epimastigote forms of a Venezuelan T. rangeli isolate using polyclonal antibodies made against a recombinant peptide from the N-terminal region of a TrGP member. We confirmed that TrGP is a multigenic family that shares many features with T. cruzi gp85/TS, including the telomeric location of some of its members, and by immunofluorescence analysis that its location is at the surface of the parasite.  相似文献   

14.
Trypanosoma rangeli infects several mammalian orders but has never confidently been described in Chiroptera, which are commonly parasitized by many trypanosome species. Here, we described trypanosomes from bats captured in Central Brazil identified as T. rangeli, T. dionisii, T. cruzimarinkellei and T. cruzi. Two isolates, Tra643 from Platyrrhinus lineatus and Tra1719 from Artibeus planirostris were identified as T. rangeli by morphological, biological and molecular methods, and confirmed by phylogenetic analyses. Analysis using SSU rDNA sequences clustered these bat trypanosomes together with T. rangeli from other hosts, and separated them from other trypanosomes from bats. Genotyping based on length and sequence polymorphism of PCR-amplified intergenic spliced-leader gene sequences assigned Tra1719 to the lineage A whereas Tra643 was shown to be a new genotype and was assigned to the new lineage E. To our knowledge, these two isolates are the earliest T. rangeli from bats and the first isolates from Central Brazil molecularly characterized. Rhodnius stali captured for this study was found infected by T. rangeli and T. cruzi.  相似文献   

15.
Triatoma sordida is a secondary vector of Trypanosoma cruzi in the Gran Chaco and Cerrado eco-regions where it frequently infests peridomestic and domestic habitats. In a well-defined area of the humid Argentine Chaco, very few T. sordida were found infected when examined by optical microscopic examination (OM). In order to further assess the role of T. sordida and the relative magnitude of subpatent bug infections, we examined the insects for T. cruzi infection, parasite Discrete Typing Units (DTUs) and bloodmeal sources using various molecular techniques. Among 205 bugs with a negative or no OM-based diagnosis, the prevalence of infection determined by kDNA-PCR was nearly the same in bugs captured before (6.3%) and 4 months after insecticide spraying (6.4%). On average, these estimates were sixfold higher than the prevalence of infection based on OM (1.1%). Only TcI was identified, a DTU typically associated with opossums and rodents. Chickens and turkeys were the only bloodmeal sources identified in the infected specimens and the main local hosts at the bugs’ capture sites. As birds are refractory to T. cruzi infection, further studies are needed to identify the infectious bloodmeal hosts. The persistent finding of infected T. sordida after community-wide insecticide spraying highlights the need of sustained vector surveillance to effectively prevent T. cruzi transmission in the domestic and peridomestic habitats.  相似文献   

16.
Rodents are well-known hosts of Trypanosoma cruzi but little is known on the role of some caviomorph rodents. We assessed the occurrence and prevalence of T. cruzi infection in Microcavia australis (“southern mountain, desert or small cavy”) and its infectiousness to the vector Triatoma infestans in four rural communities of Tafí del Valle department, northwestern Argentina. Parasite detection was performed by xenodiagnosis and polymerase chain reaction amplification of the hyper-variable region of kinetoplast DNA minicircles of T. cruzi (kDNA-PCR) from blood samples. A total of 51 cavies was captured in traps set up along cavy paths in peridomestic dry-shrub fences located between 25 and 85 m from the nearest domicile. We document the first record of M. australis naturally infected by T. cruzi. Cavies presented a very high prevalence of infection (46.3%; 95% confidence interval, CI = 33.0–59.6%). Only one (4%) of 23 cavies negative by xenodiagnosis was found infected by kDNA-PCR. TcI was the only discrete typing unit identified in 12 cavies with a positive xenodiagnosis. The infectiousness to T. infestans of cavies positive by xenodiagnosis or kDNA-PCR was very high (mean, 55.8%; CI = 48.4–63.1%) and exceeded 80% in 44% of the hosts. Cavies are highly-competent hosts of T. cruzi in peridomestic habitats near human dwellings in rural communities of Tucumán province in northwestern Argentina.  相似文献   

17.
Following the report of two cases of acute Chagas’ disease and the appearance of several triatomine species in human dwellings in an area considered non-endemic for domestic transmission of Trypanosoma cruzi; a epidemiological, entomological and T. cruzi molecular epidemiology analysis was performed in order to establish the transmission dynamic of the parasite in the studied area. 2 T. cruzi isolates from human patients, 5 from Eratyrus cuspidatus, 4 from Rhodnius pallescens, 4 from Panstrongylus geniculatus and 7 reference stocks were analyzed by mini-exon gene, random amplified polymorphic DNA (RAPD) and multilocus enzyme electrophoresis (MLEE).All isolates from vectors and human resulted T. cruzi group I by mini-exon, RAPD and MLEE. While mini-exon and MLEE did not showed any differences between the studied isolates, RAPD analysis identified a common T. cruzi genotype for the E. cuspidatus isolates and human isolates and distinguished different strains from R. pallescens and P. geniculatus isolates. The presence of the same T. cruzi genotype in isolates from patients and E. cuspidatus suggests that this species can be responsible for the transmission of Chagas’ disease in the study area. RAPD analysis showed better resolution and discrimination of T. cruzi strains than mini-exon and MLEE and can be considered a useful tool for molecular epidemiology studies. Incrimination of sylvatic triatomine species in the transmission of Chagas’ disease indicates that more knowledge about the ecology of these vectors is necessary to improve control strategies.  相似文献   

18.
To determine the extent of Trypanosoma cruzi infection and/or transmission in the southern Amazon region of Ecuador, three indigenous communities in the provinces of Pastaza and Morona Santiago were serosurveyed. ChagatestTM, Immunocomb®II and immunofluorescent (IF) assays were used. Among the 385 inhabitants examined, nine (2.34%) were seropositive for T. cruzi infection. Of the nine positive sera, four (44.4%) fall in the 10–19, one each in the 20–29, 30–39 and 40–49, and two in the 50–59 age groups. These results suggested the possible existence of an autochthonous active T. cruzi transmission in the region and provide the first serological evidence for T. cruzi infection in the southern province of Morona Santiago bordering Peru. Further studies are needed in these Amazonian provinces to ascertain the spread of T. cruzi infection in the area.  相似文献   

19.
We evaluated the presence and distribution of two Trypanosoma cruzi natural isolates in blood, heart, skeletal muscle, liver, and spleen tissues in the acute phase of the experimental infection (35 days postinfection) in order to determine if the populations present in blood were different to those found in the tissues of the same host. Thirty mice were infected with 50 forms of each isolate or with a combination of them. Presence and molecular characterization of the parasites in the host tissues were determined by specific PCR. Cardiac and skeletal muscle alterations were analyzed by histological studies. T. cruzi variability in the host tissues was analyzed through RFLP studies. Both isolates used consisted of a mixture of two T. cruzi lineages. Specific PCRs were positive for most of the samples from the 3 groups analyzed. Cardiac and skeletal muscle sections from the groups infected with one isolate presented mild to moderate inflammatory infiltrates; the group infected with both isolates showed severe inflammatory infiltrates and the presence of amastigote nests in both tissues. Different parasite populations were found in circulation and in the tissues from the same host. These results are important for patients with high probability of mixed infections in endemic areas and contribute to the knowledge of parasite/host interactions.  相似文献   

20.
We compared age-related seroprevalence of Trypanosoma cruzi infection with history of vector control interventions and social and ecological changes in three historically endemic departments of Cordoba province, Argentina, covering an area of 42,600 km2 of the Gran Chaco region. Using a cross sectional design, blood samples of 5240 people between 6 months and 40 years of age, living in 192 rural communities were analyzed to detect T. cruzi infection using ELISA tests, and confirmed with indirect immunofluorescent antibody test and indirect haemoagglutination. Overall seroprevalence was 5.4%, 7.9% and 7.5% in the north, northwest and west studied areas (average for all areas 6.95%). Seroprevalence for T cruzi increased with population age, especially in age classes older than 15 years of age. Communities of the north and west areas showed 0.59% seroprevalence for T. cruzi in children below 15 years of age, whereas children of the same age in the northwest region showed a seroprevalence of 3.08%. Comparative analyses indicate that vector control activities and land use changes during the last decades are the most likely causes of the overall reduction of T. cruzi prevalence. Results suggest that the vectorial transmission of T. cruzi has been strongly reduced and probably interrupted in the north and west areas, but it is still active in the northwestern rural settlements of Córdoba province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号