首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
目的:制备甲基莲心碱聚乳酸-羟基乙酸共聚物纳米粒(Nef-PLGA-NPs)。方法:以聚乳酸-羟基乙酸共聚物(PLGA)为载体,丙酮为有机溶剂,通过正交试验设计优化沉淀法制备甲基莲心碱PLGA纳米粒的工艺。结果:最佳工艺条件为:PLGA的质量浓度为10 mg.mL-1,Nef的质量浓度为1.0 mg.mL-1,水相与有机相的体积比为20∶1。纳米粒平均包封率为(85.3±0.8)%,平均载药量为(7.75±0.07)%,平均粒径为(82.9±1.2)nm。结论:优化条件下采用沉淀法制备的甲基莲心碱PLGA纳米粒包封率高、载药量大,平均粒径小。  相似文献   

2.
目的 优化影响盐酸维拉帕米乳酸/羟基乙酸共聚物(PLGA)纳米粒成型工艺的参数,并评价优化工艺后所制纳米粒的制剂学性质.方法 采用O/W超声乳化-溶剂挥发法制备盐酸维拉帕米PLGA纳米粒(VRP-PLGANP),以粒径、包封率和载药量为评价指标,采用单因素试验系统考察PLGA浓度、PLGA/VRP质量比、PVA浓度、有机相中丙酮浓度、外水相pH、内外相(O/W)体积比、探头超声时间、旋蒸时间共8个参数对纳米粒成型工艺的作用规律.结果 用优化处方工艺制备的纳米粒的包封率和载药量分别为65.78%±6.32%和22.75%±1.48%、平均粒径为150.4±6.9 nm、PDI=0.070±0.018(n=3),体外释放规律符合Weibull方程,具有一定的缓释特性.结论 所用方法可用于制备载两亲性药物的PLGA纳米粒.  相似文献   

3.
目的:优化紫杉醇聚乳酸-羟基乙酸(PLGA)纳米粒处方和制备工艺.方法:以PLGA为载体,采用溶剂扩散法制备紫杉醇PLGA纳米粒,用32满因子设计实验,考察因素PLGA在有机相中的浓度和理论载药量对纳米粒的粒径、载药量和包封率的影响,实验数据分别采用线性方程和二次多项式拟合,根据最佳数学模型绘制效应面并选出最优处方.结果:2个影响因素和3个评价指标之间存在定量关系,最优处方为:紫杉醇的理论载药量为9.09%、有机相中PLGA浓度为2%,制备得到的纳米粒粒径为281 nm,实际载药量为7.73%,包封率为57.43%.结论:采用因子设计-效应面法完成了紫杉醇纳米给药系统的多目标同步优化.  相似文献   

4.
陶涛  邢贞建  李祥 《中国药房》2012,(41):3901-3903
目的:制备利福布汀(RB)-聚乳酸-羟基乙酸共聚物(PLGA)纳米粒,并对制备工艺进行优化。方法:采用改良的自乳化溶剂挥发法制备;通过单因素法考察对包封率影响较大的因素,在此基础上以包封率为指标采用正交设计优化纳米粒的制备工艺并进行验证。结果:对纳米粒包封率影响较大的因素是RB与PLGA投药比、PLGA浓度、混合有机相中丙酮比例及油水相比;上述各因素的最佳水平分别是1:2、40mg·mL-1、70%、1:5。验证试验中所制纳米粒平均粒径为(201±19)nm、包封率为(59.1±5)%、载药量为(15.1±2.4)%。结论:本文的制备方法简单,所得纳米粒粒径小、质量稳定。  相似文献   

5.
目的优化利福平聚乳酸-羟基乙酸共聚物纳米粒(RFP-PLGA-NPs)的制备工艺,并分析其制剂学性质。方法以PLGA为载体,采用改良的自乳化溶剂蒸发法(M-SESD)制备RFP-PLGA-NPs。以粒径、包封率、载药量为指标,采用正交设计法优化处方和制备工艺。结果制备RFP-PLGA-NPs的优化条件为PLGA 100 mg,poloxsmer 188质量分数1.0%,丙酮与乙醇体积比3:1,有机相体积15 mL。按优化条件所制备的RFP-PLGA-NPs的粒径为(128.73±4.07)nm,多分散系数(PDI)为0.046~0.105,包封率(65.84±0.69)%,载药量(3.78±0.14)%。结论该工艺简单、稳定性好,为后续RFP-PLGA-NPs的体内研究奠定了基础。  相似文献   

6.
目的 制备大黄素-聚乳酸-羟基乙酸( emodin-polylactic-co-glycolic acid,EMD-PLGA NPs)共聚物纳米粒,观察其电镜形态、稳定性,测定粒径、包封率、载药量.方法 采用乳化-溶剂挥发法( emulsion solvent evaporation method)按照正交设计制备EMD-PLGA NPs并优化处方,透射电镜下观察纳米粒的外观形态,激光粒度仪检测纳米粒的大小、分布及zeta电位,沉降法观察稳定性,用紫外分光光度计测定大黄素纳米粒的吸光度以计算包封率、载药量.结果 得到最佳优化处方工艺条件,在最佳条件下制得大黄素纳米粒呈圆球状或椭圆状;粒径约( 100±50 )nm;分散体系的颗粒由上而下呈逐渐变淡的弥散分布,无明显的沉积物;包封率为(24.5±1.9)%,载药量为(18.5±3.7)%.结论 采用乳化-溶剂挥发法制备大黄素-PLGA纳米粒,该方法材料简单,便于操作,优于以往的固体脂质纳米粒法;制备的大黄素纳米粒粒径小、分布均匀、载药率较高,药物吸光度及稳定性等均符合要求,为进一步制备组织靶向药物的研究奠定了基础.  相似文献   

7.
目的制备姜黄素(Curcumin,Cur)聚乳酸羟基乙酸共聚物(PLGA)纳米粒(Cur-PLGA-NPs)并对其理化性质进行考察。方法采用改良的自乳化溶剂挥发法制备纳米粒,通过正交设计,以粒径、包封率和载药量为评价指标优化处方工艺。结果制备Cur-PLGA-NPs的优化条件为PLGA 100 mg,泊洛沙姆188浓度1.0%,丙酮与乙醇体积比3∶1,有机相体积15 m L。按优化条件所制备的Cur-PLGA-NPs粒径为(120.33±2.44)nm,多分散系数为0.10±0.02,包封率为84.50%±1.13%,载药量为4.75%±0.22%。结论采用改良的自乳化溶剂挥发法成功制备了Cur-PLGA-NPs,为后续"纳米粒-脂质体系统"的研究奠定了基础,有望实现药物在肝脏的浓集。  相似文献   

8.
目的制备布洛芬聚氰基丙烯酸烷酯纳米粒(IBU-PACA-NP)。方法采用乙醚界面缩聚法制备布洛芬聚氰基丙烯酸烷酯纳米粒;以包封率、载药量为指标,在单因素考察处方及工艺条件基础上,采用正交设计法L9(34)对处方进行优化。结果按优化处方制备的纳米粒平均粒径为166 nm,包封率为96.60%,载药量为17.83%,Zeta电位为-20.2 mV。结论乙醚界面缩聚法制备的布洛芬聚氰基丙烯酸烷酯纳米粒粒径小,包封率和载药量符合要求,可用于口服或注射给药。  相似文献   

9.
目的:优化芍药苷聚乳酸-羟基乙酸共聚物(PLGA)纳米粒制备工艺,并探讨芍药苷PLGA纳米粒对H2O2诱导损伤的H9c2心肌细胞的保护作用。方法:首先使用复乳-溶剂挥发法制备芍药苷PLGA纳米粒,采用Plackett-Burman设计实验以及Box-Behnken响应面设计实验对其制备工艺进行优选,得出最佳处方,并对按最佳处方制备的芍药苷PLGA纳米粒进行表征分析、4℃储藏稳定性考察以及体外释放考察;最后通过H2O2诱导建立大鼠H9c2心肌细胞氧化损伤模型,考察芍药苷PLGA纳米粒对心肌细胞的保护作用,CCK-8法检测细胞存活率,试剂盒检测心肌细胞乳酸脱氢酶(LDH)漏出量、丙二醛(MDA)、超氧化物歧化酶(SOD)的含量。结果:最佳处方:泊洛沙姆浓度为0.4%,给药量为3.1 mg, PLGA为21.4 mg;所得芍药苷PLGA纳米粒包封率为(45.49±0.29)%,载药量为(4.52±0.05)%,粒径为(115.1±3.61) nm,多分散系数(polydiseperse index, PD...  相似文献   

10.
目的:制备环索奈德固体脂质纳米粒胶体溶液,对其理化性质进行考察。方法:经方法考察,确定采用乳化-溶剂挥发法制备环索奈德纳米粒胶体溶液。在载体材料种类及用量、表面活性剂种类及用量、水相用量等单因素考察基础上,对处方组成进行了响应面优化,确定了最佳处方组成和制备工艺。用高速冷冻离心法和紫外分光光度法测定了包封率、载药量,激光粒径仪测定了粒径、Zeta电位,扫描电镜观察了纳米粒形态,并考察了药物纳米粒胶体溶液的体外稳定性。结果:乳化-溶剂挥发法适合制备环索奈德纳米粒胶体溶液,载体材料组成、药物与载体材料质量比、表面活性剂用量对其粒径影响较大。最佳处方制备的纳米粒呈圆整球状,平均粒径为(96.6±18.4)nm,Zeta电位为(-12.7±2.2)mV,包封率为(94.3±1.4)%,载药量为(10.72±0.23)%,纳米粒溶液在室温条件下不够稳定。结论:研究中处方及制备工艺适合制备环索奈德纳米粒胶体溶液,相关理化性质检测方法可行。  相似文献   

11.
牛血清白蛋白阳离子微球的制备及体外评价   总被引:1,自引:0,他引:1  
目的制备牛血清白蛋白(BSA)口服阳离子微球,考察天然阳离子物质壳聚糖(CHS)的加入对蛋白微球的粒径、电动电势、包封率、载药量及体外释放情况的影响。方法以乳酸/羟基乙酸共聚物(PLGA)和壳聚糖(CHS)为载体材料,采用W/O/W复乳-溶剂挥发法制备牛血清白蛋白乳酸/羟基乙酸共聚物-壳聚糖(PLGA/CHS)阳离子微球。通过正交设计优化制备工艺,确定最佳处方。建立准确而简便的蛋白含量测定方法,并对微球进行体外评价。结果最佳处方为:BSA浓度为150g·L^-1、PLGA浓度为8%、外水相体积为80mL、壳聚糖浓度为0.2%。制得的微球形态圆整,平均粒径为(6.9±5.5)μm,为表面荷正电的阳离子微球[ζ电势=00.0±0.6)mV],包封率为(75.4±4.6)%,载药量为(9.3±0.2)%。体外释放结果表明,在模拟胃液和模拟肠液中,壳聚糖的加入均能减少突释,延缓药物的释放。结论与PLGA微球相比,制得的PLGA/CHS阳离子微球表面带正电,具有较高的包封率和载药量,可以延缓药物释放,同时减少突释现象。  相似文献   

12.
The aim of this study was to test stability of exenatide and compare physicochemical properties of PLGA nanoparticles. To make small, stable, uniform and highly encapsulated nanoparticles, various factors such as the components (polymer and stabilizer) and preparation condition (organic phase, temperature or sonication time) were considered. We tested the effect of organic phase, acid/base, ultrasonication time or temperature on exenatide to decide preparation condition of PLGA nanoparticles. And, PLGA nanoparticles were prepared by the double emulsion-solvent evaporation method and chitosan was selected as stabilizer. PLGA nanoparticles were characterized by yield, encapsulation efficiency, drug loading, particle size, zeta potential, polydispersity index and morphology. In this study, PLGA nanoparticles showed different physicochemical properties according to chitosan molecular weight. In case of particle size, PLGA nanoparticles using 0.5 g chitosan (4 kDa) showed biggest particle size (781.4 ± 24.1 nm) among PLGA nanoparticles prepared in this study and PLGA nanoparticles using 1 g chitosan (2 kDa) showed highest encapsulation efficiency (52.8 ± 1.7 %) among PLGA nanoparticles prepared in this study. And, all of PLGA nanoparticles using chitosan showed that polydispersity index was low and zeta-potential was increased. These results suggest that chitosan molecular weight affects physicochemical properties of PLGA nanoparticle.  相似文献   

13.
胡蕾  刘松青  戴青 《中国药房》2010,(41):3895-3897
目的:优化醋酸布舍瑞林缓释纳米粒(BA-PLGA-NP)灭菌粉末的处方,并评价其质量。方法:先对影响处方工艺的因素进行单因素试验,再在此基础上以包封率为考察指标,投药量、PLGA浓度、内水相-油相的体积比、超声功率为主要考察因素进行正交试验筛选最佳处方;同时考察其在4℃及-20℃条件下放置3个月的稳定性。结果:最佳处方为投药量0.5mg·mL-1、PLGA2.0%、内水相-油相体积比1∶10、超声功率40W;所制制剂粒径呈单峰分布,平均粒径为127~132nm,Zeta电位为-64.8~-67.3mV,包封率为(63.37±0.29)%。制剂在考察期内各指标均无明显变化。结论:该优化处方质量稳定,可行性较强。  相似文献   

14.
钦富华  胡英  高建青  夏晓静  郑弟 《中国药房》2012,(45):4263-4266
目的:制备聚乳酸-羟基乙酸共聚物(PLGA)微球,并考察其用于脉冲式释药系统的可行性。方法:以牛血清白蛋白(BSA)为模型药物,用S/O/W(Solid-in-oil-in-water)法和S/O/O(Solid-in-oil-in-oil)法制备PLGA(75:25)和PLGA(50:50)微球,比较2种方法制备的微球的表面形态、包封率及载药量等,并考察2种微球的体外释放行为。结果:S/O/W法和S/O/O法制备的微球均圆整、无粘连、形态良好,但S/O/W法制备的微球表面较为平整,而S/O/O法表面均匀分布有较大的凹陷。S/O/W法制备的PLGA(75:25)和PLGA(50:50)微球包封率分别为(60.15±5.95)%、(49.50±3.69)%,载药量分别为(2.56±0.25)%、(2.10±0.16)%,10h内药物释放均为10%左右,而后随着聚合物的降解药物的释放量突然增加;S/O/O法所制微球包封率分别为(84.36±1.11)%、(77.94±1.42)%,载药量分别为(3.58±0.05)%、(3.31±0.06)%,24h内药物释放均可达50%左右,而后呈现较为平稳的释放行为。S/O/O法制备的微球包封率及载药量均较S/O/W法高;S/O/W法制备的PLGA微球药物释放呈现一定的脉冲行为,其中PLGA(75:25)微球体外释放行为受微球粒径的影响较大。结论:S/O/W法制备的PLGA微球具有一定的脉冲式释药效果,微球的粒径最好控制在120μm以下。  相似文献   

15.
罗哌卡因乳酸羟基乙酸共聚物微球的制备及体外释药研究   总被引:7,自引:0,他引:7  
毕小宝  陈仲清  杨莉  黄乐松 《中国药房》2008,19(13):998-1000
目的:优化罗哌卡因乳酸羟基乙酸共聚物微球制备工艺,并考察其粉粒学特征和体外释药特性。方法:以乳酸羟基乙酸共聚物为载体,采用W/O/W乳剂-扩散溶剂挥发法制备微球,以微球的粒径、药物包封率、载药量及微球形态等重要粉粒学特征为考察指标,通过正交分析试验优化微球制备工艺,并进行体外释药研究。结果:以优化处方制备的制剂,外观光滑圆整,平均粒径为(2.525±0.047)μm,粒径在1.8~5.0μm的占总数的80%以上,载药量(6.067±0.312)%,包封率(58.05±1.169)%。其体外释药曲线可用Higuchi方程拟合,192h累积释药率达82%,t1/2=60.16h。结论:罗哌卡因乳酸羟基乙酸共聚物微球具有明显的缓释性。  相似文献   

16.
In this study, PLGA or PLGA-PEG blend nanoparticles were developed loading amphotericin B (AmB), an antifungal agent broadly used in therapy. A 22?×?31 factorial experimental design was conducted to indicate an optimal formulation of nanoparticles containing AmB and demonstrate the influence of the interactions of components on the mean particle size and drug encapsulation efficiency. The independent variables analyzed were polymer amount (two levels) and organic phase (three factors in one level). The parameters methanol as cosolvent and higher polymer amount originated from the higher AmB encapsulation, but with the larger particle size. The selected optimized parameters were set as the lower polymer amount and ethyl acetate as cosolvent in organic phase, for both PLGA and PLGA-PEG nanoparticles. These parameters originated from nanoparticles with the size of 189.5?±?90?nm and 169?±?6.9?nm and AmB encapsulation efficiency of 94.0?±?1.3% and 92.8?±?2.9% for PLGA and PLGA-PEG nanoparticles, respectively. Additionally, these formulations showed a narrow size distribution indicating homogeneity in the particle size. PLGA and PLGA-PEG nanoparticles are potential carrier for AmB delivery and the factorial design presented an important tool in optimizing nanoparticles formulations.  相似文献   

17.
摘要目的制备盐酸表柔比星 聚乳酸 羟基乙酸(PLGA)共聚物纳米粒,对其进行质量评价。方法采用乳化 溶剂挥发法制备盐酸表柔比星纳米粒;对主要处方因素如PLGA用量、外水相中聚山梨酯 80用量、泊洛沙姆188和聚山梨酯 80比例进行正交设计,以药物的包封率、载药量和药物利用率等为考察指标。结果采用优化后处方制得的纳米粒药物包封率为(32.6±1.2)%,载药量为(7.2±0.5)%,药物利用率为(51.6±3.4)%,纳米粒平均粒径166.6 nm,药物可持续160 h释放。结论该方法制备盐酸表柔比星纳米粒工艺简单,无需使用聚乙烯醇,药物释放缓慢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号