首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
The pathogenic mechanisms of prion diseases   总被引:5,自引:0,他引:5  
Transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative diseases of humans and animals, including bovine spongiform encephalopathy (BSE) of cattle, scrapie of sheep, and Creutzfeldt-Jakob disease (CJD) of humans. Prion diseases have become an important issue in public health and in the scientific world not only due to the possible relationship between BSE and new variant CJD (nvCJD) but also due to the unique biological features of the infectious agent. Although the nature of the infectious agent and the pathogenic mechanisms of prion diseases are not fully understood, considerable evidence suggests that an abnormal form (PrP(Sc)) of a host prion protein (PrP(C)) may compose substantial parts of the infectious agent and that various factors such as oxidative stress and calcium cytotoxicity are associated with the pathogenesis of prion diseases. Here, we briefly review and discuss the pathogenic mechanisms of prion diseases. These advances in understandings of fundamental biology of prion diseases may open the possibilities for the prevention and treatment of these unusual diseases and also suggest applications in more common neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD).  相似文献   

2.
Bovine brain tissue samples from 625 UK cattle, clinically suspected as bovine spongiform encephalopathy (BSE) cases, were used in a blind analysis to assess a rapid Western immunoblotting technique (Prionics Check; Prionics AG, Zurich), which detects bovine disease-specific protease-resistant prion protein (PrP(Sc)). By means of statutory histopathological examination, 599 of the 625 cattle were confirmed as BSE cases by the demonstration of spongiform encephalopathy, the remaining 26 being classified as negative. Duplicate samples from the same animals were also examined by electron microscopy for the presence of abnormal brain fibrils (scrapie-associated fibrils; SAFs). The Prionics technique showed a high sensitivity, particularly when compared with the fibril detection test; the detection rates were 99.3% and 92.0% respectively, with histopathology being used as the "gold standard". The false negative results by the Prionics test were possibly related to the sampling procedure. Analysis of 50 BSE-positive samples revealed similar glycoprofiles, the majority of PrP(Sc)isoforms being di-glycosylated protein. The Prionics test also detected PrP(Sc)in the four brain samples from the 26 histopathologically negative animals, apparently reducing the specificity of the test to 84.6%; however, confirmatory positive results in these samples were obtained by demonstrating SAF or by immunohistochemical examination, or both. It was concluded that the Prionics test detected PrP(Sc)in a small percentage (0.64%) of clinically suspected BSE cases showing no spongiform change. Since January 2000, the Prionics Western blot test has been introduced as one of the statutory tests for the diagnosis of clinically suspected BSE and scrapie cases in the UK. Copyright Harcourt Publishers Ltd.  相似文献   

3.
The diversity of strains of ovine prions within classical scrapie isolates was investigated by transmission studies in wild type mice. To determine the maximum diversity of prion strains present in each ovine scrapie isolate examined, isolates from mice having the shortest and longest incubation times for terminal disease after primary inoculation were passaged serially. Serial passage of ARQ/ARQ scrapie isolates in RIII mice revealed the ME7 prion strain in mice with short incubation times for terminal prion disease and the 87A strain in those mice with long incubation times. Serial passage of VRQ/VRQ scrapie isolates in RIII mice led to emergence of the 221C prion strain in mice with short incubation times and a variant of the 221C strain in those mice with long incubation times. RIII mice with short incubation times had higher levels of total and proteinase K-resistant PrP(Sc) compared with those RIII mice with long incubation times, while mice with long incubation times had large aggregates and plaques of PrP(Sc). ME7 PrP(Sc) differed in stability compared with the 87A prion strain, while PrP(Sc) associated with 221C had similar stability to that of the 221C variant. Serial passage in VM mice led to identification of ME7 and 87V in the same scrapie isolate. The data show that different prion strains can emerge from the same ovine scrapie isolate following serial passage in wild type mice and that the transmission properties of these strains correlate with distinct patterns of PrP(Sc) deposition.  相似文献   

4.
Variant Creutzfeldt-Jakob disease (vCJD) differs from other human prion diseases in that the pathogenic prion protein PrP(Sc) can be detected to a greater extent at extraneuronal sites throughout the body, principally within lymphoid tissues. However, a recent study using a high-sensitivity Western blotting technique revealed low levels of PrP(Sc) in skeletal muscle from a quarter of Swiss patients with sporadic CJD (sCJD). This posed the question of whether PrP(Sc) in muscle could also be detected in vCJD, sCJD, and iatrogenic (iCJD) patients from other populations. Therefore, we have used the same high-sensitivity Western blotting technique, in combination with paraffin-embedded tissue blotting, to screen for PrP(Sc) in muscle tissue specimens taken at autopsy from 49 CJD patients in the United Kingdom. These techniques identified muscle PrP(Sc) in 8 of 17 vCJD, 7 of 26 sCJD, and 2 of 5 iCJD patients. Paraffin-embedded tissue blotting analysis showed PrP(Sc) in skeletal muscle in localized anatomical structures that had the morphological and immunohistochemical characteristics of nerve fibers. The detection of PrP(Sc) in muscle tissue from all forms of CJD indicates the possible presence of infectivity in these tissues, suggesting important implications for assessing the potential risk of iatrogenic spread via contaminated surgical instruments.  相似文献   

5.
The diagnosis of prion diseases, such as scrapie and BSE, has traditionally relied upon the identification of the disease-associated form of the prion protein, PrP(Sc), based on its resistance to digestion by proteinase K (PK). A more recent development is the conformation-dependent immunoassay (CDI), which distinguishes between PrP Sc and normal PrP (PrP C) based on their differing solubility in guanidine hydrochloride rather than resistance or sensitivity to PK. We have developed a CDI-formatted sandwich immunoassay for the measurement of PrP Sc in sheep brain, which discriminates between clinically affected scrapie cases (natural or experimental) and uninfected controls of the same PrP genotype. Using this method, we have shown for the first time that, in sheep, the PrP genotype has a significant influence on the amount of PrP Sc deposited in the brains of animals experimentally infected with scrapie.  相似文献   

6.
Protein misfolding cyclic amplification (PMCA) is a highly sensitive technique used to detect minute amounts of scrapie prion protein (PrP(Sc)), a major protein component of the infectious agents associated with prion diseases. Although exponential in vitro amplification of hamster scrapie PrP(Sc) has been established, the PMCA used was unsuccessful in achieving good amplification of PrP(Sc) from other animals. Here, we have investigated the cause of the insufficient PrP(Sc) amplification in mice and have developed an improved method suitable for amplification of the PrP(Sc) of the mouse-adapted scrapie prion strain Chandler. Mouse PrP(C), the cellular form of the prion protein, tends to become resistant to proteases during incubation independent of sonication. By adding digitonin to the reaction buffer as a lipid detergent, accumulation of the protease-resistant PrP(C) was inhibited; hence, mouse PrP(Sc) could be amplified to infinite levels. The present study is the first report describing effective amplification of PrP(Sc) of the mouse-adapted scrapie prion and this improved PMCA technique will contribute to prion research that uses mice as experimental animals.  相似文献   

7.
An experimental oral bovine spongiform encephalopathy (BSE) challenge study was performed to elucidate the route of infectious prions from the gut to the central nervous system in preclinical and clinical infected animals. Tissue samples collected from the gut and the central and autonomic nervous system from animals sacrificed between 16 and 44 months post infection (mpi) were examined for the presence of the pathological prion protein (PrP(Sc)) by IHC. Moreover, parts of these samples were also bioassayed using bovine cellular prion protein (PrP(C)) overexpressing transgenic mice (Tgbov XV) that lack the species barrier for bovine prions. A distinct accumulation of PrP(Sc) was observed in the distal ileum, confined to follicles and/or the enteric nervous system, in almost all animals. BSE prions were found in the sympathetic nervous system starting at 16 mpi, and in the parasympathetic nervous system from 20 mpi. A clear dissociation between prion infectivity and detectable PrP(Sc) deposition became obvious. The earliest presence of infectivity in the brain stem was detected at 24 mpi, whereas PrP(Sc) accumulation was first detected after 28 mpi. In summary, our results decipher the centripetal spread of BSE prions along the autonomic nervous system to the central nervous system, starting already halfway in the incubation time.  相似文献   

8.
Pathologic prion protein (PrP(Sc)), implicated in transmissible spongiform encephalopathies, is detected by antibody-based tests or bioassays to confirm the diagnosis of prion diseases. Presently, the Western blot or an ELISA is officially used to screen the brain stem in cattle for the presence of PrP(Sc). The immuno-polymerase chain reaction (IPCR), a technique whereby the exponential amplification ability of PCR is coupled to the detection of proteins by antibodies in an ELISA format, was applied in a modified real-time IPCR method to detect ultra-low levels of prion protein. Using IPCR, recombinant hamster PrP(C) was consistently detected at 1 fg/mL and proteinase K (PK)-digested scrapie infected hamster brain homogenates diluted to 10(-8) (approximately 10-100 infectious units) was detected with a semi-quantitative dose response. This level of detection is 1 million-fold more sensitive than the levels detected by Western blot or ELISA and poises IPCR as a method capable of detecting PrP(Sc) in the pre-clinical phase of infection. Further, the data indicate that unless complete PK digestion of PrP(C) in biological materials is verified, ultrasensitive assays such as IPCR may inaccurately classify a sample as positive.  相似文献   

9.
目的建立一种类似于PCR的蛋白质扩增方法-蛋白错误折叠循环扩增技术(PMCA),用于朊病毒病脑组织中PrPSc的检测。方法将不同浓度的羊瘙痒因子263K毒株原液与正常仓鼠脑组织匀浆混合,经反复孵育/超声,共10~15个循环。WesternBlot检测扩增产物中蛋白酶K抗性PrPSc信号。结果在本研究试验体系下,263K毒株可以利用仓鼠脑组织为基质在体外迅速复制。所建立的PrPSc-PMCA技术可检测到10-5稀释的毒株原液中的PrPSc。与常规的脑组织免疫印记方法相比,敏感度提高了105~106倍。研究还显示PrPSc还可利用小脑和脑干为基质进行体外扩增复制。结论成功建立了PrPSc-PMCA技术,为朊病毒病的早期诊断和朊病毒生物学特性的研究提供了一种新的手段。  相似文献   

10.
Human prion diseases are rare fatal neurodegenerative conditions that occur as acquired, familial, or idiopathic disorders. A key event in their pathogenesis is the accumulation of an altered form of the prion protein, termed PrP(Sc), in the central nervous system. A novel acquired human prion disease, variant Creutzfeldt-Jakob disease, is thought to result from oral exposure to the bovine spongiform encephalopathy agent. This disease differs from other human prion diseases in its neurological, neuropathological, and biochemical phenotype. We have used immunohistochemistry and Western blot techniques to analyze the tissue distribution and biochemical properties of PrP(Sc) in peripheral tissues in a unique series of nine cases of variant Creutzfeldt-Jakob disease. We have compared this with the distribution and biochemical forms found in all of the major subtypes of sporadic Creutzfeldt-Jakob disease and in a case of iatrogenic Creutzfeldt-Jakob disease associated with growth hormone therapy. The results show that involvement of the lymphoreticular system is a defining feature of variant Creutzfeldt-Jakob disease, but that the biochemical isoform of PrP(Sc) found is influenced by the cell type in which it accumulates.  相似文献   

11.
European regulations for the control of bovine spongiform encephalopathy (BSE) decree destruction of the intestines from slaughtered cattle, therefore producers have been obliged to import beef casings from countries with a negligible BSE risk. This study applies immunohistochemical and biochemical approaches to investigate the occurrence and distribution of disease-associated prion protein (PrP(Sc)) in the duodenum, jejunum and ileum of cattle orally exposed to a 1 g or 100 g dose of a titrated BSE brainstem homogenate. Samples were derived from animals at various times post exposure. Lymphoid follicles were counted and the frequency of affected follicles recorded. No PrP(Sc) was detected in the duodenum or jejunum of animals exposed to a 1 g dose or in the duodenum of animals receiving a 100 g dose. PrP(Sc) was detected in the lymphoid tissue of the ileum of 1/98 (1.0%) animals receiving the 1 g dose and in the jejunum and ileum of 8/58 (13.8%) and 45/99 (45.5%), respectively, of animals receiving the 100 g dose. The frequency of PrP(Sc)- positive follicles was less than 1.5% per case and biochemical tests appeared less sensitive than immunohistochemistry. The probability of detecting lymphoid follicles in the ileum declined with age and for the 100 g exposure the proportion of positive follicles increased, while the proportion of positive animals decreased with age. Detection of PrP(Sc) in intestinal neural tissue was rare. The results suggest that the jejunum and duodenum of BSE-infected cattle contain considerably less BSE infectivity than the ileum, irrespective of exposure dose. In animals receiving the low exposure dose, as in most natural cases of BSE, the rarity of PrP(Sc) detection compared with high-dose exposure, suggests a very low BSE risk from food products containing the jejunum and duodenum of cattle slaughtered for human consumption.  相似文献   

12.
The first transmissions of human prion diseases to rodents used guinea pigs (Gps, Cavia porcellus). Later, transgenic mice expressing human or chimeric human/mouse PrP replaced Gps, but the small size of the mouse limits some investigations. To investigate the fidelity of strain-specific prion transmission to Gps, we inoculated 'type 1' and 'type 2' prion strains into Gps, and we measured the incubation times and determined the strain-specified size of the unglycosylated, protease-resistant (r) PrP(Sc) fragment. Prions passaged once in Gps from cases of sporadic (s) Creutzfeldt-Jakob disease (CJD) and Gerstmann-Str?ussler-Scheinker (GSS) disease caused by the P102L mutation were used, as well as human prions from a variant (v) CJD case, bovine prions from bovine spongiform encephalopathy (BSE) and mouse-passaged scrapie prions. Variant CJD and BSE prions transmitted to all the inoculated Gps with incubation times of 367 ± 4 and 436 ± 28 days, respectively. On second passage in Gps, vCJD and BSE prions caused disease in 287 ± 4 and 310 ± 4 days, whereas sCJD and GSS prions transmitted in 237 ± 4 and 279 ± 19 days, respectively. Although hamster Sc237 prions transmitted to two of three Gps after 574 and 792 days, mouse-passaged RML and 301V prion strains, the latter derived from BSE prions, failed to transmit disease to Gps. Those Gps inoculated with vCJD or BSE prions exhibited 'type 2' unglycosylated, rPrP(Sc) (19 kDa), whereas those receiving sCJD or GSS prions displayed 'type 1' prions (21 kDa), as determined by western blotting. Such strain-specific properties were maintained in Gps as well as mice expressing a chimeric human/mouse transgene. Gps may prove particularly useful in further studies of novel human prions such as those causing vCJD.  相似文献   

13.
Post-mortem diagnosis of transmissible spongiform encephalopathies (prion diseases) is primarily based on the detection of a protease resistant, misfolded disease associated isoform (PrP(Sc)) of the prion protein (PrP(C)) on neuronal cells. These methods depend on antibodies directed against PrP(C) and capable of reacting with PrP(Sc)in situ (immunohistochemistry on nervous tissue sections) or with the unfolded form of the protein (western and paraffin embedded tissue (PET) blotting). Here, high-affinity monoclonal antibodies (mAbs 1.5D7, 1.6F4) were produced against synthetic PrP peptides in wild-type mice and used for western blotting and immunohistochemistry to detect several types of human prion-disease associated PrP(Sc), including sporadic Creutzfeldt-Jakob Disease (CJD) (subtypes MM1 and VV2), familial CJD and Gerstmann-Str?ussler-Scheinker (GSS) disease PrP(Sc) as well as PrP(Sc) of bovine spongiform encephalopathy (bovine brain), scrapie (ovine brain) and experimental scrapie in hamster and in mice. The antibodies were also used for PET-blotting in which PrP(Sc) blotted from brain tissue sections onto a nitrocellulose membrane is visualized with antibodies after protease and denaturant treatment allowing the detection of protease resistant PrP forms (PrP(RES)) in situ. Monoclonal antibodies 1.5D7 and 1.6F4 were raised against the reported epitope (PrP153-165) of the commercial antibody 6H4. While 1.5D7 and 1.6F4 were completely inhibitable by PrP153-165, 6H4 was not, indicating that the specificity of 6H4 is not defined completely by PrP153-165. The two antibodies performed similarly to 6H4 in western blotting with human samples, but showed less reactivity and enhanced background staining with animal samples in this method. In immunohistochemistry 1.5D7 and 1.6F4 performed better than 6H4 suggesting that the binding affinity of 1.5D7 and 1.6F4 with native (aggregated) PrP(Sc)in situ was higher than that of 6H4. On the other hand in PET-blotting, 6H4 reached the same level of reactivity as 1.5D7 and 1.6F4. This shows that 6H4 needs denatured PrP(RES) to reach maximal reactivity, confirming earlier results. As an exception, human PrP(RES) still reacted relatively poorly with 6H4 in PET-blotting, while 1.5D7 and 1.6F4 reacted well with PrP(RES) from most human CJD types. Taken together this implies that the binding epitope of 1.5D7 and 1.6F4 is accessible in the aggregates of undenatured PrP(Sc) (IHC) while the binding site of 6H4 is at least partly inaccessible. In techniques incorporating a denaturing and/or disaggregating step 6H4 showed good binding indicating increased accessibility of the binding site. An exception to this is human samples in PET-blotting suggesting that huPrP(RES) might not be as easily unfolded by denaturation as BSE and scrapie PrP(RES). Also of interest was the ability of 1.5D7 and 1.6F4 to discriminate between two allelic variants of PrP CJD(Sc) (VV vs. MM) in immunohistochemistry as opposed to the normally used antibody 3F4.  相似文献   

14.
Although the key event in the pathology of prion diseases is thought to be the conversion of cellular prion protein (PrP(C)) to the protease-resistant scrapie species termed PrP(Sc), the factors that contribute to neurodegeneration in scrapie-infected animals are poorly understood. One probable determinant could be when the accumulation of PrP(Sc) in infected brain overwhelms the ubiquitin-proteasome system and triggers the degenerative cascade. In the present study, it was found that in mouse brains infected with the ME7 scrapie strain, the level of ubiquitin protein conjugates increased significantly at approximately 144 days post-infection (pi) when clinical signs first become apparent. This elevation correlated with the detection of protease-resistant PrP(Sc) and a decline in two endopeptidase activities associated with proteasome function. However, ubiquitination of PrP was only detected at the terminal stage, 3 weeks after the development of clinical symptoms (approximately 165 days pi). These results suggest that ubiquitination of PrP is a late event phenomenon and this conjugation occurs after the formation of protease-resistant PrP(Sc). Whether this post-translational modification and the impairment of proteasome function are pivotal events in the pathogenesis of prion diseases remains to be determined.  相似文献   

15.
Novel approaches in diagnosis and therapy of Creutzfeldt-Jakob disease   总被引:5,自引:0,他引:5  
The scrapie prion protein, PrP(Sc), as well as its peptide fragment, PrP106-126, are toxic on neuronal cells, resulting in cell death by an apoptotic, rather than necrotic mechanism. The apoptotic process of neuronal cells induced by prion protein supports diagnosis and offers potential targets for therapeutic intervention of the prion diseases. Among the cerebrospinal fluid (CSF) proteins, which may serve as markers of neuronal cell death associated with prion diseases, the 14-3-3 protein(s) turned out to be the most promising one. A new sensitive assay allows the detection of even small changes in the normally low levels of these proteins. In vitro, the toxic effects displayed by PrP(Sc) and its peptide fragment can be blocked by antagonists of N-methyl-D-aspartate (NMDA) receptor channels, like Memantine. Also Flupirtine, a non-opiod analgesic drug, which is already in clinical use, was found to display in vitro a strong cytoprotective effect on neurons treated with PrP(Sc) or PrP106-126. This drug acts like a NMDA receptor antagonists, but does not bind to the receptor. Clinical trials on prion diseases with Flupirtine are in progress. Flupirtine was found to enhance the intracellular levels of the antiapoptotic protein Bcl-2 and the antioxidative agent glutathione (GSH). Due to its favourable pharmacokinetic profile, Flupirtine is considered to be a promising drug to prevent neuronal death in Creutzfeldt-Jakob disease (CJD) and other neurodegenerative disorders occurring with age, e.g. Alzheimer's disease.  相似文献   

16.
Our previous studies have shown that the persistent expression of Borna disease virus phosphoprotein (BDV P) in mice leads to behavioral abnormalities resembling those in BDV-infected animals. In this study, we investigated whether the neurobehavioral abnormalities genetically induced by BDV P influence experimental prion disease. The effect of the phosphoprotein on prion diseases was evaluated based on the incubation time and survival curve, as well as the abnormal isoform of prion protein (PrP(Sc)) levels in brains of BDV P Tg mice treated with proteinase K (PK) treatment and subjected to western blotting. Increased expression of the BDV P transgene had no effect on the PrP(Sc) level, incubation time, or survival curve. The abnormalities induced by BDV P are different from those induced by prion diseases, indicating that the signaling cascades induced by the phosphoprotein differ from those induced by prion diseases.  相似文献   

17.
The cellular isoform of the prion protein (PrPc) is a glycosylphosphatidylinositol-anchored glycoprotein, normally expressed in neural and non-neural tissues, including skeletal muscle. In transmissible spongiform encephalopathies, or prion diseases, PrPc, which is soluble in nondenaturing detergent and sensitive to proteinase K (PK)-treatment, represents the molecular substrate for the production of a detergent-insoluble and PK-resistant isoform, termed PrP(Sc). In human prion diseases, PrP(Sc) accumulation occurs only in brain tissues, with the exception of new variant Creutzfeldt-Jakob disease, where PrP(Sc) is also detected in lymphoid tissues. Increased amounts of prion protein expression and deposition have been described in pathological muscle fibers of two human muscle disorders, called sporadic inclusion-body myositis (s-IBM) and hereditary inclusion-body myopathy, but it is unknown whether accumulated prion protein reflects normal PrPc or PrP(Sc). We investigated the biochemical characteristics of prion protein in normal human muscle, s-IBM, other inflammatory myopathies and denervation atrophy. We report that 1) both the glycoform profile and size of the normal muscle PrPc are different from those of human brain PrPc; 2) in addition to s-IBM, increased PrPc expression is seen in polymyositis, dermatomyositis and neurogenic muscle atrophy, but PrPc glycoforms are unchanged; 3) only the normal PrPc isoform, and not PrP(Sc), is detected in s-IBM. The present results exclude that s-IBM is a prion disease.  相似文献   

18.
Anti-prion antibodies for prophylaxis following prion exposure in mice   总被引:3,自引:0,他引:3  
Prion disease is characterized by a conformational change of the normal form of the prion protein (PrP(C)) to the scrapie-associated form (PrP(Sc)). Since the emergence of new variant Creutzfeldt-Jakob disease a potentially large human population is at risk for developing prion disease. Currently, no effective treatment or form of post-exposure prophylaxis is available for prion disease. We recently showed that active immunization with recombinant PrP prolongs the incubation period of scrapie. Here we show that anti-PrP antibodies following prion exposure are effective at increasing the incubation period of the infection. Stimulation of the immune system is an important therapeutic target for the prion diseases, as well as for other neurodegenerative illnesses characterized by abnormal protein conformation.  相似文献   

19.
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, belong to a group of neurodegenerative disorders affecting humans and animals. To date, definite diagnosis of prion disease can only be made by analysis of tissue samples for the presence of protease-resistant misfolded prion protein (PrP(Sc)). Monoclonal antibodies (MAbs) to the prion protein provide valuable tools for TSE diagnosis, as well as for basic research on these diseases. In this communication, the development of antibodies against recombinant bovine prion protein (brecPrP) in four strains of mice (BALB/c, ND4, SJL, and NZB/NZW F(1)) is described. Immunization of autoimmunity-prone NZB/NZW F(1) and SJL mice with brecPrP was applied to overcome self-tolerance against the prion protein. ND4 and SJL mice did not develop an immune response to brecPrP. BALB/c mice produced antibody titers of 1:1,000 to 1:1,500 in an enzyme-linked immunosorbent assay (ELISA), while NZB/NZW F(1) mice responded with titers of 1:7,000 to 1:11,000. A panel of 71 anti-brecPrP MAbs recognizing continuous and discontinuous epitopes was established from BALB/c and NZB/NZW F(1) mice. Seven anti-brecPrP MAbs reacted with both the cellular form of PrP and protease K-resistant PrP(Sc) from sheep brain in Western blot assays. The epitope specificity of these MAbs was determined, and applicability to immunohistochemical detection of prions was studied. The MAbs generated will be useful tools in the development of TSE immunochemical diagnosis and for research. This is the first report of the development of anti-PrP MAbs by use of autoimmune NZB/NZW F(1) mice as an alternative approach for the generation of PrP-specific MAbs.  相似文献   

20.
Two cases of unusual transmissible spongiform encephalopathy (TSE) were diagnosed on the same farm in ARQ/ARQ PrP sheep showing attributes of both bovine spongiform encephalopathy (BSE) and scrapie. These cases, UK-1 and UK-2, were investigated further by transmissions to wild-type and ovine transgenic mice. Lesion profiles (LP) on primary isolation and subpassage, incubation period (IP) of disease, PrP(Sc) immunohistochemical (IHC) deposition pattern and Western blot profiles were used to characterize the prions causing disease in these sheep. Results showed that both cases were compatible with scrapie. The presence of BSE was contraindicated by the following: LP on primary isolation in RIII and/or MR (modified RIII) mice; IP and LP after serial passage in wild-type mice; PrP(Sc) deposition pattern in wild-type mice; and IP and Western blot data in transgenic mice. Furthermore, immunohistochemistry (IHC) revealed that each case generated two distinct PrP(Sc) deposition patterns in both wild-type and transgenic mice, suggesting that two scrapie strains coexisted in the ovine hosts. Critically, these data confirmed the original differential IHC categorization that these UK-1 and UK-2 cases were not compatible with BSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号