首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rate, magnitude and pharmacology of inorganic phosphate (Pi) transport into the sarcoplasmic reticulum were estimated in single, mechanically skinned skeletal muscle fibres of the rat. This was done, indirectly, by using a technique that measured the total Ca2+ content of the sarcoplasmic reticulum and by taking advantage of the 1:1 stoichiometry of Ca2+ and Pi transport into the sarcoplasmic reticulum lumen during Ca--Pi precipitation- induced Ca2+ loading. The apparent rate of Pi entry into the sarcoplasmic reticulum increased with increasing myoplasmic [Pi] in the 10 mm--50 mm range at a fixed, resting myoplasmic pCa of 7.15, as judged by the increase in the rate of Ca--Pi precipitation-induced sarcoplasmic reticulum Ca2+ uptake. At 20 mm myoplasmic [Pi] the rate of Pi entry was calculated to be at least 51 m s–1 while the amount of Pi loaded appeared to saturate at around 3.5 mm (per fibre volume). These values are approximations due to the complex kinetics of formation of different species of Ca--Pi precipitate formed under physiological conditions. Phenylphosphonic acid (PhPA, 2.5 mm inhibited Pi transport by 37% at myoplasmic pCa 6.5 and also had a small, direct inhibitory effect on the sarcoplasmic reticulum Ca2+ pump (16%). In contrast, phosphonoformic acid (PFA, 1 mm) appeared to enhance both the degree of Pi entry and the activity of the sarcoplasmic reticulum Ca2+ pump, results that were attributed to transport of PFA into the sarcoplasmic reticulum lumen and its subsequent complexation with Ca2+. Thus, results from these studies indicate the presence of a Pi transporter in the sarcoplasmic reticulum membrane of mammalian skeletal muscle fibres that is (1) active at physiological concentrations of myoplasmic Pi and Ca2+ and (2) partially inhibited by PhPA. This Pi transporter represents a link between changes in myoplasmic [Pi] and subsequent changes in sarcoplasmic reticulum luminal [Pi]. It might therefore play a role in the delayed metabolic impairment of sarcoplasmic reticulum Ca2+ release seen during muscle fatigue, which should occur abruptly once the Ca--Pi solubility product is exceeded in the sarcoplasmic reticulum lumen  相似文献   

3.
The effects of anabolic-androgenic steroid administration on the function of the sarcoplasmic reticulum (SR) pump were investigated in chemically skinned fibres from the extensor digitorum longus (EDL) and soleus muscles of sedentary rats. Twenty male rats were divided into two groups, one group received an intramuscular injection of nandrolone decanoate (15 mg kg–1) weekly for 8 weeks, the second received similar weekly doses of vehicle (sterile peanut oil). Compared with control muscles, nandrolone decanoate treatment reduced SR Ca2+ loading in EDL and soleus fibres by 49% and 29%, respectively. In control and treated muscles, the rate of Ca2+ leakage depended on the quantity of Ca2+ loaded. Furthermore, for similar SR Ca2+ contents, the Ca2+ leakage rate was not significantly modified by nandrolone decanoate treatment. Nandrolone decanoate treatment thus affects Ca 2+ uptake by the SR in a fibre-type dependent manner.  相似文献   

4.
Semitendinosus fibres from Rana pipiens were examined in the electron microscope. When the aqueous solutions in which the fibres were prepared contained no sucrose, the sarcoplasmic reticulum was markedly swollen and possibly fragmented. When as little as 50 mM sucrose was included in the aqueous solution, the sarcoplasmic reticulum retained the flattened appearance characteristic of intact fibres. The degree of flattening was not substantially different with concentrations of sucrose ranging from 50 to 300 mM, suggesting that the flattened volume may be determined by structural elements. In all the fibre segments, the regularity of the hexagonal filament lattice was disrupted and the disruption was not affected by sucrose. Radioactive calcium uptake was measured in the presence and absence of 200 mM sucrose. The capacity of the sarcoplasmic reticulum (SR) was depressed by about 30% by the sucrose but the initial uptake was not significantly affected. This finding suggests that most of the calcium within the SR is bound and not free in solution.  相似文献   

5.
Isometric ATP consumption and force were investigated in mechanically skinned fibres from iliofibularis muscle of Xenopus laevis. Measurements were performed at different [Ca2+], in the presence and absence of caffeine (5mm). In weakly Ca2+-buffered solutions without caffeine, spontaneous oscillations in force and ATPase activity occurred. The repetition frequency was [Ca2+]-and temperature-dependent. The Ca2+ threshold (±sem) for the oscillations corresponded to a pCa of 6.5±0.1. The maximum ATP consumption associated with calcium uptake by the sarcoplasmic reticulum (SR) reached during the oscillations was similar to the activity under steady-state conditions at saturating calcium concentrations in the presence of caffeine. Maximum activity was reached when the force relaxation was almost complete. The calculated amount of Ca2+ taken up by the SR during a complete cycle corresponded to 5.4±0.4mmol per litre cell volume. In strongly Ca2+-buffered solutions, caffeine enhanced the calcium sensitivity of the contractile apparatus and, at low calcium concentrations, SR Ca uptake. These results suggest that when the SR is heavily loaded by net Ca uptake, there is a massive calcium-induced calcium release. Subsequent net Ca uptake by the SR then gives rise to the periodic nature of the calcium transient.This revised version was published online in September 2005 with corrections to the Cover Date.  相似文献   

6.
 The effect of intracellular Cl on Ca2+ release in mechanically skinned fibres of rat extensor digitorum longus (EDL) and toad iliofibularis muscles was examined under physiological conditions of myoplasmic [Mg2+] and [ATP] and sarcoplasmic reticulum (SR) Ca2+ loading. Both in rat and toad fibres, the presence of 20 mM Clin the myoplasm increased Ca2+ leakage from the SR at pCa (i.e. –log10 [Ca2+]) 6.7, but not at pCa 8. Ca2+ uptake was not significantly affected by the presence of Cl. This Ca2+-dependent effect of Cl on Ca2+ leakage was most likely due to a direct action on the ryanodine receptor/Ca2+ release channel, and could influence channel sensitivity and the resting [Ca2+] in muscle fibres in vivo. In contrast to this effect, acute addition of 20 mM Cl to the myoplasm caused a 40–50% reduction in Ca2+ release in response to a low caffeine concentration both in toad and rat fibres. One possible explanation for this latter effect is that the addition of Cl induces a potential across the SR (lumen negative) which might reduce Ca2+ release via several different mechanisms. Received: 20 October 1997 / Received after revision: 1 December 1997 / Accepted: 2 December 1997  相似文献   

7.
8.
9.
10.
11.
Skinned fibres prepared by mechanical and/or chemical means from cardiac and skeletal muscles of the rat were activated in solution strongly buffered for Ca2+ (with 50 mM EGTA) in the absence or presence of caffeine 5–40 mM. In all preparations caffeine was found to reversibly shift the relation between steady-state force and free [Ca2+] toward lower free [Ca2+] in a dose dependent manner. This increase in apparent Ca2+ sensitivity was not antagonized by procaine and was the same, within each muscle type, irrespective of the manner in which the skinned fibre was prepared, and consequently the degree to which it retained cellular membranes. The effect was more pronounced in cardiac and slow-twitch than in fast-twitch, myofibrillar preparations. At equivalent concentrations theophylline mimicked this effect of caffeine in all preparations, however, addition of exogenous cyclic AMP neither mimicked nor modified, in any way, the effect. Maximum Ca2+-activated force production was not affected by caffeine below 20 mM but was depressed by concentrations of 20 mM and above. The increase in apparent Ca2+ sensitivity produced by caffeine can not be the result of a mobilization of some cellular store of Ca2+ but must arise from a direct effect of caffeine on the myofilaments which leads to a change in the apparent affinity constant of the force controlling sites for Ca2+.  相似文献   

12.
Summary To clarify further the characteristics of the Ca-releasing action of quercetin, we examined the effect of quercetin on Ca2+ efflux from the sarcoplasmic reticulum without Ca uptake activity by omission of ATP in the presence of a high concentration (10 mm EGTA) of Ca2+ buffer, using mechanically skinned fibres from frog skeletal muscles. Quercetin increases the rate of Ca release in the presence of Ca2+ and shifts the relationship between Ca2+ concentration and the rate of Ca release to a lower range of Ca2+ concentrations. AMP potentiates the effect of quercetin. Mg2+ and procaine decrease the rate of Ca release in the presence of quercetin. These findings indicate that quercetin is very similar to caffeine; in fact, experiments confirmed that quercetin shares the site(s) of action with caffeine. Subsequent findings, however, suggest that the mechanism of the drug-induced Ca release is not as simple as expected with caffeine which may increase the affinity for Ca2+ of the Ca2+-induced Ca-release mechanism, and that drugs, Ca2+ and nucleotide interact with one another in a more complex way to open the gate for Ca release. In the presence of 10 mm EGTA quercetin also causes Ca release in the virtual absence of Ca2+ if a sufficient amount of AMP is present, and the rate of Ca release in the presence of 1.55 m Ca2+ showed different dependence on AMP concentration with and without quercetin. A higher concentration of Mg2+ is required in the presence of AMP than in the absence of AMP in order to eliminate Ca release by quercetin.  相似文献   

13.
The influence of myoplasmic Mg2+ (0.05–10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 M Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 M Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 M ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 M Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 M), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres. In the soleus and cardiac preparations Ca2+ uptake was optimal between 1 and 10 mM Mg2+. The results of this study demonstrate that SR Ca2+ accumulation is different from SR Ca2+ uptake and that these two important determinants of muscle function are differently affected by Mg2+ in different muscle fibre types.  相似文献   

14.
 Recent atomic 3-D reconstructions of the acto-myosin interface suggest that electrostatic interactions are important in the initial phase of cross-bridge formation. Earlier biochemical studies had also given strong evidence for the ionic strength dependence of this step in the cross-bridge cycle. We have probed these interactions by altering the ionic strength (Γ/2) of the medium mainly with K+, imidazole+ and EGTA2– to vary charge shielding. We examined the effect of ionic strength on the kinetics of rigor development at low Ca2+ (experimental temperature 18–22°C) in chemically skinned single fast-twitch fibres of mouse extensor digitorum longus (EDL) muscle. On average the delay before rigor onset was 10 times longer, the maximum rate of rigor tension development was 10 times slower, the steady-state rigor tension was 3 times lower and the in-phase stiffness was 2 times lower at high (230 mM) compared to low (60 mM) ionic strength. These results were modelled by calculating ATP depletion in the fibre due to diffusional loss of ATP and acto-myosin Mg.ATPase activity. The difference in delay before rigor onset at low and high ionic strength could be explained in our model by assuming a 15 times higher Mg.ATPase activity and a threefold increase in K m in relaxing conditions at low ionic strength. Activation by Ca2+ induced at different time points before and during onset of rigor confirmed the calculated time course of ATP depletion. We have also investigated ionic strength effects on rigor development with the activated troponin/tropomyosin complex. ATP withdrawl at maximum activation by Ca2+ induced force transients which led into a ”high rigor” state. The peak forces of these force transients were very similar at low and high ionic strength. The subsequent decrease in tension was only 10% slower and steady-state ”high rigor” tension was reduced by only 27% at high compared to low ionic strength. Addition of 10 mM phosphate to lower cross-bridge attachment strongly suppressed the transient increases in force at high ionic strength and reduced the steady-state rigor tension by 17%. A qualitatively similar but smaller effect of phosphate was observed at low ionic strength where steady-state rigor force was reduced by 10%. The data presented in this study show a very strong effect of ionic strength on rigor development in relaxed fibres whereas the ionic strength dependence of rigor development after thin filament activation was much less. The data confirm the importance of electrostatic interactions in cross-bridge attachment and cross-bridge-attachment-induced activation of thin filaments. Received: 3 September 1997 / Received after revision and accepted: 12 December 1997  相似文献   

15.
Thapsigargin has been reported to inhibit ATP-dependent Ca2+ uptake by isolated sarcoplasmic reticulum (SR) vesicles of vertebrate skeletal muscle fibres at nanomolar concentrations. There have been no reports confirming this effect in skinned muscle fibre preparations. We have examined the ability of thapsigargin to inhibit the uptake of Ca2+ by the SR in mechanically skinned fibres of frog iliofibularis muscles, using the size of the caffeine-induced contracture to assess the Ca2+ content of the SR. The SR was first depleted of Ca2+ and then reloaded for 1 min at pCa 6.2 in the presence and absence of thapsigargin. When 5 min were allowed for diffusion, a thapsigargin concentration of at least 131 M was required to inhibit Ca2+ loading by 50%. In contrast, another SR Ca2+ uptake inhibitor, cyclopiazonic acid, was more effective, producing 50% inhibition at 7.0 M and total inhibition at 50 M. When cyclopiazonic acid (100 M) was applied after, rather than during, Ca2+ loading, the caffeine-induced contracture was not changed. Thapsigargin (300 M), on the other hand, caused some reduction in the peak amplitude of the caffeine-induced contracture when applied after Ca2+ loading. The poor effectiveness of thapsigargin in the skinned fibres, compared with in SR vesicles, is attributed to its slow diffusion into the skinned fibres, perhaps as a result of binding to myofibrillar components.  相似文献   

16.
Previous reports have shown that cooling striated muscles induces contractile responses that are related to Ca2+ release from the sarcoplasmic reticulum. However, the effect of cooling has generally been studied in the presence of pharmacological agents that potentiate rapid cooling-induced contractures. The present study shows that in saponin-skinned rat skeletal muscle preparations, a drop in temperature from 22 degrees C to 2 degrees C per se induces a contracture which relaxes on return to 22 degrees C. In fast-twitch fibres, rapid cooling-induced contractures are fully blocked by ryanodine, an inhibitor of ryanodine receptors. By contrast, in slow-twitch fibres, ryanodine partially inhibits the rapid cooling-induced contractile response, leaving a residual tension that dissipates after application of inositol 1,4,5-trisphosphate (InsP3). At low concentrations, heparin, an inhibitor of InsP3 receptors, decreases rapid cooling-induced contractures in both types of muscle. The present results suggest that in skeletal muscle, rapid cooling-induced contractures are due to both ryanodine-sensitive and InsP3-sensitive Ca2+ release from the sarcoplasmic reticulum.  相似文献   

17.
18.
Summary The effects of amrinone were studied on single skinned fibres isolated from rat hindlimb muscles. In each fibre a force-velocity relation was determined during maximal calcium activation (pCa=4.45) in control conditions and in the presence of amrinone. The MgATP concentration was 3.93 mm, close to the physiological value. After the experiment the fibre was classified as fast or slow on the basis of its reactivity with anti-myosin monoclonal antibodies. In fast fibres amrinone (3 mm) potentiated isometric tension (P 0) by 13.8±2.9% (n=13), reduced maximum shortening velocity (V max ) by 32.6±3.2% and the curvature of the force-velocity relation (a/P 0) was increased by 98.9±46.0%. All these effects were less pronounced in slow fibres, where V max was reduced only by 11.4±3.6 (n=16). The effects of amrinone (0.3–6 mm) on the ATPase activity of myofibrils and myosin prepared from fast (tibialis anterior) and slow (soleus) rat skeletal muscles were studied. Amrinone was found to depress Ca–Mg dependent ATPase activity of myofibrillar preparations of the tibialis anterior (up to 16.6±2%) and, to a lesser extent, of the soleus (up to 7.2±1.2%). On the contrary, Ca-stimulated myosin ATPase activity was significantly increased by amrinone in myosin preparations from the tibialis anterior. Experiments were carried out to test whether amrinone (3 mm) might affect the sensitivity of the contractile system to MgATP concentration ([MgATP]). The results obtained showed that (1) the [MgATP] value at which isometric tension reached its maximum was shifted by amrinone from 0.1 mm to 0.3 mm, (2) the slope of the negative relation between [MgATP] and a/P 0 was made more steep by amrinone, and (3) the Km of the hyperbolic relation between [MgATP] and V max was increased from 0.39 to 1.71 mm by amrinone, thus indicating a reduced affinity of myosin for MgATP. These results are in accordance with the hypothesis that amrinone exerts a direct effect on the contractile mechanism.  相似文献   

19.
A freeze-drying method is described by which single skinned skeletal muscle fibres or fibre bundles can readily be obtained. Skinned fibre segments of the ileofibularis and semitendinous muscles of the frog — activated by means of a rapid increase in the Ca-concentration — showed very stable and reproducible contractions. Complete activation occurred at a Ca-concentration of 1.6·10–6 M and the mid-point of the pCa-tension curve occurred at 6.3·10–7 M. Addition of phosphate (10–2 M) had a depressing effect on the speed of the Ca-activated tension development as well as on the maximum tension reached.Addition of caffeine (10–2 M) had no effect on the tension generation, indicating that the sarcoplasmic reticulum, if present, was not active. The force responses due to rapid length changes applied to the Ca-activated fibre preparations were found to be qualitatively similar to the force responses on intact tissue. This skinning technique might be employed on human biopsies, enabling the measurement of physiological parameters such as for example force and shortening velocity.  相似文献   

20.
Summary Mechanically skinned fibre preparations from the extensor digitorum longus muscle of the rat were used to test whether a rise in myoplasmic [NH4 +] in the range 2–10 mm interferes with the mechanism of excitation-contraction coupling in fast-twitch mammalian muscle. Under our conditions (pH 7.10, Mg2+ 1 mm, temperature 23° C), [NH4 +] up to 10 mm had little effect on the Ca+-activated force and on the peak of the t-system depolarization-induced force response. However, the duration of the depolarization-induced force response was decreased significantly at [NH4 +] 2 mm. From these data we conclude that the intracellular accumulation of NH4 + is not likely to play a major role in fatigue. Nevertheless, the build up of NH4 + during fatigue, may have a significant inhibitory effect on the force output by decreasing the duration of the t-system depolarization-induced activation of the contractile apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号