首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This study aims at investigating the possible beneficial effect of succinic acid dimethyl ester (SAD), injected intraperitoneally (5.0 micromol/g body wt.), upon the metabolic and hormonal response to a 60 min exercise in both fed and overnight starved rats. In fed rats, the injection of SAD minimized the fall in plasma D-glucose concentration, and the increase in plasma lactate, beta-hydroxybutyrate, free fatty acid and glycerol concentrations, otherwise provoked by exercise. SAD, however, failed to prevent the decrease in plasma insulin concentration and liver glycogen content caused by exercise. Starved rats displayed lower plasma D-glucose and insulin concentrations and higher plasma beta-hydroxybutyrate and free fatty acid concentrations than fed rats. The body weight, liver weight and paraovarian fat weight, as well as the glycogen content of both liver and heart were also decreased in the starved rats. In the latter animals, the injection of SAD again opposed the exercise-induced increase in plasma beta-hydroxybutyrate, free fatty acid and glycerol concentrations, and again failed to prevent the more modest decreases in plasma insulin concentration and liver glycogen content caused by exercise in the starved, as distinct from fed rats. These findings suggest that, independently of any obvious change in plasma insulin concentration, SAD minimizes the exercise-induced mobilization and enhanced utilization of endogenous nutrients, especially fatty acids and glycerol produced by hydrolysis of triglycerides in adipose tissue, presumably through its capacity to act as an oxidizable nutrient in various cell types and as a gluconeogenic precursor in hepatocytes.  相似文献   

4.
Sympathetic control of metabolic and hormonal responses to exercise in rats   总被引:2,自引:0,他引:2  
The importance of the sympatho-adrenal system for the pancreatic hormonal response to exercise and, furthermore, the role of glucagon and catecholamines for the hepatic glycogen depletion during exercise were studied. Rats were either surgically adrenomedullectomized and chemically sympathectomized with 6-hydroxydopamine or shamtreated. Two weeks later the rats had either rabbit-antiglucagon serum or normal rabbit serum injected. Subsequently the rats either rested or swam with a tail weight for 75 min. Immediately afterwards cardiac blood was drawn and liver and muscle tissue collected. In control rats in spite of an increase in blood glucose concentrati4ns during exercise plasma insulin concentrations were unchanged, while glucagon concentrations increased. In sympathectomized rats, compared to control rats, glucagon concentrations increased less, and insulin concentrations were higher, although glucose concentrations were lower during exercise. Sympathectomy completely abolished the exercise-induced decrease in liver and muscle glycogen concentrations, whereas neither glycogen depletion nor plasma catecholamine concentrations were influenced by the administration of glucagon antibodies. These findings indicate that the sympatho-adrenal system enhances glucagon secretion as well as muscular and hepatic glycogen depletion but inhibits insulin secretion in exercising rats. The increase in glucagon concentrations, however, does not enhance hepatic glycogen depletion at the work load used.  相似文献   

5.
Seven male subjects performed intensive cycle exercise to exhaustion at subnormal muscle temperature (Tm, 29 ± 2.8 °C). Exercise at exactly the same rate of exercise and duration (370 ± 34 W, 1.5 ± 0.15 min) was then repeated with normal Tm (35 ± 0.9 °C). During exercise both the arterial (a) and femoral venous (fv) contents of oxygen were significantly higher at subnormal than at normal Tm, because of the higher haemoglobin concentration, but the a-fv oxygen difference was the same in the two situations. The rate of increase in lactate concentration in both arterial and venous blood during exercise was the same in the two situations. During exercise the plasma concentrations of adrenaline and noradrealine in arterial and venous blood were significantly higher at subnormal than at normal Tm. At rest and after exercise the calf blood flow was significantly reduced at subnormal Tm At the end of exercise the concentrations of glucose-6-phosphate and lactate in the muscle were significantly higher at subnormal Tm than in the muscle of normal temperature. These findings suggest that there was a greater increase in glycolysis in the muscle of subnormal temperature during exercise, possibly as a result of impaired work efficiency and/or reduced blood flow in the cold muscle.  相似文献   

6.
The purpose of this study was to investigate the acute responses of both stress and fluid regulatory hormones to a single bout of resistance exercise in both trained and untrained men. Seven competitive power lifters (PL) and 12 untrained subjects (UT) performed one set of the leg press exercise to exhaustion at 80% of their respective one-repetition maximum. Blood samples were obtained twice prior to exercise (at P1 and P2), immediately postexercise (IP), and at 5 minutes postexercise (5PE). Compared to P1 and P2, plasma epinephrine, norepinephrine, dopamine, atrial peptide, osmolality, and blood lactic acid increased significantly (p < or = 0.05) at IP. Plasma epinephrine, norepinephrine, atrial peptide, and blood lactic acid concentrations remained elevated at 5PE compared to P1 and P2. Plasma renin activity and angiotensin II were significantly elevated at 5PE compared to P1, P2, and IP, and this increase was significantly greater in PL compared to UT at 5PE. These data indicate that an acute bout of resistance exercise dramatically affects secretion of stress and fluid regulatory hormones.  相似文献   

7.
The response of plasma beta-endorphin (beta-EP) and adrenocorticotropin (ACTH) was studied in seven well-trained (T) young endurance athletes and seven untrained (UT) age- and weight-matched males during treadmill exercise. Subjects ran continuously for 7 min at 60% VO2max, 3 min at 100% VO2max and 2 min at 110% VO2max. Arterialized blood was obtained periodically from a cannulated heated (41 degrees C) hand vein. Plasma beta-EP was measured by radio-immunoassay (RIA) which incorporated an antibody that did not cross-react (less than 1.5%) with beta-lipotropin. Plasma beta-EP was similar between groups at rest (T = 4.3 +/- 0.8 fmol ml-1, mean +/- SE, UT = 3.3 +/- 0.6 fmol ml-1) and did not change at the 60% VO2max stage. Beta-endorphin significantly increased at 100% VO2max with both groups responding similarly. A further increase occurred at 110% VO2max (T = 10.8 + 2.0 and UT = 6.6 + 1.0 fmol ml-1, P less than 0.05 for between group differences). This between group difference persisted 1 min after exercise when the highest beta-EP levels were reached (T = 18.7 +/- 4.7 and UT = 12.8 +/- 3.1 fmol ml-1, P less than 0.05). Plasma ACTH responses were similar to beta-EP with the highest values (T = 61.5 +/- 7.2, UT = 45.7 +/- 6.8 fmol ml-1, P less than 0.05 for between group differences) occurring at 1 min post-exercise. A positive correlation, r = 0.85, P less than 0.05, was found between beta-EP and ACTH using the 1 min post-exercise values. The enhanced response of beta-EP and ACTH in T may indicate a training-induced adaptation which increases the response capacity to extreme levels of stress.  相似文献   

8.
J A Horne  A N Pettitt 《Sleep》1984,7(2):168-179
Seven physically untrained subjects underwent 72 h total sleep deprivation, followed a baseline day. Daily, at 0400 and 1600 h, subjects pedalled on a bicycle ergometer under individually set work loads of 40, 60, and 80% VO2max. This was not a study oriented towards endurance but towards capacity, requiring steady-state measurement. From assessments of heart rate, VO2 and VCO2 were calculated: VO2max, gross mechanical efficiency, VO2 at a heart rate of 150, and respiratory quotient. To assess possible training effects, a control group underwent identical procedures except that they slept at night and had the morning measure delayed until 0830 h. A series of statistical models were applied to the data, which centered on quantifying the inherent underlying variability, to estimate the level any main effect had to reach to become significant. the analysis showed that the noise level was small enough for any real effect of importance to have been detected, with a reasonably large probability. No statistically significant effects were found for any of the parameters with respect to conditions, days, and time. The main significant outcome was with mechanical efficiency, which displayed greater variability during sleep deprivation. Both groups displayed similar trends in training effects. It was concluded that the physiological ability to do work of the type and duration used here was not adversely affected by 72 h of sleep loss.  相似文献   

9.
Summary While prolonged loss of sleep is unpleasant and demanding, it remains unclear if it blunts or enhances the physiological stress imposed by subsequent exercise. To investigate this, we deprived eight subjects of sleep prior to exercise to see if this altered the stress hormonal response to that exercise. In a first series of experiments, two fragmented nights of sleep preceded 30 min of heavy treadmill walking exercise. While sleep loss disturbed mood before and during exercise (p<0.05), it left stress hormonal levels (cortisol and -endorphin) in blood identical to control. In a second series, subjects performed light treadmill walking exercise for 3 h after 36 sleepless hours. As before, sleep deprivation disturbed mood before and throughout exercise (p<0.05), but failed to change blood levels of stress hormones. In both series, sleeplessness left heart rate, oxygen uptake, minute ventilation, and body core temperature unchanged in exercise. We conclude that sleep loss provokes psychological changes during subsequent exercise without measurably altering the stress hormonal response to that exercise.  相似文献   

10.
Summary Heart-rate and ventilation curves during recovery from heavy exercise in 10 trained and 10 untrained individuals, were found to be composed of a rapid and of a slow component, both exponential in character. The half-time constants of the rapid components of heart-rate and ventilation recovery curves were determined. The trained individuals were found to have lower recovery constants than untrained ones, the difference being statistically significant.  相似文献   

11.
Eight young men underwent a programme of training by running for 30 min at moderate speed three times a week for 4 weeks. Metabolic and hormonal changes in blood were studied during and after a run of 60 min at comparable speeds before and at the end of the training programme. Increases in lactate, pyruvate and plasma FFA during exercise were less after training. Increases in glucose were greater. There was a smaller increase in the post-exercise concentration of blood ketone-bodies after training. Plasma levels of insulin and human growth hormone (HGH) were lower after training. The fall in insulin and the rise in HGH during exercise were also smaller. There is a dissociation of the normal relationship between blood glucose and insulin during exercise. Insulin appears to be more important in the control of fat metabolism, in which its role may be altered by physical training. The changes observed in the longitudinal study of training imply that differences observed in cross-sectional studies of athletes and untrained subjects are not the result of an innate difference but do depend upon metabolic changes related to athletic training.  相似文献   

12.
The present investigation was undertaken to examine whether maximal oxygen uptake (VO2max) and anaerobic threshold (AT) measured during incremental treadmill exercise would be affected by the exercise protocol in trained and untrained individuals. Fifteen untrained men, 10 untrained women, and 12 trained individuals participated in this study. The Astrand, Bruce, and Costill/Fox protocols were selected for comparison. Each subject was tested using all three protocols and the three tests were conducted in a randomized counterbalanced order. During each test, oxygen uptake was measured every 30 s and the test was terminated according to the standard criteria. The VO2max was determined by averaging the two consecutive highest measurements, whereas AT was determined using ventilatory parameters following the V-slope technique. The Astrand, Bruce, and Costill/Fox protocols produced test durations of 9.8 (SEM 0.5), 12.4 (SEM 0.4), and 4.9 (SEM 0.3) min, respectively, in the untrained men, 9.0 (SEM 0.8), 11.0 (SEM 0.6), and 5.3 (SEM 0.6) min, respectively, in the untrained women, and 14.5 (SEM 0.5), 17.0 (SEM 0.5) and 10.4 (SEM 0.4) min, respectively, in the trained men. In the untrained men and women, no differences in VO2max were observed among the three different protocols, but AT was lower when using the Bruce compared to the Astrand protocol. In the trained men, VO2max and AT were lower when using the Bruce protocol than either the Astrand or Costill/Fox protocols. In conclusion, VO2max measured during treadmill exercise is not affected by the protocol of the test and using a running protocol of short duration (i.e. about 5 min) could be a time-efficient way of assessing VO2max in healthy untrained subjects. In trained subjects, however, a protocol consisting of running with small increments in gradient is effective in eliciting a higher VO2max. The lower AT associated with the Bruce protocol seen in both untrained and trained groups suggests this aerobic parameter is protocol dependent and this protocol dependency is not affected by training status.  相似文献   

13.
The aim of this study was to determine the effects of prolonged exercise in hot conditions on saliva IgA (s-IgA) responses in trained cyclists. On two occasions, in random order and separated by 1 week, 12 male cyclists cycled for 2 h on a stationary ergometer at 62 (3)% O2 max [194 (4) W; mean (SEM)], on one occasion (HOT: 30.3°C, 76% RH) and on another occasion (CONTROL: 20.4°C, 60% RH). Water was available ad-libitum. Venous blood samples and 2-min whole unstimulated saliva samples were collected at pre, post and 2 h post-exercise. The s-IgA concentration was determined using a sandwich-type ELISA. Exercising heart rate, rating of perceived exertion, rectal temperature, corrected body mass loss (P<0.01) and plasma cortisol (P<0.05) were greater during HOT. The decrease in plasma volume post-exercise was similar on both trials [HOT: –6.7 (1.1) and CONTROL: –6.6 (1.3)%; P<0.01]. Saliva flow rate decreased post-exercise by 43% returning to pre-exercise levels by 2 h post-exercise (P<0.05) with no difference between trials. Saliva IgA concentration increased post-exercise (P<0.05) with no difference between trials. Saliva IgA secretion rate decreased post-exercise by 34% returning to pre-exercise levels by 2 h post-exercise (P<0.05) with no difference between trials. These data show that a prolonged bout of exercise results in a reduction in s-IgA secretion rate. Additionally, these data demonstrate that performing prolonged exercise in the heat, with ad libitum water intake, does not influence s-IgA responses to prolonged exercise.  相似文献   

14.
The purpose of this study was to investigate the effects of endurance training on the ventilatory response to acute incremental exercise in elite cyclists. Fifteen male elite cyclists [mean (SD) age 24.3 (3.3) years, height 179 (6) cm, body mass 71.1 (7.6) kg, maximal oxygen consumption (O2max) 69 (7) ml · min−1 · kg−1] underwent two exercise tests on a cycle ergometer. The first test was assessed in December, 6 weeks before the beginning of the cycling season. The second test was performed in June, in the middle of the season. During this period the subjects were expected to be in a highly endurance-trained state. The ventilatory response was assessed during an incremental exercise test (20 W · min−1). Oxygen consumption (O2), carbon dioxide production (CO2), minute ventilation ( E), and heart rate (HR) were assessed at the following points during the test: at workloads of 200 W, 250 W, 300 W, 350 W, 400 W and at the subject's maximal workload, at a respiratory exchange ratio (R) of 1, and at the ventilatory threshold (Thvent) determined using the V-slope-method. Post-training, the mean (SD) O2max was increased from the pre-training level of 69 (7) ml · min−1 · kg−1 (range 61.4–78.6) to 78 (6) ml · min−1 · kg−1 (range 70.5–86.3). The mean post-training O2 was significantly higher than the pre training value (P < 0.01) at all work rates, at Thvent and at R=1. O2 was also higher at all work rates except for 200 W and 250 W. E was significantly higher at Thvent and R=1. Training had no effect on HR at all workloads examined. An explanation for the higher O2 cost for the same work rate may be that in the endurance-trained state, the adaptation to an exercise stimulus with higher intensity is faster than for the less-trained state. Another explanation may be that at the same work rate, in the less-endurance-trained state power is generated using a significantly higher anaerobic input. The results of this study suggest the following practical recommendations for training management in elite cyclists: (1) the O2 for a subject at the same work rate may be an indicator of the endurance-trained state (i.e., the higher the O2, the higher the endurance-trained capacity), and (2) the need for multiple exercise tests for determining the HR at Thvent during a cycling season is doubtful since at Thvent this parameter does not differ much following endurance training. Accepted: 19 October 1999  相似文献   

15.
This study examined the effect of prolonged submaximal exercise followed by a self-paced maximal performance test on cholesterol (T-Chol), triglycerides (TG), and high-density lipoprotein cholesterol (HDLC). Nine trained male athletes cycled at 70% of maximal oxygen consumption for 60 min, followed by a selfpaced maximal ride for 10 min. Venous blood samples were obtained at rest, at 30 and 60 min during submaximal exercise, and immediately after the performance test. Lactic acid, haematocrit (Hct), haemoglobin (Hb), T-Chol and TG were measured in the blood, while plasma was assayed for HDL-C. Plasma volume changes in response to exercise were calculated from Hct and Hb values and all lipid measurements were corrected accordingly. In order to ascertain the repeatability of lipid responses to exercise, all subjects were re-tested under identical testing conditions and experimental protocols. When data obtained during the two exercise trials were analysed by two-way ANOVA no significant differences (P > 0.05) between tests were observed. Consequently the data obtained during the two testing trials were pooled and analysed by one-way ANOVA. Blood lactic acid increased non-significantly (P > 0.05) during the prolonged submaximal test, but rose markedly (P < 0.05) following the performance ride. Lipid variables ascertained at rest were within the normal range for healthy subjects. ANOVA showed that blood T-Chol and TG were unchanged (P > 0.05), whereas HDL-C rose significantly (P < 0.05) in response to exercise. Post hoc analyses indicated that the latter change was due to a significant rise in HDL-C after the performance ride. It is concluded that apparent favourable changes in lipid profile variables occur in response to prolonged submaximal exercise followed by maximal effort, and these changes showed a good level of agreement over the two testing occasions.  相似文献   

16.
17.
Summary The effect of a progressively increasing work rate (15 W·min–1) up to exhaustion on the time course of O2 uptake ( ), ventilation ( ) and heart rate (HR) has been studied in weight lifters (WL) in comparison to endurance cyclists (Cycl) and sedentary controls (Sed). and were measured as average value of 30-s intervals by a semiautomatic open circuit method. was 2.55±0.33; 4.29±0.53 and 2.86±0.19·min–1 in WL, Cycl and Sed respectively. With time and work rate, while and HR increased linearly, changed its slope at two levels. The 1st change occured at a work load corresponding to a mean (± SD) of 1.50±0.26; 1.93±0.34; and 1.23±0.14 l·min–1 in WL, Cycl, and Sed respectively. values corresponding to the second change of slope were 2.18±0.32 in WL; 3.48±0.53 in Cycl and 2.17±0.28 l·min–1 in Sed. The first change of slope might be the consequence of the different readjustment of on-response and hence of early lactate in the different subjects. The second change seems to be comparable to the conventional anaerobic threshold and is achieved in all subjects when vs time slope is 7–10 l·min–1/min of exercise.This work has been supported in part by a grant from the Italian National Research Council (CNR)  相似文献   

18.
The purpose of the present study was to evaluate the effects of an intraperitoneal injection of sodium phosphate on the metabolic and hormonal responses to exercise. Fructose-injected rats were either injected with sodium phosphate (Na2HPO4) or NaCl, either in a fed or in a food-restricted state (24 h), and evaluated at rest or after a 30-min exercise period (26 m/min; 0% grade). Liver ATP, phosphate (Pi), and glycogen concentrations were, on the whole, significantly (p < 0.05) higher in Na2HPO4 than in NaCl groups. Exercise resulted in a significant (p < 0.01) decrease in liver ATP and glycogen levels in fed and food-restricted rats whether injected with NaCl or Na2HPO4. Exercise, after NaCl and Na2HPO4 injection, resulted in a significant (p < 0.01) increase in liver phosphate and Pi/ATP ratio, and in a decrease in glucose and an increase in glucagon levels in food-restricted rats only. The normal exercise-induced increase in plasma FFA, glycerol, and norepinephrine levels (p < 0.05), observed in both fed and food-restricted NaCl-injected rats, was abolished by the injection of phosphate. The data are in line with the new concept that in addition to blood glucose levels, the increase in liver Pi/ATP ratio could also contribute to the increase in glucagon response during exercise.  相似文献   

19.
The role of cortisol in determining the metabolic and hormonal changes associated with a standardized surgical operation was investigated. Twelve patients undergoing pelvic surgery were studied. Six received steroid supplementation with an infusion of hydrocortisone sodium succinate at a rate of 8 mg/h for 24 h, together with 1.5 g hydrocortisone acetate intraperitoneally at the completion of surgery, while the remainder acted as a control group. Steroid supplementation resulted in plasma cortisol values in the range 1913-2265 nmol/l from 4 to 24 h after the start of surgery. However, this marked hypercortisolaemia had no significant effects on circulating metabolites other than glucose, and did not alter plasma ACTH, GH and insulin values. The usual glycaemic response to surgery was significantly augmented by 1.0-1.5 mmol/l in the cortisol group. We conclude that changes in substrate mobilization observed after cortisol administration in normal volunteers may not accurately predict the effects found after surgery, when catabolic hormones and other modulators such as interleukin-1 may influence metabolism.  相似文献   

20.
The aim of this investigation was to develop and validate a new method to predict time to exhaustion (pTE) from blood lactate variables measured during a submaximal non-exhaustive constant workload cycling test in professional cyclists. A multiple regression equation to estimate pTE from blood lactate variables measured within the first 10 min of a submaximal test and TE was determined in 40 competitive cyclists. Predicted TE reliability [individual coefficient of variation (CV)] was calculated in eight amateur cyclists who repeated the proposed test three times. Seasonal variations of pTE were monitored in 12 professional cyclists. Validity of pTE was determined by the known-group difference method in 49 professional cyclists. The prediction equation was: lognTE = 4.2067 − 0.8221(logn B) − 0.2519(logn C), where B is the lactate concentration at the 10th minute of the constant workload test and C is the lactate slope calculated between the 5th and 10th minute (adjusted r 2 =0.83, root mean square error in cross validation=23.1%). Predicted TE CV was 11.7%. The pTE obtained at the beginning of the season and the best and worst tests performed during the competitive season, resulted 162, 224 and 103% higher than the basic period test, respectively (P<0.05). Predicted TE was the only parameter discriminating elite from subelite professional cyclists. In conclusion, this study demonstrates that pTE is a valid and practical alternative to incremental tests and direct measures of endurance capacity requiring exhaustive efforts for the evaluation of competitive cyclists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号