首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Background: The nAcChoR is the prototypical member of a superfamily of ligand-gated ion channels that are all relevant targets of anesthetics and undergo desensitization upon prolonged exposure to agonist. This study was designed to investigate the effects of representative normal alcohols on the apparent rate of acetylcholine-induced nAcChoR desensitization.

Methods: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana. The apparent rate of acetylcholine-induced desensitization in the presence and absence of normal alcohols was measured using stopped-flow fluorescence.

Results: Normal alcohols as long as octanol (the longest studied) increased the apparent rate of desensitization induced by low concentrations of acetylcholine, shifting the agonist concentration-response curve for desensitization to the left. Ethanol, butanol, and, to a lesser extent, hexanol increased the maximal rate of desensitization induced by high, saturating concentrations of agonist. Beyond hexanol, heptanol and octanol had no effect on this maximal apparent rate of desensitization, even at concentrations that approach those that directly induce desensitization in the absence of agonist.  相似文献   


2.
Background: Volatile general anesthetics increase agonist-mediated ion flux through the gamma-aminobutyric acidA, glycine, and 5-hydroxytryptamine3 (5-HT3) receptors. This action reflects an anesthetic-induced increase in the apparent agonist affinity of these receptors. In contrast, volatile anesthetics block ion flux through the nicotinic acetylcholine receptor (nAcChoR). The authors tested the hypothesis that in addition to blocking ion flux through the nAcChoR, isoflurane also increases the apparent affinity of the nAcChoR for agonist.

Methods: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana. The apparent agonist affinity of the nAcChoR was determined using a new stopped-flow fluorescence assay. This assay derives the apparent agonist affinity of the nAcChoR from the apparent rates with which agonists convert nAcChoRs from the resting state to the desensitized state.

Results: Isoflurane significantly increased the apparent affinity (decreased the apparent dissociation constant) of acetylcholine for the nAcChoR at clinically relevant concentrations. The apparent dissociation constant decreased exponentially with the isoflurane concentration from a control value of 44 +/- 4 [micro sign]M to 1.0 +/- 0.1 [micro sign]M in the presence of 1.5 mM isoflurane, the highest concentration studied.  相似文献   


3.
Background: Although ether, alcohol, and halogenated alkane anesthetics potentiate agonist actions or increase the apparent agonist affinity of ligand-gated ion channels at clinically relevant concentrations, the effects of nonhalogenated alkane anesthetics on ligand-gated ion channels have not been studied. The current study assessed the abilities of two representative nonhalogenated alkane anesthetics (cyclopropane and butane) to potentiate agonist actions or increase the apparent agonist affinity of two representative ligand-gated ion channels: the nicotinic acetylcholine receptor and [gamma]-aminobutyric acid type A (GABAA) receptor.

Methods: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana, and human GABAA receptors ([alpha]1[beta]2[gamma]2L) were expressed in human embryonic kidney 293 cells. The Torpedo nicotinic acetylcholine receptors apparent agonist affinity in the presence and absence of anesthetic was assessed by measuring the apparent rates of desensitization induced by a range of acetylcholine concentrations. The GABAA receptor's apparent agonist affinity in the presence and absence of anesthetic was assessed by measuring the peak currents induced by a range of GABA concentrations.

Results: Neither cyclopropane nor butane potentiated agonist actions or increased the apparent agonist affinity (reduced the apparent agonist dissociation constant) of the Torpedo nicotinic acetylcholine receptor or GABAA receptor. At clinically relevant concentrations, cyclopropane and butane reduced the apparent rate of Torpedo nicotinic acetylcholine receptor desensitization induced by low concentrations of agonist.  相似文献   


4.
BACKGROUND: Although ether, alcohol, and halogenated alkane anesthetics potentiate agonist actions or increase the apparent agonist affinity of ligand-gated ion channels at clinically relevant concentrations, the effects of nonhalogenated alkane anesthetics on ligand-gated ion channels have not been studied. The current study assessed the abilities of two representative nonhalogenated alkane anesthetics (cyclopropane and butane) to potentiate agonist actions or increase the apparent agonist affinity of two representative ligand-gated ion channels: the nicotinic acetylcholine receptor and y-aminobutyric acid type A (GABA(A)) receptor. METHODS: Nicotinic acetylcholine receptors were obtained from the electroplax organ of Torpedo nobiliana, and human GABA(A) receptors (alpha1beta2gamma2L) were expressed in human embryonic kidney 293 cells. The Torpedo nicotinic acetylcholine receptors apparent agonist affinity in the presence and absence of anesthetic was assessed by measuring the apparent rates of desensitization induced by a range of acetylcholine concentrations. The GABA(A) receptor's apparent agonist affinity in the presence and absence of anesthetic was assessed by measuring the peak currents induced by a range of GABA concentrations. RESULTS: Neither cyclopropane nor butane potentiated agonist actions or increased the apparent agonist affinity (reduced the apparent agonist dissociation constant) of the Torpedo nicotinic acetylcholine receptor or GABA(A) receptor. At clinically relevant concentrations, cyclopropane and butane reduced the apparent rate of Torpedo nicotinic acetylcholine receptor desensitization induced by low concentrations of agonist. CONCLUSIONS: Our results suggest that the in vivo central nervous system depressant effects of nonhalogenated alkane anesthetics do not result from their abilities to potentiate agonist actions on ligand-gated ion channels. Other targets or mechanisms more likely account for the anesthetic activities of nonhalogenated alkane anesthetics.  相似文献   

5.
BACKGROUND: Isoflurane increases the apparent agonist affinity of ligand-gated ion channels. This action reflects a reduction in the receptor's agonist dissociation constant and/or the preopen/open channel state equilibrium. To evaluate the effect of isoflurane on each of these kinetic constants in the nicotinic acetylcholine receptor, the authors analyzed isoflurane's actions on (1) the binding of the fluorescent agonist Dns-C6-Cho to the nicotinic acetylcholine receptor's agonist self-inhibition site and (2) the desensitization kinetics induced by the binding of the weak partial agonist suberyldicholine. METHODS: The dissociation constant for Dns-C6-Cho binding to the self-inhibitory site was determined using stopped-flow fluorescence spectroscopy. The values of the kinetic constants for agonist binding, channel gating, and desensitization were determined by modeling the suberyldicholine concentration-dependence of the apparent rate of desensitization. RESULTS: Isoflurane did not significantly alter the dissociation constant for Dns-C6-Cho binding to the self-inhibitory site even at a concentration as high as 1.5 mM, the highest concentration studied. At this concentration, isoflurane substantially reduced the dissociation constant for suberyldicholine binding to its channel opening site by 97% from 17 +/- 5 microM to 0.5 +/- 0.2 microM, whereas the preopen/open channel state equilibrium was reduced only from 19.1 to 5 +/- 1. CONCLUSIONS: Isoflurane increases the apparent agonist affinity of the nicotinic acetylcholine receptor primarily by reducing the agonist dissociation constant of the site responsible for channel opening rather than altering channel gating kinetics.  相似文献   

6.
Background: General anesthetics are thought to induce anesthesia through their actions on ligand-gated ion channels. One such channel, the nicotinic acetylcholine receptor (nAcChoR), can be found in different subtypes in the central nervous system and at the periphery in the neuromuscular junction. The latter subtype of the nAcChoR is a useful model for examining interactions between general anesthetics and ligand-gated ion channels, because it can be isolated and purified in sufficient quantities to allow for biophysical and biochemical studies. This study examines the actions of general anesthetics on agonist-induced conversion of the nAcChoR to inactive desensitized conformational states.

Methods: Nicotinic acetylcholine receptor membranes were purified from the electric organ of Torpedo nobiliana. Agonist-induced desensitization was characterized from the time-dependent increase in fluorescence intensity that results from the binding of the fluorescent acetylcholine analog, Dns-C6 -Cho, to the nAcChoR.

Results: Mixing Dns-C6 -Cho with nAcChoR-rich membranes results in an increase in fluorescence that is characterized by four rate processes. Concentrations of isoflurane and butanol, which range from subclinical to toxic increase the rates of the third and fourth components of fluorescence, corresponding to fast and slow desensitization, respectively. At concentrations that are twice their EC sub 50 s for anesthesia, isoflurane, butanol, chloroform, methanol, and cyclopentane-methanol increase the apparent rates of fast and slow desensitization by an average of 92 plus/minus 22% and 108 plus/minus 22%, respectively.  相似文献   


7.
Background: Isoflurane increases the apparent agonist affinity of ligand-gated ion channels. This action reflects a reduction in the receptor's agonist dissociation constant and/or the preopen/open channel state equilibrium. To evaluate the effect of isoflurane on each of these kinetic constants in the nicotinic acetylcholine receptor, the authors analyzed isoflurane's actions on (1) the binding of the fluorescent agonist Dns-C6-Cho to the nicotinic acetylcholine receptor's agonist self-inhibition site and (2) the desensitization kinetics induced by the binding of the weak partial agonist suberyldicholine.

Methods: The dissociation constant for Dns-C6-Cho binding to the self-inhibitory site was determined using stopped-flow fluorescence spectroscopy. The values of the kinetic constants for agonist binding, channel gating, and desensitization were determined by modeling the suberyldicholine concentration-dependence of the apparent rate of desensitization.

Results: Isoflurane did not significantly alter the dissociation constant for Dns-C6-Cho binding to the self-inhibitory site even at a concentration as high as 1.5 mM, the highest concentration studied. At this concentration, isoflurane substantially reduced the dissociation constant for suberyldicholine binding to its channel opening site by 97% from 17 +/- 5 [mu]M to 0.5 +/- 0.2 [mu]M, whereas the preopen/open channel state equilibrium was reduced only from 19.1 to 5 +/- 1.  相似文献   


8.
Background: Although it has been suggested that anesthetics alter protein conformational states by binding to nonpolar sites within the interior regions of proteins, the rate and extent to which anesthetics penetrate membrane proteins has not been characterized. The authors report the use of steady-state and stopped-flow spectroscopy to characterize the interactions of halothane with receptor membranes.

Methods: Steady-state and stopped-flow fluorescence spectroscopy was used to characterize halothane quenching of nicotinic acetylcholine receptor (nAcChoR)-rich membrane intrinsic fluorescence and the rate of isoflurane-induced nAcChoR desensitization.

Results: At equilibrium, halothane quenched only 54 +/- 1.4% of all tryptophan fluorescence. Diethyl ether failed to reduce fluorescence quenching by halothane, suggesting that it does not bind to the same protein sites as halothane. Stopped-flow fluorescence traces defined two kinetic components of quenching: a fast component that occurred in less than 1 ms followed by a slower biphasic fluorescence decay. Protein unfolding with sodium dodecyl sulfate reduced halothane's Stern-Volmer quenching constant, eliminated the biphasic decay, and rendered fluorescence accessible to quenching by halothane within 1 ms. Functional studies indicate that anesthetic-induced desensitization of nAcChoR occurs in less than 2 ms.  相似文献   


9.
Background: The investigation examined whether primary alcohols could be used as tools to explore the mechanism of anesthetic actions in airway smooth muscle (ASM). The hypothesis was that, like volatile anesthetics, the primary alcohols relax intact ASM by decreasing intracellular Ca2+ concentration ([Ca2+]i) and by inhibiting agonist-induced increases in the force developed for a given [Ca2+]i (Ca2+ sensitivity).

Method: The effects of butanol, hexanol, and octanol on isometric force in canine tracheal smooth muscle were examined. The effects of hexanol on [Ca2+]i (measured with fura-2) and the relationship between force and [Ca2+]i were studied during membrane depolarization provided by KCl and during muscarinic stimulation provided by acetylcholine.

Results: The primary alcohols relaxed ASM contracted by KCl or acetylcholine in a concentration-dependent manner, with potency increasing as chain length increased. The alcohols could completely relax the strips, even during maximal stimulation with 10 [mu]m acetylcholine (median effective concentrations of 28 +/- 12, 1.3 +/- 0.4, and 0.14 +/- 0.05 mm [mean +/- SD] for butanol, hexanol, and octanol, respectively). Hexanol decreased both [Ca2+]i and force in a concentration-dependent manner. Hexanol decreased Ca2+ sensitivity during muscarinic stimulation but had no effect on the force-[Ca2+]i relationship in its absence.  相似文献   


10.
BACKGROUND: The investigation examined whether primary alcohols could be used as tools to explore the mechanism of anesthetic actions in airway smooth muscle (ASM). The hypothesis was that, like volatile anesthetics, the primary alcohols relax intact ASM by decreasing intracellular Ca2+ concentration ([Ca2+]i) and by inhibiting agonist-induced increases in the force developed for a given [Ca2+]i (Ca2+ sensitivity). METHOD: The effects of butanol, hexanol, and octanol on isometric force in canine tracheal smooth muscle were examined. The effects of hexanol on [Ca2+]i (measured with fura-2) and the relationship between force and [Ca2+]i were studied during membrane depolarization provided by KCl and during muscarinic stimulation provided by acetylcholine. RESULTS: The primary alcohols relaxed ASM contracted by KCl or acetylcholine in a concentration-dependent manner, with potency increasing as chain length increased. The alcohols could completely relax the strips, even during maximal stimulation with 10 microM acetylcholine (median effective concentrations of 28 +/- 12, 1.3 +/- 0.4, and 0.14 +/- 0.05 mM [mean +/- SD] for butanol, hexanol, and octanol, respectively). Hexanol decreased both [Ca2+]i and force in a concentration-dependent manner. Hexanol decreased Ca2+ sensitivity during muscarinic stimulation but had no effect on the force-[Ca2+]i relationship in its absence. CONCLUSIONS: Primary alcohols produce reversible, complete relaxation of ASM, with potency increasing as chain length increases, by decreasing [Ca2+]i and inhibiting increases in Ca2+ sensitivity produced by muscarinic receptor stimulation. These actions mimic those of volatile anesthetics on ASM, a circumstance suggesting that the primary alcohols may be useful tools for further exploring mechanisms of anesthetic effects on ASM.  相似文献   

11.
Background: The Meyer-Overton rule predicts that an anesthetic's potency will correlate with its oil solubility. A group of halogenated volatile compounds that disobey this rule has been characterized. These compounds do not induce anesthesia in rats at partial pressures exceeding those predicted by the Meyer-Overton rule to be anesthetic. The observation that potentiation of GABAA receptor responses by anesthetic and nonanesthetic halogenated volatile compounds correlates with their abilities to induce general anesthesia suggests that this receptor is involved in the mechanism of general anesthesia. However, the GABAA receptor is only one member of a superfamily of structurally similar ligand-gated ion channels. This study compares the actions of both anesthetic and nonanesthetic halogenated volatile compounds on another member of this superfamily of receptors, the nicotinic acetylcholine receptor (nAcChoR).

Methods: The actions of both anesthetic and nonanesthetic compounds on desensitization kinetics were characterized from the time-dependent binding of the fluorescent acetylcholine analogue, Dns-C6 -Cho, to the nAcChoR.

Results: At concentrations predicted by the Meyer-Overton rule to be equianesthetic, the anesthetics isoflurane and enflurane were significantly more effective than the nonanesthetics 1,2-dichlorohexafluorocyclobutane and 2,3-dichlorooctafluorobutane in enhancing the fraction of receptors preexisting in the slow desensitized state and increasing the apparent rates of agonist-induced fast and slow desensitization.  相似文献   


12.
BACKGROUND: The mechanism by which propofol selectively attenuates the pulmonary vasodilator response to acetylcholine is unknown. The goals of this study were to identify the contributions of endogenous endothelial mediators (nitric oxide [NO], prostacyclin, and endothelium-derived hyperpolarizing factors [EDHFs]) to acetylcholine-induced pulmonary vasorelaxation, and to delineate the extent to which propofol attenuates responses to these endothelium-derived relaxing factors. METHODS: Canine pulmonary arterial rings were suspended for isometric tension recording. The effects of propofol on the vasorelaxation responses to acetylcholine, bradykinin, and the guanylyl cyclase activator, SIN-1, were assessed in phenylephrine-precontracted rings. The contributions of NO, prostacyclin, and EDHFs to acetylcholine-induced vasorelaxation were assessed in control and propofol-treated rings by pretreating the rings with a NO synthase inhibitor (l-NAME), a cyclooxygenase inhibitor (indomethacin), and a cytochrome P450 inhibitor (clotrimazole or SKF 525A) alone and in combination. RESULTS: Propofol caused a dose-dependent rightward shift in the acetylcholine dose-response relation, whereas it had no effect on the pulmonary vasorelaxant responses to bradykinin or SIN-1. Cyclooxygenase inhibition only attenuated acetylcholine-induced relaxation at high concentrations of the agonist. NO synthase inhibition and cytochrome P450 inhibition each attenuated the response to acetylcholine, and combined inhibition abolished the response. Propofol further attenuated acetylcholine-induced relaxation after NO synthase inhibition and after cytochrome P450 inhibition. CONCLUSION: These results suggest that acetylcholine-induced pulmonary vasorelaxation is mediated by two components: NO and a cytochrome P450 metabolite likely to be an EDHF. Propofol selectively attenuates acetylcholine-induced relaxation by inhibiting both of these endothelium-derived mediators.  相似文献   

13.
Background: The mechanism by which propofol selectively attenuates the pulmonary vasodilator response to acetylcholine is unknown. The goals of this study were to identify the contributions of endogenous endothelial mediators (nitric oxide [NO], prostacyclin, and endothelium-derived hyperpolarizing factors [EDHFs]) to acetylcholine-induced pulmonary vasorelaxation, and to delineate the extent to which propofol attenuates responses to these endothelium-derived relaxing factors.

Methods: Canine pulmonary arterial rings were suspended for isometric tension recording. The effects of propofol on the vasorelaxation responses to acetylcholine, bradykinin, and the guanylyl cyclase activator, SIN-1, were assessed in phenylephrine-precontracted rings. The contributions of NO, prostacyclin, and EDHFs to acetylcholine-induced vasorelaxation were assessed in control and propofol-treated rings by pretreating the rings with a NO synthase inhibitor (l-NAME), a cyclooxygenase inhibitor (indomethacin), and a cytochrome P450 inhibitor (clotrimazole or SKF 525A) alone and in combination.

Results: Propofol caused a dose-dependent rightward shift in the acetylcholine dose-response relation, whereas it had no effect on the pulmonary vasorelaxant responses to bradykinin or SIN-1. Cyclooxygenase inhibition only attenuated acetylcholine-induced relaxation at high concentrations of the agonist. NO synthase inhibition and cytochrome P450 inhibition each attenuated the response to acetylcholine, and combined inhibition abolished the response. Propofol further attenuated acetylcholine-induced relaxation after NO synthase inhibition and after cytochrome P450 inhibition.  相似文献   


14.
Raines DE  Claycomb RJ 《Anesthesia and analgesia》2002,95(2):356-61, table of contents
Isoflurane and normal alkanols reduce the apparent agonist dissociation constant (Kd) of the nicotinic acetylcholine receptor (nAChR) at clinically relevant concentrations, whereas cyclopropane and butane do not. This suggests that electrostatic (hydrogen bonding and/or dipolar) interactions modulate anesthetic potency in this model receptor system. To further define the nature of these interactions, we quantified the potencies with which a heterologous group of general anesthetics reduces the nAChR's apparent Kd for acetylcholine. We assessed the importance that an anesthetic's molecular volume, ability to donate a hydrogen bond (hydrogen bond acidity), ability to accept a hydrogen bond (hydrogen bond basicity), and dipole moment play in determining aqueous potency. We found that aqueous anesthetic potency increases with molecular volume and decreases with hydrogen bond basicity but is unaffected by dipole moment and hydrogen bond acidity. These results suggest that anesthetics reduce the apparent agonist Kd of the nAChR by binding to a site that has a dipolarity and ability to accept hydrogen bonds that are similar to those of water, but a hydrogen bond-donating capacity that is less. IMPLICATIONS: Anesthetics representing a wide range of chemical classes reduce the apparent agonist dissociation constant of the Torpedo nicotinic acetylcholine receptor with aqueous potencies that are governed by their molecular volumes and hydrogen bond basicities. However, neither their hydrogen bond acidities nor dipole moments influence aqueous potency.  相似文献   

15.
Sohn JT  Ok SH  Kim HJ  Moon SH  Shin IW  Lee HK  Chung YK 《Anesthesiology》2004,101(1):89-96
BACKGROUND: Previous study has shown that fentanyl attenuates acetylcholine-induced vasorelaxation. The goal of the current in vitro study was to identify the muscarinic receptor subtype that is mainly involved in the fentanyl-induced attenuation of endothelium-dependent relaxation elicited by acetylcholine. METHODS: The effects of fentanyl and muscarinic receptor antagonists on the acetylcholine concentration-response curve were assessed in aortic vascular smooth muscle ring preparations precontracted with phenylephrine. In the rings pretreated independently with pirenzepine, 4-diphenylacetoxyl-N-methylpiperidine methiodide, and naloxone, acetylcholine concentration-response curves were generated in the presence and absence of fentanyl. The effect of fentanyl on the concentration-response curve for calcium ionophore A23187 was assessed. RESULTS: Fentanyl (0.297 x 10 0.785 x 10 m) attenuated acetylcholine-induced vasorelaxation in ring preparations with or without 10 m naloxone. Pirenzepine (10 to 10 m) and 4-diphenylacetoxyl-N-methylpiperidine methiodide (10 to 10 m) produced a parallel rightward shift in the acetylcholine concentration-response curve. The concentrations (-log M) of pirenzepine and 4-diphenylacetoxyl-N-methylpiperidine methiodide necessary to displace the concentration-response curve of an acetylcholine by twofold were estimated to be 6.886 +/- 0.070 and 9.256 +/- 0.087, respectively. Methoctramine, 10 m, did not alter the acetylcholine concentration-response curve. Fentanyl, 0.785 x 10 m, attenuated acetylcholine-induced vasorelaxation in the rings pretreated with 10 m pirenzepine but had no effect on vasorelaxation in the rings pretreated with 10 m 4-diphenylacetoxyl-N-methylpiperidine methiodide. Fentanyl, 0.785 x 10 m, did not significantly alter calcium ionophore A23187-induced vasorelaxation. CONCLUSIONS: These results indicate that fentanyl attenuates acetylcholine-induced vasorelaxation via an inhibitory effect at a level proximal to nitric oxide synthase activation on the pathway involving endothelial M3 muscarinic receptor activation in rat aorta.  相似文献   

16.
The in vitro chronotropic and inotropic effects of norepinephrine and acetylcholine in isolated right and left guinea pig atria were examined in the absence and presence of halothane, isoflurane, and enflurane (0.6 and 1.2 MAC). All three anesthetics elicited dose-dependent reductions in contractile force and spontaneous pacemaker activity. The maximal developed tension observed in the presence of norepinephrine was not altered by the anesthetics and corresponding ED50 values increased only in the presence of 1.2 MAC halothane and 1.2 MAC isoflurane. The anesthetics did not affect (a) the maximal positive chronotropic effect of norepinephrine, (b) the ED50 values for its positive chronotropic effect, and (c) acetylcholine-induced negative inotropic and chronotropic actions and did not induce arrhythmic activity even in the presence of the maximally effective neurotransmitter concentrations. These findings indicate that in isolated guinea pig atria volatile anesthetics, in concentrations up to 1.2 MAC, do not alter the inotropic and chronotropic effects of norepinephrine or acetylcholine and do not induce arrhythmogenic action in the presence of the neurotransmitters. These data suggest that altered atrial responsiveness to adrenergic or muscarinic stimulation does not contribute to the development of anesthetic-induced cardiac arrhythmias.  相似文献   

17.
The molecular mechanisms by which general anesthetics act on postsynaptic membranes can only be worked out in a highly purified, homogeneous system. The nicotinic acetylcholine receptor-rich membranes from the electric tissue of Torpedo californica are currently the only postsynaptic membranes that fulfill this condition. Is this peripheral synapse acted on with a pharmacologic specificity similar to that for general anesthesia, and how much less sensitive is it to anesthetic action than the unknown central site? To answer these questions, the authors studied the effects of 13 anesthetic compounds, including volatile general anesthetics, alkanols, and urethane, on the equilibrium binding of 3H-acetylcholine to these nicotinic receptors. As the anesthetic concentration was raised, all the agents first increased acetylcholine binding steeply and then, with few exceptions, decreased it again at higher concentrations. Anesthetics increased acetylcholine binding by decreasing acetylcholine's dissociation constant without changing the Hill coefficient or the number of sites. To a first approximation, the relative ability of these agents to increase 3H-acetylcholine binding parallels that of anesthesia in vivo as predicted by the Meyer-Overton lipid solubility rule. On average, they produced half maximal increases in acetylcholine binding (EC50) at about four times the concentration that causes loss of righting reflex in one-half of a group of animals (ED50). However, a few agents deviated from this relationship. They were the agents with greatest general anesthetic potency in both the volatile anesthetic series (thiomethoxyflurane) and the normal alcohol series (octanol), and required up to 17 times their ED50s to achieve a half effect on acetylcholine binding. Although the concentrations required were high, these effects were reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Background: Previous study has shown that fentanyl attenuates acetylcholine-induced vasorelaxation. The goal of the current in vitro study was to identify the muscarinic receptor subtype that is mainly involved in the fentanyl-induced attenuation of endothelium-dependent relaxation elicited by acetylcholine.

Methods: The effects of fentanyl and muscarinic receptor antagonists on the acetylcholine concentration-response curve were assessed in aortic vascular smooth muscle ring preparations precontracted with phenylephrine. In the rings pretreated independently with pirenzepine, 4-diphenylacetoxyl-N-methylpiperidine methiodide, and naloxone, acetylcholine concentration-response curves were generated in the presence and absence of fentanyl. The effect of fentanyl on the concentration-response curve for calcium ionophore A23187 was assessed.

Results: Fentanyl (0.297 x 10-6, 0.785 x 10-6 m) attenuated acetylcholine-induced vasorelaxation in ring preparations with or without 10-6 m naloxone. Pirenzepine (10-7 to 10-6 m) and 4-diphenylacetoxyl-N-methylpiperidine methiodide (10-9 to 10-8 m) produced a parallel rightward shift in the acetylcholine concentration-response curve. The concentrations (- log M) of pirenzepine and 4-diphenylacetoxyl-N-methylpiperidine methiodide necessary to displace the concentration-response curve of an acetylcholine by twofold were estimated to be 6.886 +/- 0.070 and 9.256 +/- 0.087, respectively. Methoctramine, 10-7 m, did not alter the acetylcholine concentration-response curve. Fentanyl, 0.785 x 10-6 m, attenuated acetylcholine-induced vasorelaxation in the rings pretreated with 10-7 m pirenzepine but had no effect on vasorelaxation in the rings pretreated with 10-8 m 4-diphenylacetoxyl-N-methylpiperidine methiodide. Fentanyl, 0.785 x 10-6 m, did not significantly alter calcium ionophore A23187-induced vasorelaxation.  相似文献   


19.
Background: It is well established that neuronal nicotinic acetylcholine receptors (nAChRs) are sensitive to inhalational anesthetics. The authors previously reported that halothane potently blocked [alpha]4[beta]2-type nAChRs of rat cortical neurons. However, the effect of isoflurane, which is widely used clinically, on nAChRs largely remains to be seen. The authors studied the effects of isoflurane as compared with sevoflurane and halothane on the human [alpha]4[beta]2 nAChRs expressed in human embryonic kidney cells.

Methods: The whole-cell and single-channel patch clamp techniques were used to record currents induced by acetylcholine.

Results: Isoflurane, sevoflurane, and halothane suppressed the acetylcholine-induced currents in a concentration-dependent manner with 50% inhibitory concentrations of 67.1, 183.3, and 39.8 [mu]m, respectively, which correspond to 0.5 minimum alveolar concentration or less. When anesthetics were coapplied with acetylcholine, isoflurane and sevoflurane decreased the apparent affinity of receptor for acetylcholine, but halothane, in addition, decreased the maximum acetylcholine current. When isoflurane was preapplied and coapplied, its inhibitory action was independent of acetylcholine concentration. Isoflurane blocked the nAChR in both resting and activated states. Single-channel analyses revealed that isoflurane at 84 [mu]m decreased the mean open time and burst duration without inducing "flickering" during channel openings. Isoflurane increased the mean closed time. As a result, the open probability of single channels was greatly reduced by isoflurane.  相似文献   


20.
Ding X  Damron DS  Murray PA 《Anesthesiology》2005,102(3):588-596
BACKGROUND: The authors investigated the extent and cellular mechanisms by which the intravenous anesthetic ketamine alters acetylcholine-induced contraction in pulmonary veins (PVs). They tested the hypothesis that ketamine inhibits acetylcholine contraction in PVs. METHODS: Canine PV rings with endothelium (E+) and without endothelium (E-) were isolated for measurement of isometric tension. The effects of ketamine (10(-5) m approximately 10(-3) m) on acetylcholine contraction were assessed in E+ and E- rings. The effects of inhibiting nitric oxide synthase on ketamine-induced changes in acetylcholine contraction were investigated in E+ rings, whereas the effects of Ca2+ influx and Ca2+ release were investigated in E- rings. In fura-2 loaded E- PV strips, the effects of ketamine (10(-4) m) on the intracellular Ca2+ concentration-tension relation (i.e., myofilament Ca sensitivity) were assessed in the presence or absence of acetylcholine. The roles of the protein kinase C and rho-kinase signaling pathways in ketamine-induced changes in myofilament Ca2+ sensitivity were also investigated. RESULTS: Ketamine caused dose-dependent (P < 0.001) inhibition of acetylcholine contraction in E+ and E- PV rings. The ketamine-induced attenuation of acetylcholine contraction was still observed after inhibition of nitric oxide synthase (P = 0.002), Ca2+ influx (P < 0.001), and Ca2+ release (P = 0.021). Ketamine alone had no effect on myofilament Ca2+ sensitivity (P = 0.892) but attenuated (P = 0.038) the acetylcholine-induced increase in myofilament Ca2+ sensitivity. This attenuation was still observed after rho-kinase inhibition (P = 0.039), whereas it was abolished by protein kinase C inhibition (P = 0.798). CONCLUSIONS: Ketamine attenuates acetylcholine contraction by inhibiting the acetylcholine-induced increase in myofilament Ca2+ sensitivity, which is mediated by the protein kinase C signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号