首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Members of the Anopheles gambiae complex are among the best malaria vectors in the world, but their vectorial capacities vary between species and populations. A large-scale sampling of An. gambiae sensu lato was carried out in 2006 and 2007 in various bioclimatic areas of Benin (West Africa). The objective of this study was to collate data on the relative frequencies of species and forms within the An. gambiae complex and to produce a map of their spatial distribution. Sampling took place at 30 sites and 2122 females were analyzed. Two species were identified through molecular methods. The overall collection showed a preponderance of An. gambiae s.s., but unexpectedly, An. arabiensis was reported in the coastal-Guinean bioclimatic area characterized by a mean annual rainfall of >1500 mm where only An. gambiae s.s. was reported previously. Our study of Benin indicates that An. arabiensis would be adapted not only to the urban areas but also to the rural humid regions. Among 1717 An. gambiae s.s., 26.5% were of the M form and 73.3% were S form. Few hybrid specimens between the M and S forms were observed (0.2%). Only the spatial distribution of the M form appears to be mainly a function of bioclimatic area.Factors that influence the distribution of these malaria vectors are discussed. This study underlines the need of further investigations of biological, ecological, and behavioral traits of these species and forms to better appreciate their vectorial capacities. Acquisition of entomological field data appears essential to better estimate the stratification of malaria risk and help improve malaria vector control interventions.  相似文献   

3.
The glycosylphosphatidylinositol (GPI) anchor of the malaria parasite, Plasmodium falciparum, which can be regarded as an endotoxin, plays a role in the induced pathology associated with severe malaria in humans. However, it is unclear whether the main mosquito vector, Anopheles gambiae, can specifically recognize, and respond to GPI from the malaria parasite. Recent data suggests that the malaria vector does mount a specific response against malaria GPI. In addition, following the strong immune response, mosquito fecundity is severely affected, resulting in a significant reduction in viable eggs produced. In this mini-review we look at the increased interest in understanding the way that malaria antigens are recognized in the mosquito, and how this relates to a better understanding of the interactions between the malaria parasite and both human and vector.  相似文献   

4.
Because free-insecticide treated net distribution is planned in Benin (West Africa) during the next few years, we investigated the type, frequency and distribution of insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus mosquitoes in four localities selected on the basis of contrasting agricultural practices, use of insecticides and environment. Bioassays with WHO diagnostic test kits were carried out using pyrethroid, carbamate, organophosphate and organochlorine insecticides. An. gambiae mosquitoes were identified to species and to M or S molecular forms using PCR techniques. Molecular and biochemical assays were carried out to identify kdr and Ace.1 mutations in individual mosquitoes and to detect any increase in the activity of enzymes typically involved in insecticide metabolism (oxidase, esterase and glutathion-S-transférases). WHO diagnostic tests showed high frequency of resistance in An. gambiae and Cx. quinquefasciatus to permethrin and DDT in three areas. This was consistent with the presence of target site insensitivity due to kdr mutation and to increased metabolism through enzymatic activity. Kdr was expressed in both M and S forms. However, less than 1% of An. gambiae or Cx. quiqnuefasciatus showed the presence of the Ace.1R mutation. Carbamate/OP resistance was present at higher frequency in Culex than in An. gambiae. Dieldrin resistance was present in both species at all four localities. A higher frequency of pyrethroid-resistance was found in An. gambiae mosquitoes collected in urban areas compared to those collected in rice growing areas. The expansion of vegetable growing within urban areas probably contributed to selection pressure on mosquitoes. The detection of multiple resistance mechanisms in both An. gambiae and Cx. quinquefasciatus in Benin may represent a threat for the efficacy of ITNs and other forms of vector control such as indoor residual spraying in the future.  相似文献   

5.
We conducted the first meta-analysis of ten Schistosoma haematobium (one published and nine unpublished) and eight Schistosoma mansoni (two published and six unpublished) microsatellite datasets collected from individual schistosome-infected school-children across six sub-Saharan Africa countries. High levels of genetic diversity were documented in both S. haematobium and S. mansoni. In S. haematobium populations, allelic richness did not differ significantly between the ten schools, despite widely varying prevalences and intensities of infection, but higher levels of heterozygote deficiency were seen in East than in West Africa. In contrast, S. mansoni populations were more diverse in East than West African schools, but heterozygosity levels did not vary significantly with geography. Genetic structure in both S. haematobium and S. mansoni populations was documented, at both a regional and continental scale. Such structuring might be expected to slow the spread to new areas of anti-schistosomal drug resistance should it develop. There was, however, limited evidence of genetic structure at the individual host level, which might be predicted to promote the development or establishment of drug resistance, particularly if it were a recessive trait. Our results are discussed in terms of their potential implications for the epidemiology and evolution of schistosomes as well as their subsequent control across sub-Saharan Africa.  相似文献   

6.
Mosquito control using insecticides has been the most successful intervention known to reduce malaria prevalence or incidence. However, vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In this research, the leaf aqueous leachate of Tephrosia vogelii was evaluated for its toxicity against larvae of the most invasive mosquito worldwide, Aedes albopictus (Diptera: Culicidae), and toward adults of the water flea, Daphnia magna (Cladocera: Crustacea) and Oreochromis niloticus, two non-target aquatic organisms that share the same ecological niche of A. albopictus. The leaf aqueous leachate of T. vogelii was evaluated against fourth-instar larvae, non-blood fed 3–5 days old laboratory strains of A. albopictus under laboratory condition. In addition, the objective of the present work was to study the environmental safety evaluation for aquatic ecosystem. Mortality was then recorded after 7 d exposure. The leaf aqueous leachate of T. vogelii showed high mosquitocidal activity against larvae of A. albopictus, with a LC50 = 1.18 μg/mL. However, it had a remarkable acute toxicity also toward adults of the non-target arthropod D. magna, with a LC50 = 0.47 μg/L and O. niloticus with a LC50 = 5.31 μg/L. The present findings have important implications in the practical control of mosquito larvae in the aquatic ecosystem, as the medicinal plants studied are commonly available in large quantities. The extract could be used in stagnant water bodies for the control of mosquitoes acting as vector for many communicable diseases.  相似文献   

7.
In the Tropics, there is substantial temporal and spatial overlap of diseases propagated by anthropophilic mosquito vectors (such as malaria and dengue) and human helminth diseases (such as onchocerciasis and lymphatic filariasis) that are treated though mass drug administrations (MDA). This overlap will result in mosquito vectors imbibing significant quantities of these drugs when they blood feed on humans. Since many anthelmintic drugs have broad anti-invertebrate effects, the possibility of combined helminth control and mosquito-borne disease control through MDA is apparent. It has been previously shown that ivermectin can reduce mosquito survivorship when administered in a blood meal, but more detailed examinations are needed if MDA is to ever be developed into a tool for malaria or dengue control. We examined concentrations of drugs that follow human pharmacokinetics after MDA and that matched with mosquito feeding times, for effects against the anthropophilic mosquito vectors Anopheles gambiae s.s. and Aedes aegypti. Ivermectin was the only human-approved MDA drug we tested that affected mosquito survivorship, and only An. gambiae s.s. were affected at concentrations respecting human pharmacokinetics at indicated doses. Ivermectin also delayed An. gambiae s.s. re-feeding frequency and defecation rates, and two successive ivermectin-spiked blood meals following human pharmacokinetic concentrations compounded mortality effects compared to controls. These findings suggest that ivermectin MDA in Africa may be used to decrease malaria transmission if MDAs were administered more frequently. Such a strategy would broaden the current scope of polyparasitism control already afforded by MDAs, and which is needed in many African villages simultaneously burdened by many parasitic diseases.  相似文献   

8.
The increased insecticides resistance by vectors and the ecological harm imposed by insecticides to beneficial organisms drawback mosquitoes chemical control efforts. Biological control would reduce insecticides tolerance and yet biodiversity friend. The predatory and non-predatory effects of Gambusia affinis and Carassius auratus on gravid Anopheles gambiae sensu strict and larvae survivorship were assessed. In determining predation rate, a single starved predator was exposed to third instar larvae of An. gambiae s.s. in different densities 20, 60 and 100. Six replicates in each of the densities for both predators, G. affinis and C. auratus, were set up. The larvae densities were monitored in every12 and 24 h. In assessing indirect effects: An. gambiae s.s. first instar larvae of three densities 20, 60 and 100 were reared in water from a predator habitat and water from non-predator habitat. Larvae were monitored until they emerged to adults where larval survivorship and sex ratio (Female to total emerged mosquitoes) of the emerged adult from both water habitats were determined. Oviposition preference: twenty gravid females of An. gambiae s.s. were provided with three oviposition choices, one containing water from predator habitat without a predator, the second with water from a predator with a predator and the third with water from non-predatory habitat. The number of eggs laid on each container was counted daily. There were 20 replicates for each predator, G. affinis and C. auratus. Survivorship of An. gambiae s.s. larvae reared in water from non-predator habitat was higher than those reared in water from the predator habitats. Many males emerged in water from non-predatory water habitats while more females emerged from predator's habitats water. More eggs laid in tap water than in water from predator habitat and water from predator habitat with live predator. In 24 h, a starved C. auratus and G. affinis were able to consume 100% of the 3rd instar larvae. The findings from this study suggest that G. affinis and C. auratus may be useful in regulating mosquito populations in favour of beneficial insects. However, a small scale trial shall be needed in complex food chain system to ascertain the observed predation and kairomones effects.  相似文献   

9.
Competition in mosquito larvae is common and different ecological context could change competitive advantage between species. Here, larval competition between the widely sympatric African malaria mosquitoes, Anopheles coluzzii and Anopheles gambiae were investigated in controlled insectary conditions using individuals from laboratory colonies and under ambient conditions using wild mosquitoes in a semi-field enclosure in western Burkina Faso. Larvae of both species were reared in trays at the same larval density and under the same feeding regimen in either single-species or mixed-species populations at varying species ratios reflecting 0%, 25%, 50% and 75% of competitor species. In the insectaries, where environmental variations are controlled, larvae of the An. coluzzii colony developed faster and with lower mortality than larvae of the An. gambiae colony (8.8 ± 0.1 days and 21 ± 3% mortality vs. 9.5 ± 0.1 days and 32 ± 3% mortality, respectively). Although there was no significant effect of competition on these phenotypic traits in any species, there was a significant trend for higher fitness of the An. coluzzii colony when competing with An. gambiae under laboratory conditions (i.e. lower development time and increased wing length at emergence, Cuzik's tests, P < 0.05). In semi-field experiments, competition affected the life history traits of both species in a different way. Larvae of An. gambiae tended to reduce development time when in competition with An. coluzzii (Cuzick's test, P = 0.002) with no impact either on mortality or size at emergence. On the other hand, An. coluzzii showed a significant trend for reduced larval mortality with increasing competition pressure (Cuzick's test, P = 0.037) and production of smaller females when grown together with An. gambiae (Cuzick's test, P = 0.002). Our results hence revealed that competitive interactions between larvae of the two species are context dependent. They further call for caution when exploring ecological processes using inbred laboratory colonies in this system of utmost medical importance.  相似文献   

10.
Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the “lock-and-key theory” of P. falciparum globalization, is proposed, and its implications are discussed.The most deadly form of malaria in humans is caused by Plasmodium falciparum parasites. Malaria originated in Africa (1, 2) and is transmitted by anopheline mosquitoes. The disease became global as humans migrated to other continents and parasites encountered different mosquito species that were sometimes evolutionarily distant from African vectors (3). For example, anophelines of the subgenus Nyssorhynchus (malaria vectors in Central and South America, such as Anopheles albimanus) diverged from the subgenus Cellia (malaria vectors in Africa, India, and South Asia) about 100 Mya (4). P. falciparum parasites are transmitted by more than 70 different anopheline species worldwide (3), but compatibilities differ between specific vector–parasite combinations (5). For example, P. falciparum NF54 (Pf NF54), of putative African origin, effectively infects Anopheles gambiae, the main malaria vector in sub-Saharan Africa; but A. albimanus is highly refractory to this strain (68); whereas Asian P. falciparum isolates infect Anopheles stephensi (Nijmegen strain), a major vector in India, more effectively than A. gambiae (9). Similar differences in compatibility have been reported between Plasmodium vivax and different anopheline species (10, 11). The A. gambiae immune system can mount effective antiplasmodial responses mediated by the complement-like system that limit infection (12). We have previously shown that some P. falciparum lines can avoid detection by the A. gambiae immune system (13) and identified Pfs47 as the gene that mediated immune evasion (14). Here, we present direct evidence of selection of P. falciparum by the mosquito immune system and show that providing P. falciparum with a Pfs47 haplotype compatible for a given anopheline mosquito is sufficient for the parasite to evade mosquito immunity. The implications of P. falciparum selection by mosquitoes for global malaria transmission are discussed.  相似文献   

11.
Carboxypeptidases are the digestive enzymes which cleave single amino acid residue from c-terminus of the protein. Digestive carboxypeptidase A gene regulatory elements in insects have shown their efficiency to drive midgut specific expression in transgenic mosquitoes. However no endogenous promoter has been reported for Indian malaria vector Anopheles culicifacies which is major vector in Indian subcontinent. Here we report cloning of carboxypeptidase A gene in the An. culicifacies A including its 5′ upstream regions and named AcCP. In the upstream region of the gene an arthropod initiator sequence and two repeat sequences of the particular importance TTATC and GTTTT were also identified. The 1290 base pairs open reading frame encodes a protein of 48.5 kDa. The coding region of the gene shares 82% and 72% similarity at nucleotide level with Anopheles gambiae and Ae. aegypti carboxypeptidase A gene, respectively. The peak expression of the gene was found to be at 3 h after blood feeding and this is limited to midgut only. Based on the protein sequence, 3D structure of the AcCP was predicted and the active centre of the enzyme was predicted to consist of GLN 183, GLU 186, HIS 308 and Ser 309 amino acid residues. Comparison of the protein sequence among different genera revealed the conservation of zinc binding residues. Phylogenetically, AcCP was found most closely related to An. gambiae.  相似文献   

12.
There has been an increase in malaria cases in southern African countries in recent years due to the presence of populations of Anopheles funestus that are resistant to the pyrethroid class of insecticides. Since A. funestus is one of the major African malaria vectors, knowledge of its genetic structure will benefit control strategies, such as the management of insecticide resistance, by allowing predictions to be made of possible spread of the resistance. This study uses microsatellite DNA markers to analyze samples from five countries in east (Kenya and Uganda), central (Malawi) and southern (South Africa and Mozambique) Africa. There were deviations from Hardy-Weinberg expectations for some loci in all population samples but this was probably due to the presence of null alleles. High levels of genetic diversity were observed (mean alleles per locus = 6.5-10; unbiased H=0.23-0.89). Low differentiation was observed between Kenya and Uganda (average F(ST)=0.002, R(ST)=0.0001) and between Mozambique and South Africa (F(ST)=0.0004, R(ST)=0.02), contrary to high differentiation among the central and southern Africa samples (average F(ST)=0.023, R(ST)=0.027). High differentiation was measured across the region (mean F(ST)=0.04, R(ST)=0.08), east versus Malawi (F(ST)=0.067, R(ST)=0.089) or southern Africa populations (F(ST)=0.068, R(ST)=0.15). A test of isolation by distance along the east-central-south transect gave evidence (R(2)=0.50, P<0.001) that geographic distance limits gene flow in A. funestus.  相似文献   

13.
《Acta tropica》2013,125(2):123-127
We investigated the occurrence of the L1014F and L1014S kdr mutations in malaria vector populations in Burkina Faso (West Africa). A cross-sectional survey was conducted at 10 sites all located in cotton cultivation areas which are assumed to be the major insecticide resistance selection foci in Burkina Faso. The hot ligation method was used to detect the two kdr mutations in field collected Anopheles gambiae s.l. samples. For the first time in Burkina Faso the L1014S mutation was identified in both M and S forms of An. gambiae s.s. populations collected from the site of Koupela in the central-eastern region at low frequency. Furthermore, the L1014S mutation was also found in one specimen of An. arabiensis collected from the Dano site. The data generated in this study provides additional evidence of the spread of the L1014S mutation into An. gambiae s.l. populations in West Africa. It is now important to evaluate the role of the L1014S mutation in the pyrethroid resistance phenotype and assess its potential impact on the efficacy of pyrethroid-based control measures in West Africa where several resistance mutations now coexist.  相似文献   

14.
Anopheles stephensi is an important vector of urban malaria in India and the Persian Gulf area. Its previously known geographical range includes southern Asia and the Arab Peninsula. For the first time, we report A. stephensi from the African continent, based on collections made in Djibouti, on the Horn of Africa, where this species’ occurrence was linked to an unusual urban outbreak of Plasmodium falciparum malaria, with 1228 cases reported from February to May 2013, and a second, more severe epidemic that emerged in November 2013 and resulted in 2017 reported malaria cases between January and February 2014. Anopheles stephensi was initially identified using morphological identification keys, followed by sequencing of the Barcode cytochrome c-oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Positive tests for P. falciparum circumsporozoite antigen in two of six female A. stephensi trapped in homes of malaria patients in March 2013 are evidence that autochthonous urban malaria transmission by A. stephensi has occurred. Concurrent with the second malaria outbreak, P. falciparum-positive A. stephensi females were detected in Djibouti City starting in November 2013. In sub-Saharan Africa, newly present A. stephensi may pose a significant future health threat because of this species’ high susceptibility to P. falciparum infection and its tolerance of urban habitats. This may lead to increased malaria outbreaks in African cities. Rapid interruption of the urban malaria transmission cycle, based on integrated vector surveillance and control programs aimed at the complete eradication of A. stephensi from the African continent, is strongly recommended.  相似文献   

15.
A field trial was conducted on the efficacy of Interceptor nets—a long-lasting insecticidal net (LLN) factory treated with alphacypermethrin 0.667% (w/w) corresponding to 200 mg/m2, against malaria vectors Anopheles culicifacies and Anopheles fluviatilis in one of the highly endemic areas of Orissa. The study area comprised 19 villages which were randomized into three clusters and designated as Interceptor net cluster, untreated net cluster, and no net cluster. Baseline studies showed that both the vector species An. culicifacies and An. fluviatilis were 100% susceptible to alphacypermethrin. Results of wash-resistance and bio-efficacy of Interceptor nets showed 100% mortality in An. culicifacies and An. fluviatilis even after 20 washings. Bioassays on the Interceptor nets while in use in the field conditions showed a knockdown effect on 70-90% mosquitoes during different months of intervention after 3 min of exposure and 100% mortality was recorded after 24 h of recovery period. The median knockdown time for these species ranged between 4.10-5.25 min and 4.00-5.00 min respectively during intervention period. In Interceptor net study area, there was a significant reduction of 88.9, 96.3 and 90.6% in the entry rate of An. culicifacies, An. fluviatilis and other anopheline species respectively with an over all reduction of 87.5% in total mosquitoes. The overall feeding success rate of mosquitoes in the trial villages was only 12.8% in comparison to 35.0 and 78.8% in villages with untreated nets and no nets respectively. A significant reduction was also recorded in parity rate and human blood index of vector species in Interceptor net area. The results of the study showed that Interceptor nets are effective against the malaria vectors and may be used as a suitable intervention strategy in high-risk areas.  相似文献   

16.
The control of Visceral Leishmaniasis (VL) vector is often based on the application of chemical residual insecticide. However, this strategy has not been effective. The continuing search for an appropriate vector control may include the use of biological control. This study evaluates the effects of the fungus Metarhizium anisopliae var. acridum on Lutzomyia longipalpis. Five concentrations of the fungus were utilized, 1 × 104 to 1 × 108 conidia/ml, accompanied by controls. The unhatched eggs, larvae and dead adults previously exposed to fungi were sown to reisolate the fungi and analysis of parameters of growth. The fungus was subsequently identified by PCR and DNA sequencing. M. anisopliae var. acridum reduced egg hatching by 40%. The mortality of infected larvae was significant. The longevity of infected adults was lower than that of negative controls. The effects of fungal infection on the hatching of eggs laid by infected females were also significant. With respect to fungal growth parameters post-infection, only vegetative growth was not significantly higher than that of the fungi before infection. The revalidation of the identification of the reisolated fungus was confirmed post-passage only from adult insects. In terms of larvae mortality and the fecundity of infected females, the results were significant, proving that the main vector species of VL is susceptible to infection by this entomopathogenic fungus in the adult stage.  相似文献   

17.
The study evaluated the efficacy of neem (Azadirachta indica A. Juss.) and Chinaberry (Melia azedarach L.) seed oils as repellents against laboratory and field populations of some sandflies in Ethiopia. In the laboratory, concentrations of 2% and 5% neem oil in coconut oil tested against Phlebotomus orientalis (vector of visceral leishmaniasis) provided 96.28% (95% CI = 95.60-96.97) protection up to a mean time of 7 h and 20 min and 98.26% (95% CI = 93.46-104. 07) protection up to 9 h, respectively. Similarly, M. azedarach oil at 2% concentration produced 95.13% (95% CI = 90.74-99.52) protection for the same duration (7 h and 20 min), while the 5% oil gave 96.20 (95% CI = 86.98-105.41) protection for 8 h and 20 min against the same species with no significant difference in percentage protection between the two oils at 2% and 5% concentrations. In the field tests with only neem oil (A. indica) against field populations of P. orientalis and P. bergeroti, similar high level of repellencies were recorded with about the same duration of protection. Application of both neem and Chinaberry oils can be safe and low-cost means of personal protection against sandfly bites in endemic areas of Ethiopia, if the community is advised and encouraged to grow the plants abundantly.  相似文献   

18.
19.
Anopheles annularis is one of the major vectors of malaria in Odisha, India. The present study was undertaken to determine the vectorial capacity and assess the genetic diversity of An. annularis collected from different endemic regions of Odisha. Mosquitoes were collected from thirteen endemic districts using standard entomological collection methods from 2009 to 2011. Sibling species of An. annularis were identified by PCR-RFLP and sequencing of D3 region of 28S ribosomal DNA (rDNA) region. Plasmodium falciparum (Pf) sporozoite rate and human blood fed percentage (HBF) were estimated by multiplex PCR using Pf and human specific primers. Genetic diversity of An. annularis was estimated by ISSR markers. Out of 1647 An. annularis collected, 1353 (82.15%) were collected by mechanical aspirators and 294 (17.85%) by light trap. 49 (2.97%) were positive for human blood and 18 (1.09%) were positive for Pf sporozoite. PCR-RFLP and sequencing analyses detected only An annularis A in the study areas. Overall genetic differentiation among An. annularis populations was moderate (FST = 0.048) and showed significant correlation between genetic distance and geographic distance (r = 0.882; P < 0.05). Angul population proved to be genetically unique and was highly divergent FST > 0.110) from other populations, suggesting low gene flow between them. The study indicated that only An. annularis A was found in Odisha with potential vectorial capacity that can play a major role in malaria transmission. ISSR markers proved to be useful molecular tools to evaluate genetic variability in An. annularis populations.  相似文献   

20.
In the tropics, Anopheles mosquito abundance is greatest during the wet season and decline significantly during the dry season as larval habitats shrink. Population size fluctuations between wet and dry seasons may lead to variation in distribution of specific alleles within natural Anopheles populations, and a possible effect on the population genetic structure. We used 11 microsatellite markers to examine the effect of seasonality on population genetic structure of Anopheles gambiae s.s. at two sites along the Kenyan coast. All loci were highly polymorphic with the total number of alleles for pooled samples ranging from 7 (locus ND36) to 21 (locus AG2H46). Significant estimates of genetic differentiation between sites and seasons were observed suggesting the existence of spatio-temporal subpopulation structuring. Genetic bottleneck analysis showed no indication of excess heterozygosity in any of the populations. These findings suggest that along the Kenyan coast, seasonality and site specific ecological factors can alter the genetic structure of A. gambiae s.s. populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号