首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enlarged series of pyrazolotriazolopyrimidines previously reported, in preliminary form (Baraldi et al. J. Med. Chem. 1999, 42, 4473-4478), as highly potent and selective human A(3) adenosine receptor antagonists is described. The synthesized compounds showed A(3) adenosine receptor affinity in the sub-nanomolar range and high levels of selectivity evaluated in radioligand binding assays at human A(1), A(2A), A(2B), and A(3) adenosine receptors. In particular, the effect of the chain at the N(8) pyrazole nitrogen was analyzed. This study allowed us to identify the derivative with the methyl group at the N(8) pyrazole combined with the 4-methoxyphenylcarbamoyl moiety at the N(5) position as the compound with the best binding profile in terms of both affinity and selectivity (hA(3) = 0.2 nM, hA(1)/hA(3) = 5485, hA(2A)/hA(3) = 6950, hA(2B)/hA(3) = 1305). All the compounds proved to be full antagonists in a specific functional model where the inhibition of cAMP generation by IB-MECA was measured in membranes of CHO cells stably transfected with the human A(3) receptor. The new compounds are among the most potent and selective A(3) antagonists so far described. The derivatives with higher affinity at human A(3) adenosine receptors proved to be antagonists, in the cAMP assay, capable of inhibiting the effect of IB-MECA with IC(50) values in the nanomolar range, with a trend strictly similar to that observed in the binding assay. Also a molecular modeling study was carried out, with the aim to identify possible pharmacophore maps. In fact, a sterically controlled structure-activity relationship was found for the N(8) pyrazole substituted derivatives, showing a correlation between the calculated molecular volume of pyrazolo[4,3-e]1,2, 4-triazolo[1,5-c]pyrimidine derivatives and their experimental K(i) values.  相似文献   

2.
A new series of pyrazolotriazolopyrimidines bearing different substitutions on the phenylcarbamoyl moieties at the N5 position, being highly potent and selective human A(3) adenosine receptor antagonists, is described. The compounds represent an extension and an improvement of our previous work on this class of compounds (J. Med. Chem. 1999, 42, 4473-4478; J. Med. Chem. 2000, 43, 4768-4780). All the synthesized compounds showed A(3) adenosine receptor affinity in the subnanomolar range and high levels of selectivity in radioligand binding assays at the human A(1), A(2A), A(2B), and A(3) adenosine receptors. In particular, the effect of the substitution and its position on the phenyl ring have been studied. From binding data, it is evident that the unsubstituted derivatives on the phenyl ring (e.g., compound 59, hA(3) = 0.16 nM, hA(1)/hA(3) = 3713, hA(2A)/hA(3) = 2381, hA(2B)/hA(3) = 1388) showed the best profile in terms of affinity and selectivity at the human A(3) adenosine receptors. The introduction of a sulfonic acid moiety at the para position on the phenyl ring was attempted in order to design water soluble derivatives. However, this substitution led to a dramatic decrease of affinity at all four adenosine receptor subtypes. A computer-generated model of the human A(3) receptor was built and analyzed to better interpret these results, demonstrating that steric control, in particular at the para position on the phenyl ring, plays a fundamental role in the receptor interaction. Some of the synthesized compounds proved to be full antagonists in a specific functional model, where the inhibition of cAMP-generation by IB-MECA was measured in membranes of CHO cells stably transfected with the human A(3) receptor with IC(50) values in the nanomolar range, with a statistically significative linear relationship with the binding data.  相似文献   

3.
Increased concentrations of extracellular adenosine are reached in ischemic or inflamed tissues but have also been detected inside tumoral masses. If this finding may account for an important role of adenosine in the pathogenesis of tumors remains to be determined in view of its contradictory effects on cell survival and proliferation. In particular, adenosine was found to exert its effects on proliferation and on cell death mainly through the A(3) adenosine receptor. Therefore, a complete pharmacological characterization of the subtype and number of the expressed A(3) adenosine receptors is necessary for the elucidation of the role of adenosine via A(3) receptors in a specific cell subtype. The lack of potent and selective radiolabelled A(3) receptor antagonists has been, in the past, the major obstacle in the characterization of structure, function and regulation of this adenosine receptor subtype. Recently, our group has identified a series of substituted pyrazolotriazo-lopyrimidine derivatives as potent and selective antagonists to human A(3) adenosine receptors. The most recent results obtained in this field will be summarized in the present review. Furthermore, the review will report the results of the biochemical and pharmacological characterization of A(3) receptors in different human tumor cell lines and the multiple A(3) receptor-sustained ways that could prime tumor development.  相似文献   

4.
A new series of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines bearing various substituents at both the N5-pyrimidinyl and N8-pyrazolyl positions have been synthesized, and their binding affinities at the four human adenosine receptor subtypes (hA(1), hA(2A), hA(2B), and hA(3)) have been evaluated. All the described compounds contain arylacetyl moieties at the N5 position and arylalkyl substituents at the N8 position. Surprisingly, all the compounds present their most potent affinities at the hA(2B) adenosine receptor with a range of selectivities against the other subtypes. When bulky groups are present simultaneously at the N5 and N8 positions (e.g., compound 9), the best selectivity for the hA(2B) receptor was observed (K(i)(hA(1)) = 1100 nM; K(i)(hA(2A)) = 800 nM; K(i)(hA(2B)) = 20 nM; K(i)(hA(3)) = 300 nM, K(i)(hA(1)/A(2B)) = 55, K(i)(hA(2A)/A(2B)) = 40, K(i)(hA(3)/hA(2B)) = 15). To understand the molecular significance of these results, we compared the putative TM (transmembrane) binding motif of compound 9 on both hA(2B) and hA(3) receptors. From our docking studies, compound 9 fits neatly inside the TM region of the hA(2B) receptor but not in the corresponding hA(3) region, illustrating significant differences between the two subtypes. The study herein presented permits an understanding of why the bioisosteric replacement of an -NH, present in previously reported hA(3) receptor antagonists, with a -CH(2) group at the N5 position induces such large differences in hA(2B)/hA(3) affinity. In the molecular structure of the hA(3) receptor, two residues, Ser243 (TM6) and Ser271 (TM7), create a hydrophilic region, which seems to permit a better accommodation of the phenylurea series into this putative hA(3) binding site than the phenylacetyl series.  相似文献   

5.
A series of pyrazolotriazolopyrimidines was previously reported to be highly potent and selective human A(3) adenosine receptor antagonists (Baraldi et al. J. Med. Chem. 2000, 43, 4768-4780). A derivative having a methyl group at the N(8) pyrazole combined with a 4-methoxyphenylcarbamoyl moiety at N(5) position, displayed a K(i) value at the hA(3) receptor of 0.2 nM. We now describe chemically reactive derivatives which act as irreversible inhibitors of this receptor. Electrophilic groups, specifically sulfonyl fluoride and nitrogen mustard (bis-(beta-chloroethyl)amino) moieties, have been incorporated at the 4-position of the aryl urea group. Membranes containing the recombinant hA(3) receptor were preincubated with the compounds and washed exhaustively. The loss of ability to bind radioligand following this treatment indicated irreversible binding. The most potent compound in irreversibly binding to the receptor was 14, which contained a sulfonyl fluoride moiety and a propyl group at the N(8) pyrazole nitrogen. The bis-(beta-chloroethyl)amino derivatives displayed a much smaller degree of irreversible binding than the sulfonyl fluoride derivatives. A computer-generated model of the human A(3) receptor was built and analyzed to help interpret these results. The model of the A(3) transmembrane region was derived using primary sequence comparison, secondary structure predictions, and three-dimensional homology building, using the recently published crystal structure of rhodopsin as a template. According to our model, sulfonyl fluoride derivatives could dock within the hypothetical TM binding domain, adopting two different energetically favorable conformations. We have identified two amino acids, Ser247 and Cys251, both in TM6, as potential nucleophilic partners of the irreversible binding to the receptor.  相似文献   

6.
In this paper we report the synthesis and biological evaluation of a new class of 2-phenyl-2,5-dihydro-pyrazolo[4,3-c]quinolin-4-ones as A(3) adenosine receptor antagonists. We designed a new route based on the Kira-Vilsmeier reaction for the synthesis of this class of compounds. Some of the synthesized compounds showed A(3) adenosine receptor affinity in the nanomolar range and good selectivity as evaluated in radioligand binding assays at human (h) A(1), A(2A), A(2B), and A(3) adenosine receptor subtypes. We introduced several substituents on the 2-phenyl ring. In particular substitution at the 4-position by methyl, methoxy, and chlorine gave optimal activity and selectivity 6c (K(i)hA(1), A(2A)>1000 nM, EC(50)hA(2B)>1000 nM, K(i)hA(3) = 9 nM), 6d (K(i)hA(1), A(2A)>1000 nM, EC(50)hA(2B)>1000 nM, K(i)hA(3) = 16 nM), 6b (K(i)hA(1), A(2A) >1000 nM, EC(50)hA(2B)>1000 nM, K(i)hA(3) = 19 nM). In conclusion, the 2-phenyl-2,5-dihydro-pyrazolo[4,3-c]quinolin-4-one derivatives described herein represent a new family of in vitro selective antagonists for the adenosine A(3) receptor.  相似文献   

7.
A combined target-based and ligand-based drug design approach has been carried out to define a novel pharmacophore model of the human A(3) receptor antagonists. High throughput molecular docking and comparative molecular field analysis (CoMFA) have been used in tandem to assemble a new target based pharmacophore model. In parallel, to provide more accurate information about the putative binding site of these A(3) inhibitors, a rhodopsin-based model of the human A(3) receptor was built and a novel Y-shape binding motif has been proposed. Docking-based structure superimposition has been used to perform a quantitative study of the structure-activity relationships for binding of these pyrazolo-triazolo-pyrimidines to adenosine A(3) receptor using CoMFA. Both steric and the electrostatic contour plots obtained from the CoMFA analysis nicely fit on the hypothetical binding site obtained by molecular docking. On the basis of the combined hypothesis, we have designed, synthesized, and tested 17 new derivatives. Consistently, the predicted K(i) values were very close to the experimental values.  相似文献   

8.
A series of triazolopurines showed structural similarity to human adenosine A(3) receptor antagonist, 9-chloro-2-(2-furanyl)-5-[(phenylacetyl)amino][1,2,4]triazolo[1,5-c]quinazoline (MRS 1220, 1). In this study, we found novel 1,2,4-triazolo[5,1-i]purine derivatives (2) showing human adenosine A(3) receptor affinities. The compounds were obtained in two steps from 5-amino-4-cyanoimidazole (33). The affinity was determined in radioligand binding assays for the cloned human adenosine A(1), A(2A), A(2B), and A(3) receptors. After the structure-activity relationship was analyzed, we determined that there was a mild parabolic relationship between the length of alkyl groups at the 5-position and the affinities at the A(3) receptor and positive correlation between the length of the substituents on phenyl groups at the 8-position and the affinities at the A(2A) receptor. These investigations led to potent and selective human adenosine A(3) receptor ligands. The most potent A(3) receptor ligand (5-n-butyl-8-(4-methoxyphenyl)-3H-[1,2,4]triazolo[5,1-i]purine (27, K(i) = 0.18 nM) and the most selective A(3) receptor ligand against A(1), A(2A), and A(2B) receptors, (5-n-butyl-8-(4-n-propoxyphenyl)-3H-[1,2,4]triazolo[5,1-i]purine (29, >19 600), were discovered.  相似文献   

9.
In the past few years, our group has been involved in the development of A(2A) and A(3) adenosine receptor antagonists which led to the synthesis of SCH58261 (5-amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine, 61), potent and very selective at the A(2A) receptor subtype, and N(8)-substituted-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines-N(5)-urea or amide (MRE series, b), very selective at the human A(3) adenosine receptor subtype. We now describe a large series of C(9)- and C(2)-substituted pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines to represent an extension of structure-activity relationship work on this class of tricyclic compounds. The introduction of a substituent at 9 position of the tricyclic antagonistic structure led to retention of receptor affinity but a loss of selectivity in respect to the lead compounds b, N(8)-substituted-pirazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines-N(5)-urea or -amide. The substitution of the furanyl moiety of compound 61, necessary for receptor binding, with a phenyl or a substituted aromatic ring (compounds 5a-d, 6-8), caused a complete loss of the affinity at all the adenosine receptor subtypes, demonstrating that the furanyl ring is a necessary structural element to guarantee interaction with the adenosine receptor surface. The introduction of an ethoxy group at the ortho position of the aromatic ring to mimic the oxygen of the furan (compound 5c, 5-amino-7-(2-phenylethyl)-2-(2-ethoxyphenyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) did not enhance affinity. The introduction of the cycloaminomethyl function by Mannich reaction at the 5' position of the furanyl ring of 61 and the C(9)-substituted compound 41 (5-amino-8-methyl-9-methylsulfanyl-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) resulted in complete water solubility but a loss of receptor affinity. We can conclude that modifications or substitutions at the furanyl ring are not allowed and the introduction of a substituent at the 9-position of the core pyrazolo-triazolo-pyrimidine structure caused a severe loss of selectivity, probably due to an increased steric hindrance of the radical introduced.  相似文献   

10.
The [1,2,4]triazolo[1,5-a]triazine derivative 3, more commonly known in the field of adenosine research as ZM-241385, has previously been demonstrated to be a potent and selective adenosine A2a receptor antagonist, although with limited oral bioavailability. This [1,2,4]triazolo[1,5-a]triazine core structure has now been improved by incorporating various piperazine derivatives. With some preliminary optimization, the A2a binding affinity of some of the best piperazine derivatives is almost as good as that of compound 3. The selectivity level over the adenosine A1 receptor subtype for some of the more active analogues is also fairly high, > 400-fold in some cases. Many compounds within this piperazine series of [1,2,4]triazolo[1,5-a]triazine have now been shown to have good oral bioavailability in the rat, with some as high as 89% (compound 35). More significantly, some piperazines derivatives of [1,2,4]triazolo[1,5-a]triazine also possessed good oral efficacy in rodent models of Parkinson's disease. For instance, compound 34 was orally active in the rat catalepsy model at 3 mg/kg. In the 6-hydroxydopamine-lesioned rat model, this compound was also quite effective, with a minimum effective dose of 3 mg/kg po.  相似文献   

11.
Piperazine derivatives of 2-furanyl[1,2,4]triazolo[1,5-a][1,3,5]triazine have recently been demonstrated to be potent and selective adenosine A(2a) receptor antagonists with oral activity in rodent models of Parkinson's disease. We have replaced the piperazinyl group with a variety of linear, monocyclic, and bicyclic diamines. Of these diamines, (R)-2-(aminomethyl)pyrrolidine is a particularly potent and selective replacement for the piperazinyl group. With this diamine component, we have been able to prepare numerous analogues with low nanomolar affinity toward the A(2a) receptor and good selectivity with respect to the A(1) receptor (>200-fold in some cases). Selected analogues from this series of [1,2,4]triazolo[1,5-a][1,3,5]triazine have now been shown to be orally active in the mouse catalepsy model.  相似文献   

12.
Some pyrazolotriazolopyrimidines bearing different heteroarylcarbamoylamino moieties at the N5-position are described. We previously reported the synthesis of a water soluble compound with high potency and selectivity versus the human A3 adenosine receptor as antagonist, and herein we present an enlarged series of compounds related to the previously mentioned one. These compounds showed A3 adenosine receptor affinity in the nanomolar range and different levels of selectivity evaluated in radioligand binding assays at human A1, A2A, A2B, and A3 adenosine receptors. In particular, the effect of the heteroaryl substituents at the N5 position has been analyzed. This study allows us to recognize that the presence of a pyridinium moiety in this position not only increases water solubility but also improves or retains potency and selectivity at the human A3 adenosine receptors. In contrast, replacement of pyridine with different heterocycles produces loss of affinity and selectivity at the human A3 adenosine receptors. A molecular modeling study has been carried out with the aim to explain these various binding profiles.  相似文献   

13.
A class of potent, selective adenosine A(3) receptor antagonists was obtained via optimisation of the screening hit N-[4-(4-methoxyphenyl)-thiazol-2-yl]-acetamide. Structural modifications of this hit revealed very quickly that a 5-(pyridin-4-yl) substituent on the 2-aminothiazole ring was optimal for high potency at the adenosine A(3) receptor. Structure activity relationship studies led to both potent and selective A(3) receptor antagonists, including N-[5-pyridin-4-yl-4-(3,4,5-trimethoxyphenyl)-thiazol-2-yl]-acetamide, a highly potent aden-osine A(3) receptor antagonist with greater than 100- fold selectivity against the related adenosine receptors. As well as demonstrating selective in vitro binding on the human A(3) adenosine receptor, this compound was also shown to selectively block the rat A(3) receptor in vivo. This important new compound can be readily synthesised in four steps from commercially available starting materials.  相似文献   

14.
The synthesis of the new triazolo[4,3-c]pyrimidines is described, starting from derivatives of 5-carboxy-2-hydroxy-4-hydrazino-6-methylpyrimidine. The 4-methyl-2,3-dihydropyrazolo[3,4-d]pyrimidine-3,6-dione was also obtained. Some of triazolo[4,3-c]pyrimidines tested for biological activity were found inactive.  相似文献   

15.
16.
It was demonstrated in the early 1990s that adenosine exerts many physiological functions through the interaction with four different receptors, named A1, A2A, A2B, and A3. In the past few years, our group has been involved in the development of A2A antagonists, which led to the synthesis of SCH 58261 (1), the first potent and selective adenosine A2A antagonist, which has been widely used as a reference compound. In this paper, we present an extended series of pyrazolotriazolopyrimidines synthesized with the aim to investigate the influence of the substitutions on the pyrazole ring. The choice of the substituents was based on their capability to improve water solubility while retaining high affinity and selectivity at the human A2A adenosine receptor subtype. In this series, some structural characteristics that are important for activity, i.e., tricyclic structure, free amino group at 5-position, furan ring, and substituent at 7-position on the pyrazole moiety, have been maintained. We focused our attention on the nature of the phenyl ring substituent to improve water solubility. Following this strategy, we developed new compounds with good affinity and selectivity for A2A adenosine receptors, such as 8d (K(i) 0.12 nM; hA1/hA2A ratio = 1025; R(m) = 2.8), 8h (K(i) 0.22; hA1/hA2A ratio = 9818; R(m) = 3.4), 8i (K(i) 0.18 nM; hA1/hA2A ratio = 994; R(m) = 2.8), 8k (K(i) 0.13 nM; hA1/hA2A ratio = 4430; R(m) = 3.6), and 14b (K(i) 0.19 nM; hA1/hA2A ratio = 2273; R(m) = 2.7). All the new synthesized compounds have no significant interaction with either A2B or A3 receptor subtypes. This new series of compounds deeply enlightens some structural requirements to display high affinity and selectivity for the A2A adenosine receptor subtype, although our goal of identifying new compounds with increased water solubility was not completely achieved. On this basis, other strategies will be devised to improve this class of compounds with a profile that appears to be promising for treatment of neurodegenerative disorders, such as Parkinson's disease.  相似文献   

17.
A structural investigation on some 4-amido-2-phenyl-1,2-dihydro-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, designed as human A3 adenosine receptor (hA3 AR) antagonists, is described. In the new derivatives, some acyl residues with different steric bulk were introduced on the 4-amino group, and their combination with the 4-methoxy group on the 2-phenyl moiety, and/or the 6-nitro/6-amino substituent on the fused benzo ring, was also evaluated. Most of the new derivatives were potent and selective hA3 AR antagonists. SAR analysis showed that hindering and lipophilic acyl moieties not only are well tolerated but even ameliorate the hA3 affinity. Interestingly, the 4-methoxy substituent on the appended 2-phenyl moiety, as well as the 6-amino group, always exerted a positive effect, shifting the affinity toward the hA3 receptor subtype. In contrast, the 6-nitro substituent exerted a variable effect. An intensive molecular modeling investigation was performed to rationalize the experimental SAR findings.  相似文献   

18.
19.
A series of 4-allyl/benzyl-7,8-dihydro-8-methyl/ethyl-2-[(substituted)isoxazol/pyrazol-3/5-yl]-1H-imidazo[2,1-i]purin-5(4H)-ones has been synthesized and evaluated in radioligand binding assays to determine their affinities at the human A(1), A(2A), and A(3) adenosine receptors. Efficacy at the hA(2B) AR and antagonism of selected ligands at the hA(3) AR were also assessed through cAMP experiments. All of the synthesized molecules exhibited high affinity at the hA(3) AR (K(i) values ranging from 1.46 to 44.8 nM), as well as remarkable selectivity versus A(1), A(2A), and A(2B) AR subtypes. Compound (R)-4-allyl-8-ethyl-7,8-dihydro-2-(3-methoxy-1-methyl-1H-pyrazol-5-yl)-1H-imidazo[2,1-i]purin-5(4H)-one (R-33) was found to be the most potent and selective ligand of the series (K(i) hA(3) = 1.46 nM, K(i) hA(2A)/K(i) hA(3) > 3425; IC(50) hA(2B)/K(i) hA(3) > 3425; K(i) hA(1)/K(i) hA(3) = 1729). Molecular modeling studies were helpful in rationalizing the available structure-activity relationships along with the selectivity profiles of the new series of ligands.  相似文献   

20.
1H,3H-Pyrido[2,1-f]purine-2,4-diones, which can be described as fused xanthine structures, have been synthesized by a novel synthetic procedure, and their affinities for the human adenosine A(1), A(2A), and A(3) receptors have been evaluated in radioligand binding studies. The synthetic procedure employed was developed in our laboratory and involved a two-step one-pot reaction that consists of the treatment of 6-aminouracil derivatives with N-bromosuccinimide to generate a 5,5-dibromo-6-imino intermediate that reacts "in situ" with pyridine, 4-methoxypyridine, 4-tert-butylpyridine, or 4-phenylpyridine to afford the corresponding 1H,3H-pyrido[2,1-f]purine-2,4-diones (2-5). Functionalization at the N(3) position in compounds 2-5 was performed by reaction with DBU and different alkyl, alkenyl, alkynyl, or benzyl halides. Binding studies at human adenosine A(1), A(2A), and A(3) receptors revealed significant antagonist effects in the low nanomolar range, in particular against the A(3) receptor. Thus, the 1-benzyl-3-propyl-1H,3H-pyrido[2,1-f]purine-2,4-dione derivative 6, which can be considered a lead compound in this series, exhibited a K(i) value of 4.0 +/- 0.3 nM against the hA(3) receptor. Because xanthine derivatives have traditionally been considered poor A(3) antagonists, the described pyrido[2,1-f]purine-2,4-dione derivatives represent a new family of adenosine receptor antagonists which deserves further exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号