首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth-factor homologous factor (FHF1) gene variants have recently been associated with developmental and epileptic encephalopathy (DEE). FHF1 encodes a cytosolic protein that modulates neuronal sodium channel gating. We aim to refine the electroclinical phenotypic spectrum of patients with pathogenic FHF1 variants. We retrospectively collected clinical, genetic, neurophysiologic, and neuroimaging data of 17 patients with FHF1-DEE. Sixteen patients had recurrent heterozygous FHF1 missense variants: 14 had the recurrent p.Arg114His variant and two had a novel likely pathogenic variant p.Gly112Ser. The p.Arg114His variant is associated with an earlier onset and more severe phenotype. One patient carried a chromosomal microduplication involving FHF1. Twelve patients carried a de novo variant, five (29.5%) inherited from parents with gonadic or somatic mosaicism. Seizure onset was between 1 day and 41 months; in 76.5% it was within 30 days. Tonic seizures were the most frequent seizure type. Twelve patients (70.6%) had drug-resistant epilepsy, 14 (82.3%) intellectual disability, and 11 (64.7%) behavioral disturbances. Brain magnetic resonance imaging (MRI) showed mild cerebral and/or cerebellar atrophy in nine patients (52.9%). Overall, our findings expand and refine the clinical, EEG, and imaging phenotype of patients with FHF1-DEE, which is characterized by early onset epilepsy with tonic seizures, associated with moderate to severe ID and psychiatric features.  相似文献   

2.
3.
Dynamin‐1‐like protein (DNM1L) gene variants have been linked to childhood refractory epilepsy, developmental delay, encephalopathy, microcephaly, and progressive diffuse cerebral atrophy. However, only a few cases have been reported in the literature and there is still a limited amount of information about the symptomatology and pathophysiology associated with pathogenic variants of DNM1L. We report a 10‐year‐old girl with a one‐year history of mild learning disorder and absence seizures who presented with new‐onset focal status epilepticus which progressed to severe encephalopathy and asymmetric hemispheric cerebral atrophy. Differential diagnosis included mitochondrial disease, Rasmussen's encephalitis, and autoimmune encephalitis. Disease progressed from one hemisphere to the other despite anti‐seizure medications, hemispherectomy, vagus nerve stimulator, ketogenic diet, and immunomodulators. Continued cerebral atrophy and refractory seizures evolved until death four years after initial presentation. Post‐mortem whole‐exome sequencing revealed a pathogenic DNM1L variant. This paper presents a novel case of adolescent‐onset DNM1L‐related intractable epilepsy and encephalopathy.  相似文献   

4.
SCN1A is one of the most relevant epilepsy genes. In general, de novo severe mutations, such as truncating mutations, lead to a classic form of Dravet syndrome (DS), while missense mutations are associated with both DS and milder phenotypes within the GEFS+ spectrum, however, these phenotype‐genotype correlations are not entirely consistent. Case report. We report an 18‐year‐old woman with a history of recurrent febrile generalized tonic‐clonic seizures (GTCS) starting at age four months and afebrile asymmetric GTCS and episodes of arrest, suggestive of focal impaired awareness seizures, starting at nine months. Her psychomotor development was normal. Sequencing of SCN1A revealed a heterozygous de novo truncating mutation (c.5734C>T, p.Arg1912X) in exon 26. Conclusion. Truncating mutations in SCN1A may be associated with milder phenotypes within the GEFS+ spectrum. Accordingly, SCN1A gene testing should be performed as part of the assessment for sporadic patients with mild phenotypes that fit within the GEFS+ spectrum, since the finding of a mutation has diagnostic, therapeutic and genetic counselling implications.  相似文献   

5.
ObjectivesMutations in GNAO1 have been described in 11 patients to date. Although most of these individuals had epileptic encephalopathy, four patients had a severe movement disorder as the prominent feature. We describe the largest series of patients with de novo GNAO1 mutations who have severe chorea, developmental delay, and hypotonia in the absence of epilepsy.MethodsSix patients with recurrent missense mutations in GNAO1 as detected by whole exome sequencing were identified at three institutions. We describe the presentation, clinical course, and response to treatment of these patients.ResultsAll six patients exhibited global developmental delay and hypotonia from infancy. Chorea developed by age four years in all but one patient, who developed chorea at 14 years. Treatments with neuroleptics and tetrabenazine were most effective in the baseline management of chorea. The chorea became gradually progressive and marked by episodes of severe, refractory ballismus requiring intensive care unit admissions in four of six patients. Exacerbations indirectly led to the death of two patients.ConclusionsPatients with GNAO1 mutations can present with a severe, progressive movement disorder in the absence of epilepsy. Exacerbations may be refractory to treatment and can result in life-threatening secondary complications. Early and aggressive treatment of these exacerbations with direct admission to intensive care units for treatment with anesthetic drips may prevent some secondary complications. However the chorea and ballismus can be refractory to maximum medical therapy.  相似文献   

6.
7.
Progressive myoclonus epilepsy (PME) is a distinct group of seizure disorders characterized by gradual neurological decline with ataxia, myoclonus and recurring seizures. There are several forms of PME, among which the most recently described is MEAK ‐ myoclonus epilepsy and ataxia due to potassium channel mutation. This particular subtype is caused by a recurrent de novo heterozygous mutation (c.959G>A, p.Arg320His) in the KCNC1 gene, which maps to chromosome 11 and encodes for the Kv3.1 protein (a subunit of the Kv3 subfamily of voltage‐gated potassium channels). Loss of Kv3 function disrupts the firing properties of fast‐spiking neurons, affects neurotransmitter release and induces cell death. Specifically regarding Kv3.1 malfunctioning, the most affected neurons include inhibitory GABAergic interneurons and cerebellar neurons. Impairment of the former cells is believed to contribute to myoclonus and seizures, whereas dysfunction of the latter to ataxia and tremor. Phenotypically, MEAK patients generally have a normal early development. At the age of 6 to 14 years, they present with myoclonus, which tends to progressively worsen with time. Tonic‐clonic seizures may or may not be present, and some patients develop mild cognitive impairment following seizure onset. Typical electroencephalographic features comprise generalized epileptiform discharges and, in some cases, photosensitivity. Brain imaging is either normal or shows cerebellar atrophy. The identification of MEAK has both expanded the phenotypic and genotypic spectra of PME and established an emerging role for de novo mutations in PME.  相似文献   

8.
We report on a 4-year-old girl with a de novo GNAO1 mutation who had neurological findings, including decreased spontaneous movements, hypotonia, and dystonic features. She was referred to our hospital because of delayed psychomotor development. She showed hypotonia and decreased spontaneous movements. Voluntary movements of the limbs were more frequent in the lower extremities than in the upper extremities. Occasional dyskinetic features, such as awkward hand/foot posturing and grimacing, were seen during the voluntary movements. Serum metabolic screening, head magnetic resonance imaging, and electroencephalography were unremarkable. Whole-exome sequencing revealed a de novo mutation in the patient’s GNAO1 gene, c.709 G?>?A (p.E237K). We calculated the free-energy change using the FoldX Suite to evaluate the impact of the E237K mutation. The FoldX calculations showed an increased free-energy change in the active state of the GNAO1 protein, indicating that the E237K mutation destabilizes the active state complexes. No seizures, chorea, tremor, or myoclonia, which are frequently reported in patients with GNAO1 mutations, were observed as of the last follow up. Our patient will improve the understanding of early neurological features in patients with GNAO1 mutations.  相似文献   

9.
Variants in KCNQ2 encoding for Kv7.2 neuronal K+ channel subunits lead to a spectrum of neonatal‐onset epilepsies, ranging from self‐limiting forms to severe epileptic encephalopathy. Most KCNQ2 pathogenic variants cause loss‐of‐function, whereas few increase channel activity (gain‐of‐function). We herein provide evidence for a new phenotypic and functional profile in KCNQ2‐related epilepsy: infantile spasms without prior neonatal seizures associated with a gain‐of‐function gene variant. With use of an international registry, we identified four unrelated patients with the same de novo heterozygous KCNQ2 c.593G>A, p.Arg198Gln (R198Q) variant. All were born at term and discharged home without seizures or concern of encephalopathy, but developed infantile spasms with hypsarrhythmia (or modified hypsarrhythmia) between the ages of 4 and 6 months. At last follow‐up (ages 3–11 years), all patients were seizure‐free and had severe developmental delay. In vitro experiments showed that Kv7.2 R198Q subunits shifted current activation gating to hyperpolarized potentials, indicative of gain‐of‐function; in neurons, Kv7.2 and Kv7.2 R198Q subunits similarly populated the axon initial segment, suggesting that gating changes rather than altered subcellular distribution contribute to disease molecular pathogenesis. We conclude that KCNQ2 R198Q is a model for a new subclass of KCNQ2 variants causing infantile spasms and encephalopathy, without preceding neonatal seizures. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here  相似文献   

10.
We report on two patients, with different POLG mutations, in whom axonal neuropathy dominated the clinical picture. One patient presented with late onset sensory axonal neuropathy caused by a homozygous c.2243G>C (p.Trp748Ser) mutation that resulted from uniparental disomy of the long arm of chromosome 15. The other patient had a complex phenotype that included early onset axonal Charcot‐Marie‐Tooth disease (CMT) caused by compound heterozygous c.926G>A (p.Arg309His) and c.2209G>C (p.Gly737Arg) mutations.  相似文献   

11.
Benign familial neonatal epilepsy (BFNE) is caused, in about 5% of families, by mutations in the KCNQ3 gene encoding voltage‐gated potassium channel subunits. Usually, newborns with BFNE show a normal neurological outcome, but recently, refractory seizures and/or developmental disability have been reported suggesting phenotype variability associated with KCNQ3‐related BFNE. Here, we describe a proband from a BFNE family carrying a novel variant in the KCNQ3 gene. Regarding the paucity of data in the literature, we describe the presented case with a view to further establishing: (1) a genotype/phenotype correlation in order to define a BFNE phenotype associated with favourable outcome; (2) an electroclinical pattern associated with BFNE based on video‐EEG recording; (3) appropriate first‐line AEDs; and (4) the duration of AED treatment. The presented case from Day 3 exhibited a cluster of ictal events, identified as epileptic seizures on Day 10 based on continuous video‐EEG polygraphy. The seizures were characterized by asymmetric tonic posturing, associated with a generalized decrease in EEG amplitude, and followed by bilateral asynchronous clonic movements associated with bicentral sharp‐wave discharges. The seizures were refractory to intravenous pyridoxine, whereas levetiracetam resulted in rapid total seizure control which has remained to date. This study demonstrates that the novel heterozygous KCNQ3 (c. 914A>T; p.Asp305Val) variant, affecting residues in the pore region, is associated with a specific electroclinical pattern and favourable neurodevelopmental outcome. [Published with video sequence on www.epilepticdisorders.com ]  相似文献   

12.
Aims. Reelin mutations are responsible for a minority of families with autosomal dominant lateral temporal lobe epilepsy. Here, we report a novel nuclear family with distinct clinical and neuroradiological findings. Methods. We studied the proband and her mother by means of EEG, video‐EEG, 3T MRI, FDG‐PET and genetic testing. Results. Both patients had a focal drug‐resistant epilepsy with onset at the age of 16 and focal seizures with typical auditory features combined with fear, followed by loss of contact or evolving to bilateral tonic‐clonic seizures. The proband's ictal EEG showed clear left temporal seizure onset, and cerebral MRI revealed subtle left temporal changes (mild hypotrophy, slight blurring of the white and grey matter and hyperintensity) with corresponding left temporal mesial focal hypometabolism on FDG‐PET. Genetic testing identified a missense variant, c.6631C>T (p.Arg2211Cys), in reelin repeat #5 in both patients, which markedly affected the secretion of the protein. Conclusion. The data from this family support previous findings indicating that reelin mutations are a cause of autosomal dominant lateral temporal lobe epilepsy which has a clinical spectrum that may also encompass drug‐resistant epilepsy associated with mild MRI temporal changes.  相似文献   

13.
《Brain & development》2022,44(2):142-147
IntroductionMutations in QARS1, which encodes human glutaminyl-tRNA synthetase, have been associated with epilepsy, developmental regression, progressive microcephaly and cerebral atrophy. Epilepsy caused by variants in QARS1 is usually drug-resistant and intractable. Childhood onset epilepsy is also reported in various aminoacyl-tRNA synthetase disorders. We describe a case with a milder neurological phenotype than previously reported with QARS1 variants and review the seizure associations with aminoacyl-tRNA synthetase disorders.Case reportThe patient is a 4-year-old girl presenting at 6 weeks of age with orofacial dyskinesia and hand stereotypies. She developed focal seizures at 7 months of age. Serial electroencephalograms showed shifting focality. Her seizures were controlled after introduction of carbamazepine. Progress MRI showed very mild cortical volume loss without myelination abnormalities or cerebellar atrophy. She was found to have novel compound heterozygous variants in QARS1 (NM_005051.2): c.[1132C > T];[1574G > A], p.[(Arg378Cys)];[(Arg525Gln)] originally classified as “variants of uncertain significance” and later upgraded to “likely pathogenic” based on functional testing and updated variant database review. Functional testing showed reduced solubility of the corresponding QARS1 mutants in vitro, but only mild two-fold loss in catalytic efficiency with the c.1132C > T variant and no noted change in tRNAGln aminoacylation with the c.1574G > A variant.ConclusionWe describe two QARS1 variants associated with overall conserved tRNA aminoacylation activity but characterized by significantly reduced QARS protein solubility, resulting in a milder clinical phenotype. 86% of previous patients reported with QARS1 had epilepsy and 79% were pharmaco-resistant. We also summarise literature regarding epilepsy in aminoacyl-tRNA synthetase disorders, which is also often early onset, severe and drug-refractory.  相似文献   

14.
Genetic epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by heterogeneous phenotypes ranging from mild disorders such as febrile seizures to epileptic encephalopathies (EEs) such as Dravet syndrome (DS). Although DS often occurs with de novo SCN1A pathogenic variants, milder GEFS+ spectrum phenotypes are associated with inherited pathogenic variants. We identified seven cases with non‐EE GEFS+ phenotypes and de novo SCN1A pathogenic variants, including a monozygotic twin pair. Febrile seizures plus (FS+) occurred in six patients, five of whom had additional seizure types. The remaining case had childhood‐onset temporal lobe epilepsy without known febrile seizures. Although early development was normal in all individuals, three later had learning difficulties, and the twin girls had language impairment and working memory deficits. All cases had SCN1A missense pathogenic variants that were not found in either parent. One pathogenic variant had been reported previously in a case of DS, and the remainder were novel. Our finding of de novo pathogenic variants in mild phenotypes within the GEFS+ spectrum shows that mild GEFS+ is not always inherited. SCN1A screening should be considered in patients with GEFS+ phenotypes because identification of pathogenic variants will influence antiepileptic therapy, and prognostic and genetic counseling.  相似文献   

15.
Epilepsy of infancy with migrating focal seizures (EIMFS) is now a well‐recognized early‐onset syndrome included in the ILAE classification of the epilepsies. KCNT1 gain‐of‐function variants are identified in about half of patients. In the remaining cases, the underlying genetic component is far more heterogeneous with sporadic mutations occasionally reported in SCN1A, SCN2A, SLC12A5, TBC1D24, PLCB1, SLC25A22, and KCNQ2. Here, we report, for the first time, a homozygous deleterious variant in the FARS2 gene, identified using a 115‐gene panel for monogenic epilepsies, in a patient with EIMFS. This boy was the second child born to healthy consanguineous parents. The first seizures occurred at six weeks of age. The patient rapidly developed severe epilepsy with focal discharges on EEG, migrating from one brain region to another, highly suggestive of EIMFS. At five months of age, he had daily multifocal clonic seizures and erratic myoclonic fits, which were not consistently related to spikes or spike‐and‐wave discharges. Neurological status was severely abnormal from onset and the patient died at 10 months of age from respiratory distress. Using the gene panel, a homozygous missense variant of FARS2 was identified, at Chr6 (GRCh37):g.5404829C>T, c.667C>T (NM_001318872.1), inherited from both parents, leading to an arginine‐to‐cysteine substitution, p.(Arg223Cys). FARS2 is a member of the mitochondrial aminoacyl tRNA transferase (ARS) enzymes. ARS variants are increasingly recognized causes of early‐onset epileptic and neurodevelopmental encephalopathies, however, the associated epileptic phenotype is not completely described. This case shows that FARS2‐related seizures can mimic EIMFS in the early stage of the disease. Furthermore, in the setting of migrating focal seizures of infancy, FARS2 should be considered as a further candidate gene, and increased lactate level and occurrence of refractory myoclonic seizures are possible key features to suspect FARS deficiency.  相似文献   

16.
We report the atypical presentation of Lafora disease in a Senegalese girl carrying the homozygous variant, c.560A>C, in the NHLRC1 gene. At 13 years, the patient developed myoclonic and visual seizures, progressive psychomotor slowing, and cognitive decline. At 14 years, a neurological examination showed severe hypomimia, bradykinesia, rigidity and low‐amplitude myoclonic jerks. Flash‐visual and somatosensory evoked potentials showed an increased amplitude of the cortical components, while an electroretinogram showed attenuated responses. An EEG showed diffuse polyspikes associated with positive‐negative jerks as well as posterior slow waves and irregular spikes. The electroclinical picture suggested the diagnosis of Lafora disease regarding the association of visual seizures, cognitive deterioration, and action myoclonus, together with the EEG and evoked potential findings. Two uncommon findings were the prominence of extrapyramidal signs in the early stage of disease (which are rarely reported) and attenuation of electroretinal responses. We consider that Lafora disease should be included in the diagnostic work‐up for juvenile Parkinsonism, when associated with epilepsy.  相似文献   

17.
Berardinelli‐Seip syndrome, or congenital generalized lipodystrophy type 2 (CGL2), is characterized by a lack of subcutaneous adipose tissue and precocious metabolic syndrome with insulin resistance, resulting in diabetes, dyslipidaemia, hepatic steatosis, cardiomyopathy, and acanthosis nigricans. Most reported mutations are associated with mild, non‐progressive neurological impairment. We describe the clinical and EEG data of a patient with progressive myoclonus epilepsy (PME), CGL2, and progressive neurological impairment, carrying a homozygous BSCL2 nonsense mutation. The patient had epilepsy onset at the age of two, characterized by monthly generalized tonic‐clonic seizures. By the age of three, he presented with drug‐resistant ongoing myoclonic absence seizures, photosensitivity, progressive neurological degeneration, and moderate cognitive delay. Molecular analysis of the BSCL2 gene yielded a homozygous c.(1076dupC) p.(Glu360*) mutation. Application of a vagus nerve stimulator led to temporary improvement in seizure frequency, general neurological condition, and EEG background activity. Specific BSCL2 mutations may lead to a peculiar CGL2 phenotype characterized by PME and progressive neurodegeneration. Application of a vagus nerve stimulator, rarely used for PMEs, may prove beneficial, if only temporarily, for both seizure frequency and general neurological condition.  相似文献   

18.
Developmental and epileptic encephalopathy is a group of conditions characterized by the co‐occurrence of epilepsy and intellectual disability, in which there is additional developmental impairment independent of epileptic activity. Biallelic variants of SZT2, a known seizure threshold regulator gene, have been linked to a wide spectrum of clinical features, ranging from severe intellectual disability with refractory seizures to mild intellectual disability without seizures. Here, we describe a child with developmental and epileptic encephalopathy whose genetic testing led to the identification of novel biallelic variants of SZT2, a paternally inherited c.2798C>T, p.(Ser933Phe) variant and a maternally inherited c.4549C>T, p.(Arg1517Trp) variant. Our patient showed common clinical and radiographic features among patients with SZT2‐related encephalopathy. However, neonatal‐onset seizures and suppression‐burst EEG activity, not previously associated with SZT2‐related encephalopathy, were observed in this case. Although the seizures were controlled with carbamazepine, the developmental consequences remained profound, suggesting that the developmental impairments might be attributed to a direct effect of the SZT2 variants rather than the epileptic activity. We propose that SZT2 variants should be regarded among those that are believed to cause neonatal‐onset developmental and epileptic encephalopathy with a suppression‐burst pattern on EEG.  相似文献   

19.
Background and purpose: Hereditary spastic paraplegia (HSP) is a group of clinically and genetically heterogeneous neurodegenerative disorders characterized in the ‘pure’ phenotype by progressive spasticity and weakness of the lower limbs. In the ‘complex’ phenotype, additional neurologic symptoms or signs are found. Mutations in the NIPA1 gene have been reported to cause spastic paraplegia type 6 (SPG6) in 10 families. SPG6 is a rare form of autosomal dominantly inherited HSP associated with a pure phenotype; however, in one complex SPG6 family, idiopathic generalized epilepsy (IGE) has been described and in addition, recurrent microdeletions at 15q11.2 including NIPA1 have been identified in patients with IGE. The purpose was to identify NIPA1 mutations in patients with pure and complex HSP. Methods: Fifty‐two patients with HSP were screened for mutations in NIPA1. Results: One previously reported missense mutation c.316G>A, p.Gly106Arg, was identified in a complex HSP patient with spastic dysarthria, facial dystonia, atrophy of the small hand muscles, upper limb spasticity, and presumably IGE. The epilepsy co‐segregated with HSP in the family. Conclusion: NIPA1 mutations were rare in our population of patients with HSP, but can be found in patients with complex HSP. Epilepsy might be more common in SPG6 than in other forms of HSP because of a genetic risk factor closely linked to NIPA1.  相似文献   

20.
GOSR2‐associated PME is associated with a homozygous mutation in GOSR2 (c.430G>T, p.Gly144Trp), a Golgi vesicle transport gene. The functional effect of this mutation is a loss of function that results in failure of the GOSR2 protein to localize to the cis‐Golgi. The main clinical features of the GOSR2‐associated PME are early‐onset ataxia, areflexia, action myoclonus and seizures, scoliosis, elevated creatine kinase levels, relative preservation of cognitive function until the late stages of the disease, and relentless disease course. Severe photosensitive myoclonus is a common feature. GOSR2‐associated PME is a rare disease with very few cases reported so far and it can be expected that the identification of further patients will contribute to expanding the phenotype and genotype of this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号