首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Neurons and axon terminals containing neuron-specific nitric oxide synthase (nNOS) were examined in the rat subiculum and CA1 area of Ammon's horn. In the subiculum, a large subpopulation of the pyramidal neurons and non-pyramidal cells are immunoreactive for nNOS, whereas in the neighbouring CA1 area of Ammon's horn only non-pyramidal neurons are labelled with the antibody against nNOS. In the pyramidal layer of the subiculum, nNOS-positive axon terminals form both asymmetric and symmetric synapses. In the adjacent CA1 area the nNOS-positive terminals that form symmetric synapses are found in all layers, whereas those terminals that form asymmetric synapses are only in strata radiatum and oriens, but not in stratum lacunosum-moleculare. In both the subiculum and CA1 area, labelled terminals make symmetric synapses only on dendritic shafts, whereas asymmetric synapses are exclusively on dendritic spines. Previous observations demonstrated that all nNOS-positive non-pyramidal cells are GABAergic local circuit neurons, which form exclusively symmetric synapses. We suggest that nNOS-immunoreactive pyramidal cells of the subiculum may innervate neighbouring subicular pyramidal cells and, to a smaller extent, pyramidal cells of the adjacent CA1 area, forming a backward projection between the subicular and hippocampal principal neurons. Electronic Publication  相似文献   

2.
Consistent findings in the hippocampi of patients with Alzheimer's disease are the presence of neurofibrillary tangles in pyramidal neurons and the loss of choline acetyltransferase activity due to degeneration of hippocampal cholinergic terminals. The present study sought to clarify, in the brains of five patients with Alzheimer's disease and four controls, whether the loss of cholinergic terminals in the hippocampal stratum pyramidale in Alzheimer's disease is related to degenerative changes in hippocampal pyramidal cells. A polyclonal antibody to human choline acetyltransferase was employed to visualize immunohistochemically cholinergic terminals. Hippocampal neurons were stained with Cresyl Violet, neurofibrillary tangles with thioflavin S and a monoclonal antibody against phosphorylated neurofilament (RT97). Quantification of the stained structures was performed in CA4, CA1 and the subiculum, on five sections selected from the entire anteroposterior extent of each hippocampus. In the group of Alzheimer patients, the densities of cholinergic terminals were homogeneously diminished in the three hippocampal subregions in comparison with the controls (32-33%). In contrast, a significant loss of pyramidal neurons was found only in CA1, and the density of neurofibrillary tangles was markedly increased only in CA1 and the subiculum in Alzheimer's disease. These findings suggest that there is no relationship between the loss of cholinergic terminals and the degeneration of pyramidal cells in the hippocampus of patients with Alzheimer's disease.  相似文献   

3.
Both the amygdala and hippocampus are damaged in drug-resistant temporal lobe epilepsy (TLE), suggesting that amygdalo-hippocampal interconnectivity is compromised in TLE. Therefore, we examined one of the major projections from the amygdala to the hippocampus, the projection from the amygdala to the CA1 subfield of the hippocampus/subiculum border region, and assessed whether it is preserved in rats with spontaneous seizures. Male Wistar rats were injected with kainic acid (9 mg/kg, i.p.) to induce chronic epilepsy. The occurrence of spontaneous seizures was monitored 5 or 15 weeks later by video-recording the rats for up to 5 days. Saline-injected animals served as controls. Thereafter, the retrograde tracer Fluoro-gold was injected into the border region of the temporal CA1/subiculum. Rats were perfused for histology 1-2 weeks later and sections were immunohistochemically processed to detect Fluoro-gold-positive cells. Comparison of the labeling in control and epileptic tissue indicated that a large cluster of retrogradely labeled cells in the parvicellular division of the basal nucleus was well preserved in epilepsy, even when the neuronal damage in the amygdala was substantial. Another large cluster of retrogradely labeled cells in the lateral division of the amygdalo-hippocampal area, the posterior cortical nucleus (part of the vomeronasal amygdala), and the periamygdaloid cortex (part of the olfactory amygdala), however, had disappeared in epileptic brain in parallel to severe neuronal loss in these nuclei. These data demonstrate that a projection from the parvicellular division of the basal nucleus to the temporal CA1/subiculum region is resistant to status epilepticus-induced neuronal damage and provides a candidate pathway by which seizure activity can spread and propagate from the amygdala to the hippocampal formation.  相似文献   

4.
An increased ratio of the glutamatergic drive to the overall glutamatergic/GABAergic drive characterizes the chronic stage of temporal lobe epilepsy (TLE), but it is unclear whether this modification is present during the latent period that often precedes the epileptic stage. Using the pilocarpine model of TLE in rats, we report that this ratio is decreased in hippocampal CA1 pyramidal cells during the early phase of the latent period (3–5 days post pilocarpine). It is, however, increased during the late phase of the latent period (7–10 days post pilocarpine), via cell domain-dependent alterations in synaptic current properties, concomitant with the occurrence of interictal-like activity in vivo . During the late latent period, the glutamatergic drive was increased in somata via an enhancement in EPSC decay time constant and in dendrites via an increase in EPSC frequency and amplitude. The GABAergic drive remained unchanged in the soma but was decreased in dendrites, since the drop off in IPSC frequency was more marked than the increase in IPSC kinetics. Theoretical considerations suggest that these modifications are sufficient to produce interictal-like activity. In epileptic animals, the ratio of the glutamatergic drive to the overall synaptic drive was not further modified, despite additional changes in synaptic current frequency and kinetics. These results show that the global changes to more glutamatergic and less GABAergic activities in the CA1 region precede the chronic stage of epilepsy, possibly facilitating the occurrence and/or the propagation of interictal activity.  相似文献   

5.
The present study aims to give detailed histomorphological features of the hippocampus of adult male New Zealand rabbits. Both histological and histochemical specimens were prepared to be examined microscopically by using a light microscope. The hippocampus appeared as C-shaped hippocampal proper, dentate gyrus, and subiculum. The hippocampal proper subdivided along its length according to the density and size of its major constituent pyramidal cells into four distinct regions named Cornu Ammonis (CA1, CA2, CA3, and CA4). With the histochemical preparations, each of these regions consisted of five layers, stratum alveolus, stratum oriens, stratum pyramidale, stratum radiatum, and stratum lacunosum-moleculare. The stratum pyramidale constituted the middle dark zone and contained the principal excitatory neurons and a few interneurons. Histochemically, the pyramidal neurons along all regions of the CA reacted positively to Grimelius silver impregnation, lead hematoxylin, Gomori's aldehyde fuchsin, aldehyde thionine, Gomori's chrome alum hematoxylin, and performic acid alcian blue stains. Immunohistochemically, the pyramidal neurons reacted positively to anti-NSE antibodies. The dentate gyrus was formed of three distinct layers. The subiculum was formed of proper subiculum, presubiculum, and parasubiculum.  相似文献   

6.
Fragments containing different cytoarchitectonic fields were dissected out of late embryonic rat hippocampal primordia and transplanted into the hippocampus or septum of adult syngeneic hosts. Field CA3 transplants contained clusters of large, angular (pyramidal) cell bodies surrounded by a radiating corona of dendrites. These cells stained selectively with our monoclonal antibody Py, and a proportion were labelled by [3H]thymidine administered on the 15th day of embryonic life. Field CA1 transplants contained smaller, angular, Py-negative cells, which formed elongated laminae rather than globular clusters. The ability of the host dentate granule cells to project to the transplants was examined by (1) the Timm stain for mossy fibres, (2) electron microscopy of Golgi-impregnated CA3 pyramidal neurons in the transplants, and (3) quantitative electron microscopic assessment of the proportions of large mossy fibre terminals in the synaptic population of the transplants. The Timm stain showed that CA3 transplants received a projection from host dentate granule cells when the transplants were placed in direct contact with the axons in the host mossy fibre pathway. As in the normal host field CA3, the ingrowing mossy fibres terminated selectively on the juxtacellular regions of the dendritic tree and ignored the major part of the dendrites in the radiating corona. The electron micrographs showed that within this territory the host mossy fibres formed synaptic terminals with all the complex features typical of normal mossy fibres, and were presynaptic to complex spines arising from the juxtacellular region of Golgi-impregnated donor CA3 pyramidal cells. The quantitative electron microscopic study demonstrated that the mossy fibre-innervated juxtacellular regions of the field CA3 transplants had up to 20% of the normal density of mossy fibre synapses found in the stratum lucidum of field CA3 in situ. CA3 transplants which were placed in the septum, remote from the host mossy fibres, had either trivial numbers of mossy fibre synapses or none. This confirmed that the abundant mossy fibre terminals in the intrahippocampal CA3 transplants were of host origin, and not due to donor dentate granule cells inadvertently included in the grafts. The selectivity of the host dentate projection for field CA3 transplants was demonstrated by the observation that CA1 transplants in the same locations received only slight mossy fibre projections in the Timm stain, and in electron micrographs their synaptic population had only insignificant numbers of large mossy fibre terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Seizures were induced in rats by systemic administration of kainic acid and, 1.5-12 h after, expression of preprosomatostatin and c-fos mRNAs in 9 hippocampal areas and in the cerebral perirhinal cortex was investigated using in situ hybridization histochemistry. Immunohistochemistry was also performed to study somatostatin peptide. In the control animals preprosomatostatin mRNA was expressed in some cells in the dentate hilus, the stratum oriens and the stratum radiatum of Ammon's horn, the subiculum and the cortex. Starting 3 h after kainic acid administration preprosomatostatin mRNA was expressed in a subpopulation of granule and pyramidal cells which did not normally express it. Preprosomatostatin mRNA-positive cells were markedly increased in the subiculum. Immunohistochemical examination confirmed that preprosomatostatin mRNA in granule and pyramidal cells was translated into peptide. In contrast, c-fos mRNA was induced in most hippocampal and cortical neurons starting 1.5 h after the kainic acid injection. When diazepam was injected to suppress the generalized seizures, preprosomatostatin mRNA was still expressed in pyramidal and subicular cells but not in granule cells.  相似文献   

8.
Alterations in the function and organization of synapses have been proposed to induce learning and memory. Previous studies have demonstrated that mossy fiber induced by overtraining in a spatial learning task can be related with spatial long-term memory formation. In this work we analyzed whether physical exercise could induce mossy fiber sprouting by using a zinc-detecting histologic technique (Timm). Rats were submitted to 3 and 5 days of forced or voluntary exercise. Rat brains were processed for Timm's staining to analyze mossy fiber projection at 7, 12 and 30 days after the last physical exercise session. A significant increase of mossy fiber terminals in the CA3 stratum oriens region was observed after 5 days of forced or voluntary exercise. Interestingly, the pattern of Timm's staining in CA3 mossy fibers was significantly altered when analyzed 12 days after exercise but not at 7 days post-exercise. In contrast, animals trained for only 3 days did not show increments of mossy fiber terminals in the stratum oriens. Altogether, these results demonstrate that sustained or programmed exercise can alter mossy fiber sprouting. Further Investigations are necessary to determine whether mossy fiber sprouting induced by exercise is also involved in learning and memory processes.  相似文献   

9.
The distribution of several neuropeptides (vasoactive intestinal polypeptide, cholecystokinin octapeptide, substance P, neurotensin, methionine-enkephalin and somatostatin) in the hippocampal formation has been studied with immunocytochemical techniques. Numerous vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin-positive cell bodies were found within the hippocampus and subiculum. Neurotensin-positive cell bodies were found within the subiculum, but no substance P or methionine-enkephalin-containing cell bodies were seen in either hippocampus proper or subiculum. Vasoactive intestinal polypeptide and cholecystokinin-octapeptide-positive cell bodies were predominantly located in the stratum moleculare and stratum radiatum of CA 1-2 regions and dentate gyrus, whilst somatostatin-containing cell bodies were found mainly in the stratum oriens. Nerve fibres containing each of the six peptides were found within the hippocampus. Large numbers of vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin fibres innervated the pyramidal and granule cell layers, with smaller numbers in the stratum radiatum and fewer still in the stratum moleculare and stratum oriens. Other than a moderately dense neurotensin-positive fibre plexus in the dorsal subiculum, fewer neurotensin, substance P and methionine-enkephalin fibres were present. However, when present, these three peptides had a distribution restricted to a region close to the pyramidal layer in the CA 2/3 region and to the stratum moleculare of the CA 1 region. Peptide-containing fibres were identified entering or leaving the hippocampus in three ways, via (i) the fornix (all six peptides), (ii) the dorsal subiculum (neurotensin-positive fibres projecting to the cingulate cortex: somatostatin, vasoactive intestinal polypeptide, and cholecystokinin-octapeptide present in fibres running between the dorsal subiculum and occipito-parietal cortex) and (iii) the ventral subiculum (vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin in fibres running between entorhinal cortex and hippocampus, and all six peptides in fibres crossing the amygdalo-hippocampal border). These findings indicate a major distinction between those peptides (vasoactive intestinal polypeptide, cholecystokinin-octapeptide, somatostatin, neurotensin) which are found in cell bodies intrinsic to the hippocampal formation and those peptides (substance P, methionine-enkephalin) which are found only in hippocampal afferents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Previous investigations have suggested that GABA may act actively as an excitatory mediator in the generation of seizure-like (ictal) or interictal epileptiform activity in several experimental models of temporal lobe epilepsy. However, it remains to be known whether or not such GABAergic excitation may participate in seizure propagation into neighboring cortical regions. In our in vitro study using mature rat hippocampal slices, we examined the cellular mechanism underlying synchronous propagation of seizure-like afterdischarge in the CA1 region, which is driven by depolarizing GABAergic transmission, into the adjacent subiculum region. Tetanically induced seizure-like afterdischarge was always preceded by a GABAergic, slow posttetanic depolarization in the pyramidal cells of the original seizure-generating region. In contrast, the slow posttetanic depolarization was no longer observed in the subicular pyramidal cells when the afterdischarge was induced in the CA1 region. Surgical cutting of axonal pathways through the stratum oriens and the alveus between the CA1 and the subiculum region abolished the CA1-generated afterdischarge in the subicular pyramidal cells. Intracellular loading of fluoride ions, a GABAA receptor blocker, into single subicular pyramidal cells had no inhibitory effect on the CA1-generated afterdischarge in the pyramidal cells. Furthermore, the CA1-generated afterdischarge in the subicular pyramidal cells was largely depressed by local application of glutamate receptor antagonists to the subiculum region during afterdischarge generation. The present results indicate that the excitatory GABAergic generation of seizure-like activity seems to be restricted to epileptogenic foci of origin in the seizure-like epilepsy model in vitro.  相似文献   

11.
Cannabinoid type 1 receptor (CB1R), which is traditionally located on axon terminals, plays an important role in the pathology of epilepsy and neurodegenerative diseases by modulating synaptic transmission. Using the pilocarpine model of chronic spontaneous recurrent seizures, which mimics the main features of mesial temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) in humans, we examined the expression of CB1R in hippocampal astrocytes of epileptic rats. Furthermore, we also examined the expression of astrocytic CB1R in the resected hippocampi from patients with medically refractory mesial TLE. Using immunofluorescent double labeling, we found increased expression of astrocytic CB1R in hippocampi of epileptic rats, whereas expression of astrocytic CB1R was not detectable in hippocampi of saline treated animals. Furthermore, CB1R was also found in some astrocytes in sclerotic hippocampi in a subset of patients with intractable mesial TLE. Detection with immune electron microscopy showed that the expression of CB1R was increased in astrocytes of epileptic rats and modest levels of CB1R were also found on the astrocytic membrane of sclerotic hippocampi. These results suggest that increased expression of astrocytic CB1R in sclerotic hippocampi might be involved in the cellular basis of the effects of cannabinoids on epilepsy.  相似文献   

12.
To quantify the serotonin innervation in adult rat hippocampus, serotonin axon terminals (varicosities) were uptake-labeled for light microscope radioautography in whole hemisphere slices incubated with 1 microM [3H]serotonin. The labeled varicosities were visualized as small aggregates of silver grains and counted with the aid of an image analysis system across all layers in representative sectors of subiculum, Ammon's horn (CA1, CA3-a, CA3-b) and dentate gyrus (medial blade, crest and lateral blade). Counts were obtained in six rats at three equidistant horizontal levels from the ventral two-thirds of the hippocampus. After double correction for duration of radioautographic exposure and section thickness, and measurement of the mean diameter of labeled varicosities in electron microscope radioautographs, the results were expressed in number of varicosities per mm3 of tissue. The overall density of hippocampal serotonin innervation was thus evaluated at 2.7 x 10(6) varicosities per mm3, and appeared significantly higher in subiculum (3.6 x 10(6)) and Ammon's horn (3.1 x 10(6)) than in dentate gyrus (2.2 x 10(6)). Subiculum and dentate gyrus-crest (2.0 x 10(6)) had the highest and lowest regional densities. There was a marked heterogeneity also in terms of laminar distribution. For example, the stratum moleculare of subiculum and CA1, and the stratum oriens of CA3 (5.2 x 10(6)) varicosities in CA3-a), showed much higher values than the pyramidal cell layer (0.7, 1.1 and 0.7 x 10(6) in CA1, CA3-a and CA3-b, respectively). Similarly, the granular layer of dentate gyrus had a much lower density (1.1 x 10(6)) than did the molecular (2.8 x 10(6)) and the polymorph layer (2.4 x 10(6)). From these data, it was possible to evaluate the mean endogenous amine content per hippocampal serotonin varicosity (0.05-0.07 fg), and the average number of serotonin varicosities per hippocampal neuron in both CA3 (130) and dentate gyrus (20-35). In the context of current data on the distribution of serotonin receptors and diverse actions of serotonin at the cellular level in hippocampus, such quantified information provides new insights on some basic properties of serotonin in this part of the brain.  相似文献   

13.
The hippocampus sends efferent fibers to the subiculum, which projects to the entorinal cortex. Previous studies suggest that the hippocampal CA1 area may receive a projection back from the subiculum. This hypothesis was tested using whole cell recording from CA1 pyramidal cells while subicular neurons were selectively stimulated with focal flash photolysis of caged glutamate, which avoids stimulation of fibers of passage. Control experiments showed that focal flash stimulations caused direct glutamate-mediated depolarizations and bursts of action potentials in the recorded CA1 pyramidal cells, but only when the stimulation targeted the somatodendritic regions of a neuron, not the axons. To block GABA(A)-mediated inhibition and isolate local excitatory circuits, bicuculline was applied to minislices containing only the isolated CA1 area and the subiculum. Of 24 CA1 pyramidal cells, 25% (6 of 24) consistently generated repetitive excitatory postsynaptic currents (EPSCs) in response to flash stimulation in the subiculum. The responsive neurons were located 200-500 microm from the distal end of CA1 and 400-1,100 microm from the stimulation sites in subiculum, suggesting excitatory synaptic projections from the subicular neurons to CA1 pyramidal cells. This study provides new electrophysiological evidence that CA1 pyramidal cells receive excitatory synaptic input from the subiculum. Thus a reciprocal excitatory synaptic circuit connects the subiculum and the CA1 area in the normal adult rat.  相似文献   

14.
Electrical stimulation of the medial septal nucleus produced field potentials in the hippocampal CA1 region of the rat. The laminar field-potential analysis suggested that the electromotive force of the septum-induced responses might be attributable mainly to excitatory postsynaptic potential currents generated in the stratum oriens (layer of distribution of basal dendrites of hippocampal pyramidal cells). Neural cell bodies in the medial septum-diagonal band complex were retrogradely labeled with horseradish peroxidase (HRP) injected into the stratum oriens of CA1, but not with HRP injected into other CA1 strata. Thus the medial septal nucleus was indicated to send excitatory inputs to basal dendrites of CA1 pyramidal cells.  相似文献   

15.
CA1 pyramidal cells are the primary output neurons of the hippocampus, carrying information about the result of hippocampal network processing to the subiculum and entorhinal cortex (EC) and thence out to the rest of the brain. The primary excitatory drive to the CA1 pyramidal cells comes via the Schaffer collateral (SC) projection from area CA3. There is also a direct projection from EC to stratum lacunosum-moleculare (SLM) of CA1, an input well positioned to modulate information flow through the hippocampus. High-frequency stimulation in SLM evokes an inhibition sufficiently strong to prevent CA1 pyramidal cells from spiking in response to SC input, a phenomenon we refer to as spike-blocking. We characterized the spike-blocking efficacy of burst stimulation (10 stimuli at 100 Hz) in SLM and found that it is greatest at approximately 300-600 ms after the burst, consistent with the time course of the slow GABA(B) signaling pathway. Spike-blocking efficacy increases in potency with the number of SLM stimuli in a burst, but also decreases with repeated presentations of SLM bursts. Spike-blocking was eliminated in the presence of GABA(B) antagonists. We have identified a candidate population of interneurons in SLM and distal stratum radiatum (SR) that may mediate this spike-blocking effect. We conclude that the output of CA1 pyramidal cells, and hence the hippocampus, is modulated in an input pattern-dependent manner by activation of the direct pathway from EC.  相似文献   

16.
Summary The distribution of substance P (SP) immunoreactive nerve cell bodies and preterminal processes was studied in the rat brain by using several anti-SP-antibodies in combination with immunohistochemical techniques. In normal rats and in rats pretreated with colchicine, SP immunoreactive preterminal processes were found in the hippocampal region, but SP positive cellbodies could be detected only after colchicine pretreatment. Medium-sized to large, multipolar cells immunoreactive for SP were found in stratum oriens of the hippocampal subfield CA3 and in the hilus of the area dentata. Medium-sized to small, round or fusiform cells were detected in the pyramidal layer of the ventral subiculum and in layers III–VI of the ventral entorhinal area. The SP stained preterminal processes were of two types. Numerous fine, varicose axons were stained in different parts of Ammon's horn, while in the retrohippocampal structures, the SP immunoreactivity was present in small distinctly stained puncta. These frequently formed pericellular arrangements around unstained cells, indicative of axosomatic contacts between SP terminals and cells in the hipocampus. In Ammon's horn, the densest SP innervation was found in strata oriens, radiatum and moleculare of subfields CA3a and CA2. Scattered fibers were also present in the stratum oriens of CA3a-c and in the hilus, in particular at ventral levels. In retrohippocampal structures, the SP innervation predominated in the deep pyramidal layer of the subiculum, the second layer of the presubiculum and in layers VI and IV of the medial and lateral entorhinal area. Many of these terminals may arise from local interneurons as well as from sources outside the hippocampal region.Taken together, these studies demonstrate a far more extensive innervation by SP, or a closely related peptide, of the rat hippocampal region than was previously recognized. This suggests that SP may play an important role in neurotransmission within the hippocampal region.Stephen Davies was supported by Travel grants from the Wellcome Trust and the Gurantors of Brain.  相似文献   

17.
The immunosuppressant, cyclosporin A (CsA), is neuroprotective following brain injury. Previous studies suggest that CsA treatment ameliorates seizure severity during status epilepticus (SE) or cell death following SE. The antiepileptic effects of CsA on recurrent seizures, however, have not been investigated. In the present study, the effects of CsA on spontaneous recurrent seizures (SRSs) in a kainate (KA)-induced mouse model of mesial temporal lobe epilepsy (TLE) were examined. Moreover, the effects of CsA on epileptiform activity in a 4-aminopyridine (4-AP)-induced in vitro seizure model were investigated. A mesial TLE mouse model was generated with a unilateral intrahippocampal injection of KA. SRSs were determined in the ipsilateral hippocampal CA1 region with a long-term video-EEG. CsA was systemically administrated to the epileptic mice exhibiting a stable occurrence of SRSs. A 1-mg/kg dose of CsA did not have any effect on SRSs in the epileptic mice. However, a 5-mg/kg dose of CsA significantly reduced the number of SRSs and decreased the severity of the seizures in the epileptic mice. Additionally, CsA treatment inhibited spontaneous burst discharges in 4-AP-treated hippocampal slices. The results of the present study demonstrate that CsA inhibits recurrent seizures in a mouse model of mesial TLE and suggest that CsA may afford both neuroprotection against SE and antiepileptic effects during the chronic period of epilepsy.  相似文献   

18.
本实验采用免疫组织化学方法研究了13~38 周人胎儿海马本部及下托含Calbindin-D28k 神经元的分布和发育。结果表明:在13~14 周时,许多含Calbindin-D28k 锥体细胞可见于CA1 区锥体细胞层中部及深部,随着胎龄增大,CA1 区含Cal-bindin-D28k 锥体细胞的数量及密度逐渐下降,最终消失,并且这种下降及消失首先从含Calbindin-D28k 锥体细胞区浅部开始,然后向深部推进;在13~28 周期间,CA2 和CA3 区也有许多含Calbindin-D28k 锥体细胞,但至32 周以及其后,CA3 和CA2 区则不见含Calbindin-D28k 锥体细胞,仅在CA2 与CA1 交界区见到少量弱染的含Calbindin-D28k 锥体细胞。此外,在28~38 周期间,CA3 和CA2 区锥体细胞层周围可见许多含Calbindin-D28k 的苔藓纤维,其密度随胎龄增大而增加。14~38 周期间,许多含Calbindin-D28k 的锥体细胞也出现于下托锥体细胞层全层及前下托锥体细胞层浅部(细胞岛区)及中部。这些区域含Cal-bindin-D28k 锥体细胞的数量及染色强度在14~24 周期间逐渐增  相似文献   

19.
Immunocytochemical localization of (Na+ + K+)-ATPase in the rat hippocampus   总被引:1,自引:0,他引:1  
The adult rat hippocampus was investigated by light microscopic immunocytochemistry for (Na+ + K+)-ATPase. In the CA1, CA2 and CA3 hippocampal regions, dense immunostaining for (Na+ + K+)-ATPase, exhibiting a punctate appearance, was demonstrated along the soma plasmalemma of hippocampal pyramidal cells in the stratum pyramidale, thus outlining these cells distinctly, and along dendrites extending into the stratum radiatum. (Na+ + K+)-ATPase immunostaining was dense in the neuropil of the strata oriens and radiatum of the rat hippocampus, but much lighter in the corpus callosum. Immunostaining at the periphery of pyramidal cell soma may be associated with the plexus formed by axon terminals of hippocampal basket cells.  相似文献   

20.
Changes in interneuron distribution and excitatory connectivity have been investigated in animals which had survived 12-14 months after complete forebrain ischemia, induced by four-vessel occlusion. Anterograde tracing with Phaseolus vulgaris leucoagglutinin revealed massive Schaffer collateral input even to those regions of the CA1 subfield where hardly any surviving pyramidal cells were found. Boutons of these Schaffer collaterals formed conventional synaptic contacts on dendritic spines and shafts, many of which likely belong to interneurons. Mossy fibres survived the ischemic challenge, however, large mossy terminals showed altered morphology, namely, the number of filopodiae on these terminals decreased significantly. The entorhinal input to the hippocampus did not show any morphological alterations. The distribution of interneurons was investigated by neurochemical markers known to label functionally distinct GABAergic cell populations. In the hilus, spiny interneurons showed a profound decrease in number. This phenomenon was not as obvious in CA3, but the spiny metabotropic glutamate receptor 1alpha-positive non-pyramidal cells, some of which contain calretinin or substance P receptor, disappeared from stratum lucidum of this area. In the CA1 region, somatostatin immunoreactivity disappeared from stratum oriens/lacunosum-moleculare-associated cells, while in metabotropic glutamate receptor 1alpha-stained sections these cells seemed unaffected in number. Other interneurons did not show an obvious decrease in number. In stratum radiatum of the CA1 subfield, some interneuron types had altered morphology: the substance P receptor-positive dendrites lost their characteristic radial orientation, and the metabotropic glutamate receptor 1alpha-expressing cells became extremely spiny. The loss of inhibitory interneurons at the first two stages of the trisynaptic loop coupled with a well-preserved excitatory connectivity among the subfields suggests that hyperexcitability in the surviving dentate gyrus and CA3 may persist even a year after the ischemic impact. The dorsal CA1 region is lost; nevertheless hyperactivity, if it occurs, may have a route to leave the hippocampus via the longitudinally extensive axon collaterals of CA3 pyramidal cells, which may activate the subiculum and entorhinal cortex with a relay in the surviving ventral hippocampal CA1 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号