首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Migraine is characterised by debilitating pain, which affects the quality of life in affected patients in both the western and the eastern worlds. The purpose of this article is to give a detailed outline of the pathophysiology of migraine pain, which is one of the most confounding pathologies among pain disorders in clinical conditions. We critically evaluate the scientific basis of various theories concerning migraine pathophysiology, and draw insights from brain imaging approaches that have unraveled the prevalence of cortical spreading depression (CSD) in migraine. The findings supporting the role of CSD as a physiological substrate in clinical pain are discussed. We also give an exhaustive overview of brain imaging approaches that have been employed to solve the genesis of migraine pain, and its possible links to the brainstem, the neocortex, genetic endophenotypes, and pathogenetic factors (such as dopaminergic hypersensitivity). Furthermore, a roadmap is proposed to provide a better understanding of pain pathophysiology in migraine, to enable the development of strategies using leads from brain imaging studies for the identification of early biomarkers, efficient prognosis, and treatment planning, which eventually may help in alleviating some of the devastating impact of pain morbidity in patients afflicted with migraine.  相似文献   

2.
3.
4.
5.
Epilepsy surgery is highly successful in achieving seizure freedom in carefully selected children with drug‐resistant focal epilepsy. Advances in technology have aided presurgical evaluation and increased the number of possible candidates. Many of the tests employed are resource intense, and in specific cases they may be unhelpful or have adverse effects. Some standardization of the evaluation process is thus considered timely. Given the lack of class 1 or 2 evidence defining the relative utility of each test in specific clinicopathologic cohorts, a set of expert recommendations was attempted using consensus among members of the Pediatric Epilepsy Surgery Task Force of the International League Against Epilepsy (ILAE) Commissions of Pediatrics and Diagnostics These recommendations aim to limit fringe over or underutilization of use while retaining substantial flexibility in the use of various tests, in keeping with most standard practices at established pediatric epilepsy centers. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here .  相似文献   

6.
7.
The aim was to review the existing reports on cognitive and behavioural symptoms in monogenic forms of Parkinson’s disease (PD) and to identify recurring patterns of clinical manifestations in those with specific mutations. A systematic literature search was conducted to retrieve observational studies of monogenic PD. Data pertaining to cognitive and psychiatric manifestations were extracted using standardized templates. The PRISMA guidelines were followed. Of the 1889 citations retrieved, 95 studies on PD‐related gene mutations were included: 35 in SNCA, 35 in LRRK2, four in VPS35, 10 in Parkin, three in DJ1 and eight in PINK1. Nineteen studies (20%) provided adequate data from comprehensive cognitive assessment and 31 studies (32.6%) outlined psychiatric manifestations through the use of neuropsychiatric scales. Cognitive impairment was reported in all monogenic PD forms with variable rates (58.8% PINK1, 53.9% SNCA, 50% DJ1, 29.2% VPS35, 15.7% LRRK2 and 7.4% Parkin). In this regard, executive functions and attention were the domains most affected. With respect to psychiatric symptoms, depression was the most frequent symptom, occurring in 37.5% of PINK1 cases and 41.7% of VPS35 and LRRK2 cases. Co‐occurrence of cognitive decline with visual hallucinations was evidenced. Widespread accumulation of Lewy bodies, distinctive of SNCA, PINK1 and DJ1 mutations, results in higher rates of cognitive impairment. Similarly, a higher degree of visual hallucinations is observed in SNCA mutations, probably owing to the more widespread accumulation. The lower rates of α‐synuclein pathology in LRRK2 and Parkin may underpin the more benign disease course in these patients.  相似文献   

8.
9.
10.
11.
12.
Recent human behavioral studies have shown semantic and/or lexical processing for stimuli presented below the auditory perception threshold. Here, we investigated electroencephalographic responses to words, pseudo‐words and complex sounds, in conditions where phonological and lexical categorizations were behaviorally successful (categorized stimuli) or unsuccessful (uncategorized stimuli). Data showed a greater decrease in low‐beta power at left‐hemisphere temporal electrodes for categorized non‐lexical sounds (complex sounds and pseudo‐words) than for categorized lexical sounds (words), consistent with the signature of a failure in lexical access. Similar differences between lexical and non‐lexical sounds were observed for uncategorized stimuli, although these stimuli did not yield evoked potentials or theta activity. The results of the present study suggest that behaviorally uncategorized stimuli were processed at the lexical level, and provide evidence of the neural bases of the results observed in previous behavioral studies investigating auditory perception in the absence of stimulus awareness.  相似文献   

13.
Brivaracetam (BRV) is a selective, high‐affinity ligand for synaptic vesicle protein 2A (SV2A), recently approved as adjunctive treatment for drug‐refractory partial‐onset seizures in adults. BRV binds SV2A with higher affinity than levetiracetam (LEV), and was shown to have a differential interaction with SV2A. Because LEV was reported to interact with multiple excitatory and inhibitory ligand‐gated ion channels and that may impact its pharmacological profile, we were interested in determining whether BRV directly modulates inhibitory and excitatory ionotropic receptors in central neurons. Voltage‐clamp experiments were performed in primary cultures of mouse hippocampal neurons. At a supratherapeutic concentration of 100 μm , BRV was devoid of any direct effect on currents gated by γ‐aminobutyric acidergic type A, glycine, kainate, N‐methyl‐d ‐aspartate, and α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid. Similarly to LEV, BRV reveals a potent ability to oppose the action of negative modulators on the inhibitory receptors. In conclusion, these results show that BRV contrasts with LEV by not displaying any direct action on inhibitory or excitatory postsynaptic ligand‐gated receptors at therapeutic concentrations and thereby support BRV's role as a selective SV2A ligand. These findings add further evidence to the validity of SV2A as a relevant antiepileptic drug target and emphasize the potential for exploring further presynaptic mechanisms as a novel approach to antiepileptic drug discovery.  相似文献   

14.
In Drosophila, serotonin (5‐HT) regulates aggression, mating behaviour and sleep/wake behaviour through different receptors. Currently, how these various receptors are themselves regulated is still not completely understood. The KCTD12‐family of proteins, which have been shown to modify G‐protein‐coupled receptor (GPCR) signalling in mammals, are one possibility of auxiliary proteins modulating 5‐HT receptor signalling. The KCTD12‐family was found to be remarkably conserved and present in species from C. elegans to humans. The Drosophila KCTD12 homologue Kctd12‐like (Ktl) was highly expressed in both the larval and adult CNS. By performing behavioural assays in male Drosophila, we now reveal that Ktl is required for proper male aggression and mating behaviour. Previously, it was shown that Ktl is in a complex with the Drosophila 5‐HT receptor 5‐HT7, and we observed that both Ktl and the 5‐HT1A receptor are required in insulin‐producing cells (IPCs) for proper adult male behaviour, as well as for hyperaggressive activity induced by the mammalian 5‐HT1A receptor agonist 8‐hydroxy‐2‐dipropylaminotetralin‐hydrobromide. Finally, we show that Ktl expression in the IPCs is necessary to regulate locomotion and normal sleep/wake patterns in Drosophila, but not the 5‐HT1A receptor. Similar to what was observed with mammalian KCTD12‐family members that interact physically with a GPCR receptor to regulate desensitization, in Drosophila Ktl may function in GPCR 5‐HT receptor pathways to regulate their signalling, which is required for proper adult male behaviour.  相似文献   

15.
16.
Cannabinoid receptor 1 (CB1 receptor) controls several neuronal functions, including neurotransmitter release, synaptic plasticity, gene expression and neuronal viability. Downregulation of CB1 expression in the basal ganglia of patients with Huntington's disease (HD) and animal models represents one of the earliest molecular events induced by mutant huntingtin (mHtt). This early disruption of neuronal CB1 signaling is thought to contribute to HD symptoms and neurodegeneration. Here we determined whether CB1 downregulation measured in patients with HD and mouse models was ubiquitous or restricted to specific striatal neuronal subpopulations. Using unbiased semi‐quantitative immunohistochemistry, we confirmed previous studies showing that CB1 expression is downregulated in medium spiny neurons of the indirect pathway, and found that CB1 is also downregulated in neuropeptide Y (NPY)/neuronal nitric oxide synthase (nNOS)‐expressing interneurons while remaining unchanged in parvalbumin‐ and calretinin‐expressing interneurons. CB1 downregulation in striatal NPY/nNOS‐expressing interneurons occurs in R6/2 mice, HdhQ150/Q150 mice and the caudate nucleus of patients with HD. In R6/2 mice, CB1 downregulation in NPY/nNOS‐expressing interneurons correlates with diffuse expression of mHtt in the soma. This downregulation also occludes the ability of cannabinoid agonists to activate the pro‐survival signaling molecule cAMP response element‐binding protein in NPY/nNOS‐expressing interneurons. Loss of CB1 signaling in NPY/nNOS‐expressing interneurons could contribute to the impairment of basal ganglia functions linked to HD.  相似文献   

17.
18.
Damaraland mole rats (Fukomys damarensis) are cooperatively breeding, subterranean mammals that exhibit a high reproductive skew. Reproduction is monopolised by the dominant female of the group, whereas subordinates are physiologically suppressed to the extent that they are anovulatory. In these latter animals, it is assumed that normal gonadotropin‐releasing hormone secretion from the hypothalamus is disrupted. The RFamide peptides kisspeptin (Kiss1) and RFamide‐related peptide‐3 (RFRP‐3) are considered as potent regulators of gonadotropin release. To assess whether these neuropeptides are involved in the mechanism of reproductive suppression, we investigated the distribution and gene expression of Kiss1 and Rfrp by means of in situ hybridisation in wild‐caught female Damaraland mole‐rats with different reproductive status. In both reproductive phenotypes, substantial Kiss1 expression was found in the arcuate nucleus and only few Kiss1‐expressing cells were detected in the anteroventral periventricular nucleus (AVPV), potentially as a result of low circulating oestradiol concentrations in breeding and nonbreeding females. Rfrp gene expression occurred in the dorsomedial nucleus, the paraventricular nucleus and the periventricular nucleus. While in female breeders and nonbreeders, plasma oestradiol levels were low and not significantly different, quantification of the hybridisation signal for both genes revealed significant differences in relation to reproductive status. Reproductively active females had more Kiss1‐expressing cells and a higher number of silver grains per cell in the arcuate nucleus compared to nonreproductive females. This difference was most pronounced in the caudal part of the nucleus. No such differences were found in the AVPV. Furthermore, breeding status was associated with a reduced number of Rfrp‐expressing cells in the anterior hypothalamus. This reproductive status‐dependent expression pattern of Kiss1 and Rfrp suggests that both neuropeptides play a role in the regulation of reproduction in Damaraland mole‐rats. Enhanced long‐term negative feedback effects of oestradiol could be responsible for the lower Kiss1 expression in the arcuate nucleus of reproductively suppressed females.  相似文献   

19.
The thalamic reticular nucleus (nRt) is an assembly of GABAergic projection neurons that participate in the generation of brain rhythms during synchronous sleep and absence epilepsy. NRt cells receive inhibitory and excitatory synaptic inputs, and are endowed with an intricate set of intrinsic conductances. However, little is known about how intrinsic and synaptic properties interact to generate rhythmic discharges in these neurons. In order to better understand this interaction, I studied the subthreshold responses of nRt cells to time‐varying inputs. Patch‐clamp recordings were performed in acute slices of rat thalamus (postnatal days 12–21). Sinusoidal current waveforms of linearly changing frequencies were injected into the soma, and the resulting voltage oscillations were recorded. At the resting membrane potential, the impedance profile showed a characteristic resonance at 1.7 Hz. The relative strength of the resonance was 1.2, and increased with membrane hyperpolarization. Small suprathreshold current injections led to preferred spike generation at the resonance frequency. Bath application of ZD7288 or Cs+, inhibitors of the hyperpolarization‐activated cation current (Ih), transformed the resonance into low‐pass behaviour, whereas the T‐channel blockers mibefradil and Ni2+ decreased the strength of the resonance. It is concluded that nRt cells have an Ih‐mediated intrinsic frequency preference in the subthreshold voltage range that favours action potential generation in the delta‐frequency band.  相似文献   

20.
We recently showed that orexin expression in sudden infant death syndrome (SIDS) infants was reduced by 21% in the hypothalamus and by 40–50% in the pons as compared with controls. Orexin maintains wakefulness/sleeping states, arousal, and rapid eye movement sleep, abnormalities of which have been reported in SIDS. This study examined the effects of two prominent risk factors for SIDS, intermittent hypercapnic hypoxia (IHH) (prone‐sleeping) and chronic nicotine exposure (cigarette‐smoking), on orexin A (OxA) and orexin B (OxB) expression in piglets. Piglets were randomly assigned to five groups: saline control (n = 7), air control (n = 7), nicotine [2 mg/kg per day (14 days)] (n = 7), IHH (6 min of 7% O2/8% CO2 alternating with 6‐min periods of breathing air, for four cycles) (n = 7), and the combination of nicotine and IHH (N + IHH) (n = 7). OxA/OxB expression was quantified in the central tuberal hypothalamus [dorsal medial hypothalamus (DMH), perifornical area (PeF), and lateral hypothalamus], and the dorsal raphe, locus coeruleus of the pons. Nicotine and N + IHH exposures significantly increased: (i) orexin expression in the hypothalamus and pons; and (ii) the total number of neurons in the DMH and PeF. IHH decreased orexin expression in the hypothalamus and pons without changing neuronal numbers. Linear relationships existed between the percentage of orexin‐positive neurons and the area of pontine orexin immunoreactivity of control and exposure piglets. These results demonstrate that postnatal nicotine exposure increases the proportion of orexin‐positive neurons in the hypothalamus and fibre expression in the pons, and that IHH exposure does not prevent the nicotine‐induced increase. Thus, although both nicotine and IHH are risk factors for SIDS, it appears they have opposing effects on OxA and OxB expression, with the IHH exposure closely mimicking what we recently found in SIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号