首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A considerable body of evidence indicates that the intracellular chloride concentration ([Cl-]i) is an important regulatory signal in epithelial ion transport. [Cl-]i regulates the open channel probability of sodium and chloride channels, the rate of chloride channel recycling to the apical membrane, cell volume homeostasis, the activity of sodium-coupled chloride entry pathways and G-protein activity. Cell volume goes awry in epithelial cells bearing mutant forms of the cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR); however, the pathways that mediate this [Cl-]i effect at the apical membrane of polarized epithelia are unknown. Recently, we proposed a mechanism for the transduction of in vitro chloride concentration into a phosphorylation signal to proteins within the apical membrane of respiratory epithelia. Our studies show that an apically enriched plasma membrane fraction from a variety of species, including sheep, human and mouse airway, contains at least two membrane-bound protein kinases which exhibit a number of novel properties. Firstly, the phosphate is located on histidine residues within different families of proteins; one kinase(s) utilizes GTP rather than ATP as a phosphate donor and each kinase has its own unique profile of membrane protein phosphorylation (which itself varies with anion species). Secondly, both kinases mediate Cl- -dependent phosphorylation of an apical membrane protein around the established physiological values for [Cl-]i in airway epithelial cells ( approximately 40 mM); associated phosphatases also alter the net phosphoprotein profile of the apical membrane. These findings are reviewed and their potential roles explored in relation to the pathogenesis of CF using the control of cell volume as a model for disrupted cellular function in CF-affected epithelia.  相似文献   

2.
Differences in airway epithelial biology between mice and humans have presented challenges to evaluating gene therapies for cystic fibrosis (CF) using murine models. In this context, recombinant adeno-associated virus (rAAV) type 2 and rAAV5 vectors have very different transduction efficiencies in human air-liquid interface (ALI) airway epithelia (rAAV2 approximately = rAAV5) as compared with mouse lung (rAAV5 > rAAV2). It is unclear if these differences are due to species-specific airway biology or limitations of ALI cultures to reproduce in vivo airway biology. To this end, we compared rAAV2 and rAAV5 transduction biology in mouse and human ALI cultures, and investigated the utility of murine deltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) ALI epithelia to study CFTR complementation. Our results demonstrate that mouse ALI epithelia retain in vivo preferences for rAAV serotype transduction from the apical membrane (rAAV5 > rAAV2) not seen in human epithelia (rAAV2 approximately = rAAV5). Viral binding of rAAV2 and rAAV5 to the apical surface of mouse ALI airway epithelia was not significantly different, and proteasome-modulating agents significantly enhanced rAAV2 transduction to a level equivalent to that of rAAV5 in the presence of these agents, suggesting that the ubiquitin/proteasome pathway represents a more significant intracellular block for rAAV2 transduction of mouse airway epithelia. Interestingly, cAMP-inducible chloride currents were enhanced in deltaF508CFTR mouse ALI cultures, making this model incompatible with CFTR complementation studies. These studies emphasize species-specific differences in airway biology between mice and humans that significantly influence the use of mice as surrogate models for rAAV transduction and gene therapy for CF.  相似文献   

3.
Deletion of phenylalanine 508 (deltaF508) accounts for nearly 70% of all mutations that occur in the cystic fibrosis transmembrane conductance regulator (CFTR). The deltaF508 mutation is a class II processing mutation that results in very little or no mature CFTR protein reaching the apical membrane and thus no cAMP-mediated Cl- conductance. Therapeutic strategies have been developed to enhance processing of the defective deltaF508 CFTR molecule so that a functional cAMP-regulated Cl- channel targets to the apical membrane. Sarcoplasmic/endoplasmic reticulum calcium (SERCA) inhibitors, curcumin and thapsigargin, have been reported to effectively correct the CF ion transport defects observed in the deltaF508 CF mice. We investigated the effect of these compounds in human airway epithelial cells to determine if they could induce deltaF508 CFTR maturation, and Cl- secretion. We also used Baby Hamster Kidney cells, heterologously expressing deltaF508 CFTR, to determine if SERCA inhibitors could interfere with the interaction between calnexin and CFTR and thereby correct the deltaF508 CFTR misfolding defect. Finally, at the whole animal level, we tested the ability of curcumin and thapsigargin to (1) induce Cl- secretion and reduce hyperabsorption of Na+ in the nasal epithelia of the deltaF508 mouse in vivo, and (2) induce Cl- secretion in intestine (jejunum and distal colon) and the gallbladder of the deltaF508 CF mouse. We conclude that curcumin and thapsigargin failed to induce maturation of deltaF508 CFTR, or induce Cl- secretion, as measured by biochemical and electrophysiologic techniques in a variety of model systems ranging from cultured cells to in vivo studies.  相似文献   

4.
Over 70% of patients with cystic fibrosis have the DeltaF508 mutation. This protein is a partially functional chloride (Cl-) channel that is prematurely degraded in the endoplasmic reticulum. Specific members of the flavonoid class of compounds have been shown to increase Cl- conductance of wild-type and DeltaF508 cystic fibrosis transmembrane regulator (CFTR). Although flavonoid effects on CFTR processing are unknown, evidence of effects on heat shock proteins, specifically those that have been shown to interact with CFTR, led us to believe that there would be an effect on CFTR processing through modulation of CFTR-chaperone interactions. We sought to determine (i) the effect of apigenin, genistein, kaempferol, and quercetin on CFTR processing in IB3-1 cells (F508/W1282X) and (ii) whether sequential treatment with 4-phenylbutyrate (4-PBA) to increase CFTR processing and flavonoid to directly stimulate CFTR would increase Cl- conductance. Our results show no significant effect on CFTR processing as measured by immunoblotting with 1 microM or 5 microM of apigenin, genistein, kaempferol, or quercetin. However, despite no effect on CFTR processing as determined by immunoblot, immunofluorescence demonstrated a favorable change in the intracellular distribution of CFTR with 24 h treatments of apigenin, kaempferol, and genistein. Furthermore, we observed an increase in Cl- conductance as measured by Cl- efflux in cells that were treated for 24 h with 4-PBA and then assayed with forskolin and 1 microM or 5 microM genistein, and also with cells treated for 24 h with either 4-PBA, 5 microM apigenin, or 1 microM quercetin. Thus, a combination of chronic treatment with 4-PBA or select flavonoids, followed by acute flavonoid exposure, may be beneficial in cystic fibrosis.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR) mediates secretion of mucins and serous proteins. The aim was to correct pharmacologically the CFTR defect in protein secretion in airway gland cells and so to correct the viscous mucous secretions in cystic fibrosis (CF) airways and lungs. The strategies tested included direct activation of CFTR, bypass of CFTR-mediated protein secretion and movement of the mutated form of CFTR (DeltaF(508)-CFTR) to the cell membrane. Compounds related to 3-isobutyl-1-methylxanthine (IBMX), including a selective type-IV phosphodiesterase inhibitor and the adenosine receptor antagonists 8-cyclopentyltheophylline (CPT) and 8-cyclopentyl-1,3-dipropylxanthine (CPX), corrected the defective beta-adrenergic stimulation of mucin secretion in CFTR antibody-inhibited submandibular gland cells. CPT also corrected lactoferrin secretion in DeltaF(508)/DeltaF(508)-CFTR nasal gland cells. The data suggest that correction of CFTR protein secretion activity is not mediated by excessive increase in cyclic AMP, involves direct interaction with CFTR but does not require increase in CFTR Cl(-) channel activity. Regulated glycoprotein secretion was characterised in the airway gland cell line Calu-3 to investigate whether a CFTR bypass is present. Studies of DeltaF(508)-CFTR trafficking using confocal imaging showed that some DeltaF(508)-CFTR colocalised with the apical membrane protein CD59; however a large amount was mislocalised within the cell. The results showing pharmacological correction of the defective CFTR-mediated protein secretion afford promise for the development of a rational drug therapy for CF patients.  相似文献   

6.
Cell membrane-standing type-1 VDAC is involved in cell volume regulation and thus apoptosis. The channel has been shown to figure as a pathway for osmolytes of varying classes, ATP included. An early event in apoptotic cell death is the release of “find me signals” by cells that enter the apoptotic process. ATP is one of those signals. Apoptotic cells this way attract phagocytes for an immunologically silent cell clearance. Thus, whenever apoptosis fails by a blockade of plasmalemma type-1 VDAC processes of sterile inflammation must be assumed for cell elimination. This is evident from a close look on the pathogenetic process of cystic fibrosis (CF). However, in normal airway epithelia two different anion channels cooperate to guarantee an appropriate volume of airway surface liquid (ASL) necessary for surface clearing: the cystic fibrosis conductance regulator (CFTR) and the outwardly rectifying chloride channel (ORCC) complex also called “alternate chloride channel” and under the control of the CFTR. There are arguments, that type-1 VDAC forms the channel part of the ORCC complex, and it has been shown that CFTR and type-1 VDAC co-localize in the apical membranes of human surface respiratory epithelium. In cystic fibrosis, the central cAMP-dependent regulation of ion and water transport via functional CFTR is lost. Here, CFTR molecules do not reach the apical membranes of airway epithelia anymore or work in an insufficient way, respectively. In addition, type-1 VDAC is no longer available to work as a “find me signal” pathway. In consequence, clearing away of apoptotic cells is blocked. There are experimental data on the channel characteristics of type-1 VDAC under the anion channel blocker DIDS (4,4-diisothiocyanato-stilbenedisulphonic acid) that argue in favor of this hypothesis. Together, type-1 VDAC should be kept as a “find me signal” pathway, which may give way to several classes of such signals.  相似文献   

7.
Human tracheal gland serous (HTGS) cells are now considered one principal pulmonary target for the gene therapy of cystic fibrosis (CF). We developed a CF tracheal gland serous cell line, CF-KM4, obtained by the transformation of primary cultures of CF tracheal gland serous cells homozygous for the DeltaF508 mutation by using the wild-type SV40 virus. This cell line retained epithelial and secretory features of the native CF-HTGS cells in primary culture, namely, presence of cytokeratin, constitutive secretion of secretory leukocyte proteinase inhibitor, absence of responsiveness to carbachol and isoproterenol, and defective cyclic adenosine monophosphate-dependent chloride channel activity. Adenovirus-mediated CF transmembrane conductance regulator (CFTR) gene transfer into CF-KM4 cells corrected the defective chloride channel activity as well as the responsiveness to adrenergic and cholinergic agonists. In contrast, control transfection using adenovirus-mediated beta-galactosidase gene transfer was totally ineffective. In conclusion, these results present a stable CF tracheal gland cell line that has retained its epithelial and CF-specific defective secretory characteristics which are corrected after CFTR gene transfer. This cell line therefore appears to be a useful tool for large-scale molecular and cellular pharmacologic investigations designed to test potential therapies of the disease CF.  相似文献   

8.
Cystic fibrosis is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, leading to altered ion transport, chronic infection, and excessive inflammation. Here we investigated regulation of CFTR in airway cell monolayers by adenosine, adenosine receptors, and arachidonic acid. Our studies demonstrate that the A2B adenosine receptor is expressed at high levels relative to the other adenosine receptor subtypes, with a characteristic low-affinity profile for adenosine-stimulated CFTR Cl- currents in both Calu-3 cells and CFBE41o- airway cell monolayers stably transduced with wild-type CFTR. The levels of adenosine found in sputum from patients with cystic fibrosis with moderate to severe lung disease stimulated apical prostaglandin release in Calu-3 and CFBE41o- cells, implicating adenosine regulation of phospholipase A2 (PLA2) activity. A2B adenosine receptor and arachidonic acid stimulation produced CFTR-dependent currents in airway monolayers and increased cAMP levels that were sensitive to cyclooxygenase inhibition. Arachidonic acid demonstrated dual regulation of CFTR, stimulating CFTR and Cl- currents in intact airway monolayers, and potently inhibiting PKA-activated Cl- currents in excised membrane patches. Cl- currents produced by arachidonic acid were sensitive to inhibition of PKA, cyclooxygenase, and 5-lipoxygenase. Together, the results provide a converging mechanism to link regulation of CFTR and airway cell inflammation through adenosine and adenosine receptors.  相似文献   

9.
The activity of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) can be mediated by surface G protein-coupled receptors such as the beta(2)-adrenergic receptor. In this study, we explored the effect of a long-acting beta(2)-adrenergic agonist, salmeterol, on the CFTR-dependent secretory capacity of a human CF tracheal gland serous cell line (CF-KM4), homozygous for the delF508 mutation. We showed that, compared with the untreated CF serous cells, a 24-hour pre-incubation period with 200 nM salmeterol induced an 83% increase in delF508-CFTR-mediated chloride efflux. The restoration of the bioelectric properties is associated with increased apical surface pool of delF508-CFTR. Salmeterol induced a decrease in ion concentration and an increase in the level of hydration of the mucus packaged inside the CF secretory granules. The effects of salmeterol are not associated with a persistent production of cAMP. Western blotting on isolated secretory granules demonstrated immunoreactivity for CFTR and lysozyme. In parallel, we measured by atomic force microscopy an increased size of secretory granules isolated from CF serous cells compared with non-CF serous cells (MM39 cell line) and showed that salmeterol was able to restore a CF cell granule size similar to that of non-CF cells. To demonstrate that the salmeterol effect was a CFTR-dependent mechanism, we showed that the incubation of salmeterol-treated CF serous cells with CFTR-inh172 suppressed the restoration of normal secretory functions. The capacity of salmeterol to restore the secretory capacity of glandular serous cells suggests that it could also improve the airway mucociliary clearance in patients with CF.  相似文献   

10.
11.
An immortalized cell line was created from a primary culture of bronchial epithelia isolated from a patient with cystic fibrosis. The culture was transformed with a hybrid virus, adeno-12-SV40, which has been used successfully on a number of different human epithelial tissues. The transformed bronchial epithelial cells have the following characteristics. (1) Cyclic adenosine monophosphate (cAMP) is stimulated by beta-adrenergic agonists. (2) Outwardly rectifying Cl- channels are present on the apical cell membrane. These channels can be activated by depolarizing voltages but not by protein kinase A or C. (3) Keratin is present by immunofluorescence, and this is consistent with the epithelial origin of the cells. (4) The SV40 large T antigen is present as demonstrated by immunofluorescence. (5) Multiple karyotype analyses show modal chromosome number to be 80 to 90. There are an average of four chromosome 7 per cell. (6) The phenylalanine508 deletion in the gene coding for the cystic fibrosis transmembrane regulator is present on at least one chromosome. The cells can be grown in multiple passages, contain the abnormal regulation of the secretory Cl- channel, and should be an appropriate substrate for studies of the mutant cystic fibrosis transmembrane regulatory protein and its interaction with the Cl- channel.  相似文献   

12.
13.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl- channel expressed in luminal membranes of secretory and reabsorptive epithelia. CFTR plays a predominant role in both cAMP- and Ca2+-activated secretion of electrolytes. Although Ca2+-dependent Cl- channels exist independent of CFTR in the airway epithelium, their physiological significance remains to be determined. However, CFTR seems to be the only relevant Cl- conductance in the colonic epithelium. Apart from its secretory function, CFTR also has a task in regulating the reabsorption of electrolytes by controlling the activity of the epithelial Na+ channel, ENaC. Accordingly, defects in CFTR causing the disease cystic fibrosis (CF) lead to disturbances of both the secretion and absorption of electrolytes. Therefore, it is unclear what is pathophysiologically more important for the development of CF lung disease, the impaired secretion of Cl- or the enhanced reabsorption of Na+ and consecutive hyperabsorption of electrolytes. The mechanisms of how CFTR and ENaC interact are unknown. Previous work has given rise to several interesting working hypothesis, such as direct protein interaction or interaction via cytoskeletal proteins. Recent studies demonstrate the importance of the first nucleotide binding fold of CFTR, not only for the inhibition of ENaC but also for the interaction with other ion channels. Further studies are required to demonstrate whether regulation of other ion channels and membrane transport by CFTR occur by a common mechanism.  相似文献   

14.
Present state of knowledge, mostly based on heterologous expression studies, indicates that the cystic fibrosis transmembrane conductance regulator (CFTR) protein bearing the F508del mutation is misprocessed and mislocalized in the cytoplasm, unable to reach the cell surface. Recently, however, it was described that protein levels and localization are similar between F508del and wild-type CFTR in airway and intestinal tissues, but not in the sweat glands. In this study, we used immunocytochemistry with three different anti-CFTR antibodies to investigate endogenous CFTR expression and localization in nasal epithelial cells from F508del homozygous patients, F508del carriers, and non-CF individuals. On average, 300 cells were observed per individual. No significant differences were observed for cell type distributions among CF, carrier, and non-CF samples; epithelial cells made up approximately 80% to 95% of all cells present. CFTR was detected mostly in the apical region (AR) of the tall columnar epithelial (TCE) cells, ciliated or nonciliated. By confocal microscopy analysis, we show that the CFTR apical region-staining does not overlap with either anti-calnexin (endoplasmic reticulum), anti-p58 (Golgi), or anti-tubulin (cilia) stainings. The median from results with three antibodies indicate that the apical localization of CFTR happens in 22% of TCE cells from F508del homozygous patients with CF (n = 12), in 42% of cells from F508del carriers (n = 20), and in 56% of cells from healthy individuals (n = 12). Statistical analysis indicates that differences are significant among all groups studied and for the three antibodies (p < 0.05). These results confirm the presence of CFTR in the apical region of airway cells from F508del homozygous patients; however, they also reveal that the number of cells in which this occurs is significantly lower than in F508del carriers and much lower than in healthy individuals. These findings may have an impact on the design of novel pharmacological strategies aimed at circumventing the CF defect caused by the F508del mutation.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is defective in cystic fibrosis. The most common mutation, DeltaF508 CFTR, is retained in the endoplasmic reticulum, retrotranslocated into the cytosol, and degraded by the proteasome. In a proteomics screen to identify DeltaF508 CFTR interacting proteins, we found that valosin-containing protein (VCP)/p97, a Type II AAA ATPase that is a component of the retrotranslocation machinery, binds DeltaF508 CFTR, and this interaction is stabilized by proteasomal inhibition. Since wild-type (WT) CFTR has been reported to be inefficiently processed during biogenesis with as much as 75% of the newly synthesized protein degraded by the proteasome, we examined the VCP interaction in Calu-3, T-84, and 16HBE, three epithelial cell lines that endogenously express WT CFTR. The results indicate that when WT CFTR processing is efficient, as demonstrated in Calu-3 cells, VCP does not interact. Interestingly, overexpression of recombinant WT CFTR in Calu-3 cells results in inefficient processing and VCP interaction, demonstrating that CFTR processing efficiency and the VCP interaction are tightly coupled. Furthermore, induction of ER stress and activation of the unfolded protein response result in inefficient processing of WT CFTR in Calu-3 cells and promote the WT CFTR-VCP interaction. The results support the hypothesis that components of the retrotranslocation machinery such as VCP do not interact with CFTR in epithelial cells that endogenously express WT CFTR, since under normal conditions the processing of the WT protein is efficient.  相似文献   

16.
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. The most common CF-associated mutation is ΔF508, which deletes a phenylalanine in position 508. In vitro studies indicate that the resultant protein, CFTR-ΔF508, is misprocessed, although the in vivo consequences of this mutation remain uncertain. To better understand the effects of the ΔF508 mutation in vivo, we produced CFTR(ΔF508/ΔF508) pigs. Our biochemical, immunocytochemical, and electrophysiological data on CFTR-ΔF508 in newborn pigs paralleled in vitro predictions. They also indicated that CFTR(ΔF508/ΔF508) airway epithelia retain a small residual CFTR conductance, with maximal stimulation producing ~6% of wild-type function. Cyclic adenosine 3',5'-monophosphate (cAMP) agonists were less potent at stimulating current in CFTR(Δ)(F508/)(Δ)(F508) epithelia, suggesting that quantitative tests of maximal anion current may overestimate transport under physiological conditions. Despite residual CFTR function, four older CFTR(ΔF508/ΔF508) pigs developed lung disease similar to human CF. These results suggest that this limited CFTR activity is insufficient to prevent lung or gastrointestinal disease in CF pigs. These data also suggest that studies of recombinant CFTR-ΔF508 misprocessing predict in vivo behavior, which validates its use in biochemical and drug discovery experiments. These findings help elucidate the molecular pathogenesis of the common CF mutation and will guide strategies for developing new therapeutics.  相似文献   

17.
Deletion of the amino acid residue Phe 508 of the cystic fibrosis transmembrane conductance regulator (CFTR) protein represents the most common mutation identified in cystic fibrosis (CF) patients. A monoclonal and a polyclonal antibody directed against different regions of CFTR were used to localize the CFTR protein in normal and CF airway epithelium derived from polyps of non-CF and CF subjects homozygous for the delta Phe 508 CFTR mutation. To identify the cellular and subcellular localization of CFTR, immunofluorescent light microscopy, confocal scanning microscopy, and immunogold transmission electron microscopy were performed on cryofixed tissue. A markedly different subcellular distribution was identified between normal and CF airway epithelial cells. In normal epithelium, labeling was restricted to the surface apical compartment of the ciliated cells. In contrast, in the epithelium from homozygous delta Phe 508 CF patients, CFTR markedly accumulated in the cytosol of all the epithelial cells. These findings are consistent with the concept that the CFTR delta Phe 508 mutation modifies the intracellular maturation and trafficking of the protein, leading to an altered subcellular distribution of the delta Phe 508 mutant CFTR.  相似文献   

18.
19.
Several clinical studies demonstrate reduced serum concentrations of renally excreted drugs in patients with cystic fibrosis (CF). To explain this phenomenon, we propose a model supporting increased proximal tubular secretion of certain drugs in individuals with CF. We hypothesize that the chloride channel located on the apical surface of renal proximal tubular cells and controlled by the cystic fibrosis transmembrane conductance regulator (CFTR) operates suboptimally in CF patients, and that the abnormal CFTR decreases Cl- reabsorption, resulting in an increased concentration of Cl- in the tubular lumen. We postulate that, in an effort to maintain homeostasis, luminal Cl- moves intracellularly in exchange for organic anions. The result of stimulating this anion exchanger is an increased rate of organic anion secretion by the renal tubule. Hence, due to enhanced tubular secretion, individuals with CF demonstrate increased tubular clearance of organic anion drugs, resulting in lower steady state serum concentrations.  相似文献   

20.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a small conductance chloride ion channel that may interact directly with other channels including the epithelial sodium channel (ENaC). CFTR is known to be more abundant in the airway epithelium during the second trimester of human development than after birth. This could be a consequence of the change in function of the respiratory epithelium from chloride secretion to sodium absorption near term. Alternatively it might reflect an additional role for CFTR in the developing airway epithelium. Though the lung epithelia of CF fetuses and infants rarely show gross histological abnormalities, there is often evidence of inflammation. Our aim was to establish whether CFTR expression levels correlated with specific developmental stages or differentiated functions in the ovine fetal lung. We evaluated CFTR expression using a quantitative assay of mRNA at 14 time points through gestation and showed highest levels at the start of the second trimester followed by a gradual decline through to term. In contrast, ENaC expression increased from the start of the third trimester. These results support a role for CFTR in differentiation of the respiratory epithelium and suggest that its expression levels are not merely reflecting major changes in the sodium/chloride bulk flow close to term. These observations may have significant implications for the likely success of CF gene therapy in the postnatal lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号