首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
DNA double-strand breaks (DSB) are the most cytotoxic lesions induced by ionizing radiation and topoisomerase II poisons, such as etoposide and doxorubicin. A major pathway for the repair of DSB is nonhomologous end joining, which requires DNA-dependent protein kinase (DNA-PK) activity. We investigated the therapeutic use of a potent, specific DNA-PK inhibitor (NU7441) in models of human cancer. We measured chemosensitization by NU7441 of topoisomerase II poisons and radiosensitization in cells deficient and proficient in DNA-PK(CS) (V3 and V3-YAC) and p53 wild type (LoVo) and p53 mutant (SW620) human colon cancer cell lines by clonogenic survival assay. Effects of NU7441 on DSB repair and cell cycle arrest were measured by gammaH2AX foci and flow cytometry. Tissue distribution of NU7441 and potentiation of etoposide activity were determined in mice bearing SW620 tumors. NU7441 increased the cytotoxicity of ionizing radiation and etoposide in SW620, LoVo, and V3-YAC cells but not in V3 cells, confirming that potentiation was due to DNA-PK inhibition. NU7441 substantially retarded the repair of ionizing radiation-induced and etoposide-induced DSB. NU7441 appreciably increased G(2)-M accumulation induced by ionizing radiation, etoposide, and doxorubicin in both SW620 and LoVo cells. In mice bearing SW620 xenografts, NU7441 concentrations in the tumor necessary for chemopotentiation in vitro were maintained for at least 4 hours at nontoxic doses. NU7441 increased etoposide-induced tumor growth delay 2-fold without exacerbating etoposide toxicity to unacceptable levels. In conclusion, NU7441 shows sufficient proof of principle through in vitro and in vivo chemosensitization and radiosensitization to justify further development of DNA-PK inhibitors for clinical use.  相似文献   

2.
The DNA repair enzymes, DNA-dependent protein kinase (DNA-PK) and poly(ADP-ribose) polymerase-1 (PARP-1), are key determinants of radio- and chemo-resistance. We have developed and evaluated novel specific inhibitors of DNA-PK (NU7026) and PARP-1 (AG14361) for use in anticancer therapy. PARP-1- and DNA-PK-deficient cell lines were 4-fold more sensitive to ionizing radiation (IR) alone, and showed reduced potentially lethal damage recovery (PLDR) in G(0) cells, compared with their proficient counterparts. NU7026 (10 micro M) potentiated IR cytotoxicity [potentiation factor at 90% cell kill (PF(90)) = 1.51 +/- 0.04] in exponentially growing DNA-PK proficient but not deficient cells. Similarly, AG14361 (0.4 micro M) potentiated IR in PARP-1(+/+) (PF(90) = 1.37 +/- 0.03) but not PARP-1(-/-) cells. When NU7026 and AG14361 were used in combination, their potentiating effects were additive (e.g., PF(90) = 2.81 +/- 0.19 in PARP-1(+/+) cells). Both inhibitors alone reduced PLDR approximately 3-fold in the proficient cell lines. Furthermore, the inhibitor combination completely abolished PLDR. IR-induced DNA double strand break (DNA DSB) repair was inhibited by both NU7026 and AG14361, and use of the inhibitor combination prevented 90% of DNA DSB rejoining, even 24-h postirradiation. Thus, there was a correlation between the ability of the inhibitors to prevent IR-induced DNA DSB repair and their ability to potentiate cytotoxicity. Thus, individually, or in combination, the DNA-PK and PARP-1 inhibitors act as potent radiosensitizers and show potential as tools for anticancer therapeutic intervention.  相似文献   

3.
The current standard of care for lung cancer consists of concurrent chemotherapy and radiation. Several studies have shown that the DNA-PKcs inhibitor NU7441 is a highly potent radiosensitizer, however, the mechanism of NU7441''s anti-proliferation effect has not been fully elucidated. In this study, the combined effect of NU7441 and ionizing radiation (IR) in a panel of non-small cell lung cancer cell lines (A549, H460 and H1299) has been investigated. We found that NU7441 significantly enhances the effect of IR in all cell lines. The notable findings in response to this combined treatment are (i) prolonged delay in IR-induced DNA DSB repair, (ii) induced robust G2/M checkpoint, (iii) increased aberrant mitosis followed by mitotic catastrophe specifically in H1299, (iv) dramatically induced autophagy in A549 and (v) IR-induced senescence specifically in H460. H1299 cells show greater G2 checkpoint adaptation after combined treatment, which can be attributed to higher expression level of Plk1 compared to A549 and H460. The enhanced autophagy after NU7441 treatment in A549 is possibly due to the higher endogenous expression of pS6K compared to H1299 and H460 cells. In conclusion, choice of cell death pathway is dependent on the mutation status and other genetic factors of the cells treated.  相似文献   

4.
High‐linear energy transfer (LET) heavy ions have been increasingly employed as a useful alternative to conventional photon radiotherapy. As recent studies suggested that high LET radiation mainly affects the nonhomologous end‐joining (NHEJ) pathway of DNA double strand break (DSB) repair, we further investigated this concept by evaluating the combined effect of an NHEJ inhibitor (NU7441) at a non‐toxic concentration and carbon ions. NU7441‐treated non‐small cell lung cancer (NSCLC) A549 and H1299 cells were irradiated with X‐rays and carbon ions (290 MeV/n, 50 keV/μm). Cell survival was measured by clonogenic assay. DNA DSB repair, cell cycle distribution, DNA fragmentation and cellular senescence induction were studied using a flow cytometer. Senescence‐associated protein p21 was detected by western blotting. In the present study, 0.3 μM of NU7441, nontoxic to both normal and tumor cells, caused a significant radio‐sensitization in tumor cells exposed to X‐rays and carbon ions. This concentration did not seem to cause inhibition of DNA DSB repair but induced a significant G2/M arrest, which was particularly emphasized in p53‐null H1299 cells treated with NU7441 and carbon ions. In addition, the combined treatment induced more DNA fragmentation and a higher degree of senescence in H1299 cells than in A549 cells, indicating that DNA‐PK inhibitor contributes to various modes of cell death in a p53‐dependent manner. In summary, NSCLC cells irradiated with carbon ions were radio‐sensitized by a low concentration of DNA‐PK inhibitor NU7441 through a strong G2/M cell cycle arrest. Our findings may contribute to further effective radiotherapy using heavy ions.  相似文献   

5.
Veuger SJ  Curtin NJ  Smith GC  Durkacz BW 《Oncogene》2004,23(44):7322-7329
DNA-dependent protein kinase (DNA-PK) and poly (ADP-ribose) polymerase-1 (PARP-1) participate in nonhomologous end joining and base excision repair, respectively, and are key determinants of radio- and chemo-resistance. Both PARP-1 and DNA-PK have been identified as therapeutic targets for anticancer drug development. Here we investigate the effects of specific inhibitors on enzyme activities and DNA double-strand break (DSB) repair. The enzyme activities were investigated using purified enzymes and in permeabilized cells. Inhibition, or loss of activity, was compared using potent inhibitors of DNA-PK (NU7026) and PARP-1 (AG14361), and cell lines proficient or deficient for DNA-PK or PARP-1. Inactive DNA-PK suppressed the activity of PARP-1 and vice versa. This was not the consequence of simple substrate competition, since DNA ends were provided in excess. The inhibitory effect of DNA-PK on PARP activity was confirmed in permeabilized cells. Both inhibitors prevented ionizing radiation-induced DSB repair, but only AG14361 prevented single-strand break repair. An increase in DSB levels caused by inhibition of PARP-1 was shown to be caused by a decrease in DSB repair, and not by the formation of additional DSBs. These data point to combined inhibition of PARP-1 and DNA-PK as a powerful strategy for tumor radiosensitization.  相似文献   

6.
PURPOSE: del(17p), del(11q), and associated p53 dysfunction predict for short survival and chemoresistance in B-cell chronic lymphocytic leukemia (CLL). DNA-dependent protein kinase (DNA-PK) is activated by DNA damage and mediates DNA double-strand break repair. We hypothesized that inhibiting DNA-PK would sensitize CLL cells to drug-induced DNA damage and that this approach could increase the therapeutic index of agents used to treat CLL. EXPERIMENTAL DESIGN: Fifty-four CLL cases were characterized for poor prognosis markers [del(17p), del(11q), CD38, and ZAP-70]. In selected cases, DNA-PK catalytic subunit (DNA-PKcs) expression and activity and p53 function were also measured. Ex vivo viability assays established sensitivity to fludarabine and chlorambucil and also tested the ability of a novel DNA-PK inhibitor (NU7441) to sensitize CLL cells to these drugs. The effects of NU7441 on fludarabine-induced DNA damage repair were also assessed (Comet assays and detection of gammaH2AX). RESULTS: DNA-PKcs levels correlated with DNA-PK activity and varied 50-fold between cases but were consistently higher in del(17p) (P = 0.01) and del(11q) cases. NU7441 sensitized CLL cells to chlorambucil and fludarabine, including cases with del(17p), del(11q), p53 dysfunction, or high levels of DNA-PKcs. NU7441 increased fludarabine-induced double-strand breaks and abrogated drug-induced autophosphorylation of DNA-PKcs at Ser2056. High DNA-PK levels predicted for reduced treatment-free interval. CONCLUSIONS: These data validate the concept of targeting DNA-PKcs in poor risk CLL, and demonstrate a mechanistic rationale for use of a DNA-PK inhibitor. The novel observation that DNA-PKcs is overexpressed in del(17p) and del(11q) cases indicates that DNA-PK may contribute to disease progression in CLL.  相似文献   

7.
H2AX phosphorylation is an early step in the response to DNA damage. It is widely accepted that ATM (ataxia telangiectasia mutated protein) phosphorylates H2AX in response to DNA double-strand breaks (DSBs). Whether DNA-dependent protein kinase (DNA-PK) plays any role in this response is unclear. Here, we show that H2AX phosphorylation after exposure to ionizing radiation (IR) occurs to similar extents in human fibroblasts and in mouse embryo fibroblasts lacking either DNA-PK or ATM but is ablated in ATM-deficient cells treated with LY294002, a drug that specifically inhibits DNA-PK. Additionally, we show that inactivation of both DNA-PK and ATM is required to ablate IR-induced H2AX phosphorylation in chicken cells. We confirm that H2AX phosphorylation induced by DSBs in nonreplicating cells is ATR (ataxia telangiectasia and Rad3-related protein) independent. Taken together, we conclude that under most normal growth conditions, IR-induced H2AX phosphorylation can be carried out by ATM and DNA-PK in a redundant, overlapping manner. In contrast, DNA-PK cannot phosphorylate other proteins involved in the checkpoint response, including chromatin-associated Rad17. However, by phosphorylating H2AX, DNA-PK can contribute to the presence of the damage response proteins MDC1 and 53BP1 at the site of the DSB.  相似文献   

8.
DNA-dependent protein kinase (DNA-PK) and poly(ADP-ribose) polymerase (PARP) are activated by DNA strand breaks and participate in DNA repair. We investigated the interactive effects of inhibitors of these enzymes [wortmannin (WM), which inhibits DNA-PK, and 8-hydroxy-2-methylquinazolin-4-one (NU1025), a PARP inhibitor] on cell survival and DNA double-strand break (DSB) and single-strand break (SSB) rejoining in Chinese hamster ovary-K1 cells following exposure to ionizing radiation (IR) or temozolomide. WM (20 microM) or NU1025 (300 microM) potentiated the cytotoxicity of IR with dose enhancement factors at 10% survival (DEF10) values of 4.5 +/- 0.6 and 1.7 +/- 0.2, respectively. When used in combination, a DEF10 of 7.8 +/- 1.5 was obtained. WM or NU1025 potentiated the cytotoxicity of temozolomide, and an additive effect on the DEF10 value was obtained with the combined inhibitors. Using the same inhibitor concentrations, their single and combined effects on DSB and SSB levels following IR were assessed by neutral and alkaline elution. Cells exposed to IR were post-incubated for 30 min to allow repair to occur. WM or NU1025 increased net DSB levels relative to IR alone (DSB levels of 1.29 +/- 0.04 and 1.20 +/- 0.05, respectively, compared with 1.01 +/- 0.03 for IR alone) and the combination had an additive effect. WM had no effect on SSB levels, either alone or in combination with NU1025. SSB levels were increased to 1.27 +/- 0.05 with NU1025 compared with IR alone, 1.02 +/- 0.04. The dose-dependent effects of the inhibitors on DSB levels showed that they were near maximal by 20 microM WM and 300 microM NU1025. DSB repair kinetics were studied. Both inhibitors increased net DSB levels over a 3 h time period; when they were combined, net DSB levels at 3 h were identical to DSB levels immediately post-IR. The combined use of DNA repair inhibitors may have therapeutic potential.  相似文献   

9.
The response of eukaryotic cells to DNA damage includes the activation of phosphatidylinositol-3 kinase-related kinases (PIKK), such as ATM, ATR, and DNA-dependent protein kinase (DNA-PK). These three kinases have very similar substrate specificities in vitro, but in vivo, their substrates overlap only partially. Several in vivo substrates of ATM and ATR have been identified and almost all of them are involved in DNA damage-induced cell cycle arrest and/or apoptosis. In contrast, few in vivo substrates of DNA-PK have been identified. These include histone H2AX and DNA-PK itself. We identify here valosin-containing protein (VCP) as a novel substrate of DNA-PK and other PIKK family members. VCP is phosphorylated at Ser784 within its COOH terminus, a region previously shown to target VCP to specific intracellular compartments. Furthermore, VCP phosphorylated at Ser784 accumulated at sites of DNA double-strand breaks (DSBs). VCP is a protein chaperone that unfolds and translocates proteins. Its phosphorylation in response to DNA damage and its recruitment to sites of DNA DSBs could indicate a role of VCP in DNA repair.  相似文献   

10.
We have investigated the effects of the protein kinase inhibitor wortmannin (WM) on the cytotoxic mechanisms of etoposide and ionising radiation (IR) in the Chinese hamster ovary K1 (CHO-K1) cell line, and its radiation-sensitive derivative, xrs-6, which is defective in DNA-dependent protein kinase (DNA-PK) function. WM potentiated the cytotoxicity of etoposide and IR in CHO-K1 cells approximately 1.6 and 3-fold, respectively, and this potentiation was abolished in xrs-6 cells, which were themselves more sensitive to etoposide and IR alone. WM partially inhibited the repair of etoposide-induced DNA double-strand breaks. Etoposide treatment caused a biphasic inhibition of DNA synthesis in both cell lines, and this was abrogated by co-incubation with WM. These data suggest that WM inhibits in intact cells both DNA-PK and either or both the ataxia telangiectasia (AT) and AT-related gene products ATM and ATR.  相似文献   

11.

Purpose  

Inhibition of DNA repair is emerging as a new therapeutic strategy for cancer treatment. One promising target is DNA-PK, a pivotal kinase in double-strand break repair. The purpose of this study was to further characterise the activity of the DNA-PK inhibitor NU7441, giving some new insights into the biology of DNA-PK.  相似文献   

12.
Mutations in the BRCA1 or BRCA2 genes predispose to a wide spectrum of familial cancers. The functions of the proteins encoded by BRCA1 and BRCA2 remain to be elucidated, but their interaction and colocalization with hRAD51 suggest a role in homologous recombination and DNA double-strand break (DSB) repair. The role of BRCA1 and BRCA2 in the rejoining of ionizing radiation (IR)-induced DNA DSBs, which may represent a step in the overall process of repair, remains uncertain because recent reports provide conflicting results. Because elucidation of the role of these proteins in DNA DSB rejoining is important for their functional characterization, we reexamined this end point in cells with mutations in either BRCA1 or BRCA2. We show that two pancreatic carcinoma cell lines known to have either wild-type (BxPC3) or mutant forms (Capan-1) of BRCA2 rejoin IR-induced DNA DSBs to a similar extent following biphasic kinetics characterized by a fast and a slow component. Importantly, inactivation of DNA-dependent protein kinase (DNA-PK) by wortmannin generates similar shifts from the fast to the slow component of rejoining in BRCA2-proficient and BRCA2-deficient cells. This suggests that the functioning of either the fast, DNA-PK-dependent component or the slow, DNA-PK-independent component of rejoining is not affected by mutations in BRCA2. Also, a human breast cancer cell line with mutated BRCA1 shows normal rejoining of IR-induced DNA DSBs and levels of inhibition by wortmannin commensurate with the degree of DNA-PK inhibition. These observations fail to confirm a direct role for BRCA1 or BRCA2 in the rejoining of IR-induced DSBs in the genome of human tumor cells and, as a result, an involvement in nonhomologous end-joining. They are in line with similar observations with mutants deficient in genes implicated in homologous recombination and support the view that the radiosensitivity to killing of cells deficient in BRCA1 or BRCA2 derives from defects in this repair pathway.  相似文献   

13.
In order to investigate the molecular basis of variation in response to ionising radiation (IR) in radiotherapy patients, we have studied the expression of several genes involved in DNA double-strand break repair pathways in fibroblast cell lines. Ten lines were established from skin biopsies of cancer patients with different normal-tissue reactions to IR, and 3 from a control individual. For all 10 test cell lines, the cellular radiosensitivity was also known. Using Western blots we measured, in non-irradiated cells, the basal expression levels of ATM, Rad1 and Hus1, involved in the control of cellular DNA damage checkpoints, together with DNA-PKcs, Ku70, Ku80; XRCC4, ligaseIV and Rad51, involved in radiation- induced DSB repair. We also analysed the in vitro enzymatic activities, under non-irradiated conditions, of the DNA-PK and XRCC4/ligaseIV complexes. The levels of expression of the different proteins were similar in all the cell lines, but the activities of the DNA-PK and XRCC4/ligaseIV complexes showed some differences. These differences did not correlate with either the normal tissue response of the patient in vivo or with cellular radiation sensitivity in vitro. The activity differences of these enzyme complexes, therefore, do not account for the variation of responses seen between patients.  相似文献   

14.
Recently, we showed that the metal chelator TPEN targets colon cancer cells through redox cycling of copper. Here, we studied the DNA damage potential of TPEN and deciphered the role of Chk1, ATM and DNA-PK in TPEN-induced toxicity in 3 human colon cancer cell lines, HCT116, SW480 and HT29. We also investigated the role of reactive oxygen species (ROS) in TPEN-induced DNA damage. TPEN reduced cell viability in a dose- and time-dependent manner. Cytotoxicity was associated with significant DNA damage and higher expression of γ-H2AX protein and activation of ATM/ATR signaling pathway. Cell death by TPEN was dependent on ROS generation as evidenced by the reversal of cell viability, and DNA damage and the abrogation of γ-H2AX levels in the presence of antioxidants. Treatment with antioxidants, however, failed to reverse cytotoxicity at high TPEN concentrations (10µM). TPEN-induced cell death was also dependent on the redox cycling of copper since the copper chelator neocuproine inhibited DNA damage and reduced pChk1, γ-H2AX, and ATM protein expression. Cell death by low TPEN concentrations, involved ATM/ATR signaling in all 3 cell lines, since pre-incubation with specific inhibitors of ATM and DNA-PK led to the recovery of cells from TPEN-induced DNA damage. In addition, siRNA silencing of Chk1, DNA-PK and ATM abrogated the expression of γ-H2AX and reversed cell death, suggesting that Chk1 and DNA-PK mediate TPEN-induced cytotoxicity in colon cancer cells. This study shows for the first time the involvement of Chk1, DNA-PK and ATM in TPEN-induced DNA damage and confirms our previous findings that ROS generation and the redox cycling of copper in response to TPEN are the main mechanisms by which this compound induces cell death in human colon cancer cells. Inhibition of ATM or DNA-PK did not reverse cytotoxicity at high TPEN concentrations that cause excessive levels of ROS and irreversible cellular damage.  相似文献   

15.
Double-strand breaks (DSBs) can be efficiently removed from the DNA of higher eukaryotes by nonhomologous end-joining (NHEJ). Genetic studies implicate the DNA-dependent protein kinase (DNA-PK) in NHEJ, but the exact function of this protein complex in the rejoining reaction remains to be elucidated. We compared rejoining of DNA DSBs in a human glioma cell line, M059-J, lacking the catalytic subunit of DNA-PK (DNA-PKcs), and their isogenic but DNA-PK-proficient counterpart, M059-K. In both cell lines, rejoining of DNA DSBs was biphasic, with a fast and a slow component operating with a half-life of approximately 22 min and 12 h, respectively. Deficiency in DNA-PK activity did not alter the half-times of either of these components of rejoining but increased from 17 to 72% the proportion of DNA DSB rejoining with slow kinetics. DNA DSB rejoining was nearly complete in both cell lines, and there was only a small increase in the number of unrejoined breaks in M059-J as compared with M059-K cells after 30 h of incubation. Wortmannin radiosensitized to killing M059-K cells and strongly inhibited DNA DSB rejoining. Wortmannin did not affect the radiosensitivity to killing and produced only a modest inhibition in DNA DSB rejoining in M059-J cells, suggesting that, for these end points, DNA-PK is the principal target of the drug. These observations demonstrate that DNA-PK deficiency profoundly decreases the proportion of DNA DSB rejoining with fast kinetics but has only a small effect on the fraction remaining unrejoined. We propose that in higher eukaryotes, an evolutionarily conserved, independently active, but inherently slow NHEJ pathway is stimulated 30-fold by DNA-PKcs to rapidly remove DNA DSBs from the genome. The stimulation is expected to be of local nature and the presence of DNA-PKcs in the vicinity of the DNA DSB determines whether rejoining will follow fast or slow kinetics. Structural and regulatory functions of DNA-PKcs may mediate this impressive acceleration of DNA DSB rejoining, and regions of chromatin within a certain range from this large protein may benefit from these activities. We propose the term DNA-PK surveillance domains to describe these regions.  相似文献   

16.
Wang H  Wang H  Powell SN  Iliakis G  Wang Y 《Cancer research》2004,64(19):7139-7143
ATR is one of the most important checkpoint proteins in mammalian cells responding to DNA damage. Cells defective in normal ATR activity are sensitive to ionizing radiation (IR). The mechanism by which ATR protects the cells from IR-induced killing remains unclear. DNA double-strand breaks (DSBs) induced by IR are critical lesions for cell survival. Two major DNA DSB repair pathways exist in mammalian cells: homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). We show that the doxycycline (dox)-induced ATR kinase dead (ATRkd) cells have the similar inductions and rejoining rates of DNA DSBs compared with cells without dox induction, although the dox-induced ATRkd cells are more sensitive to IR and have the deficient S and G(2) checkpoints. We also show that the dox-induced ATRkd cells have a lower HRR efficiency compared with the cells without dox induction. These results indicate that the effects of ATR on cell radiosensitivity are independent of NHEJ but are linked to HRR that may be affected by the deficient S and G(2) checkpoints.  相似文献   

17.
ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.  相似文献   

18.
This work analyzes the effectiveness of wortmannin in boosting the lethality induced by different doses of X-rays, using the colorimetric assay of MTT. Bladder tumoral cell lines differing in radiosensitivity and p53 status were used. Since wortmannin is able to inhibit DNA-dependent protein kinase (DNA-PK) and rejoining of double-strand breaks (DSBs), we have analyzed the constitutive contents and expression after irradiation of the catalytic subunit of DNA-PK (DNA-PKcs) in our cell lines with the aim of explaining the differential effect of wortmannin as radiosensitizer. Considering that DNA-PK is the main protein complex involved in DNA DSB repair, the ability to remove DSBs after irradiation (with or without wortmannin) was evaluated in the different cell lines by the use of pulse-field gel electrophoresis. Our results indicate a higher radiosensitization in the radio-resistant cell line that shows both high constitutive contents of DNA-PKcs and a high rate of DNA repair by the fast component. In contrast, no radiosensitizer effect of wortmannin was observed in the radiosensitive cell line, previously characterized as defective in DSB repair by a low repair fidelity, and - as our results show - with low constitutive contents and later post-irradiation expression of DNA-PKcs. No clear effect related to p53 status of the cell line was observed. These results suggest that high constitutive contents of DNA-PKcs are indicative of radio-resistant phenotypes, and analysis of the expression of this protein could be helpful in the optimal establishment of wortmannin as radiosensitizer in bladder tumoral cell lines.  相似文献   

19.
20.
Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10μg/mL of Arctium lappa root extract and 5 μM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号