首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spatiotemporal control of leukocyte dynamics within tissues is critical for successful innate and adaptive immune responses. Homeostatic trafficking and coordinated infiltration into and within sites of inflammation and infection rely on signaling in response to extracellular cues that in turn controls a variety of intracellular protein networks regulating leukocyte motility, migration, chemotaxis, positioning, and cell–cell interaction. In contrast to mesenchymal cells, leukocytes migrate in an amoeboid fashion by rapid cycles of actin polymerization and actomyosin contraction, and their migration in tissues is generally referred to as low adhesive and nonproteolytic. The interplay of actin network expansion, contraction, and adhesion shapes the exact mode of amoeboid migration, and in this review, we explore how leukocyte subsets potentially harness the same basic biomechanical mechanisms in a cell-type-specific manner. Most of our detailed understanding of these processes derives from in vitro migration studies in three-dimensional gels and confined spaces that mimic geometrical aspects of physiological tissues. We summarize these in vitro results and then critically compare them to data from intravital imaging of leukocyte interstitial migration in mouse tissues. We outline the technical challenges of obtaining conclusive mechanistic results from intravital studies, discuss leukocyte migration strategies in vivo, and present examples of mode switching during physiological interstitial migration. These findings are also placed in the context of leukocyte migration defects in primary immunodeficiencies. This overview of both in vitro and in vivo studies highlights recent progress in understanding the molecular and biophysical mechanisms that shape robust leukocyte migration responses in physiologically complex and heterogeneous environments.  相似文献   

2.
Cell movement within three-dimensional tissues is a cycling multistep process that requires the integration of complex biochemical and biophysical cell functions. Different cells solve this challenge differently, which leads to differences in migration strategies. Migration principles established for leukocytes share many characteristics with those described for ameba of the lower eukaryote Dictyostelium discoideum. The hallmarks of amoeboid movement include a simple polarized shape, dynamic pseudopod protrusion and retraction, flexible oscillatory shape changes, and rapid low-affinity crawling. Amoeboid crawling includes haptokinetic adhesion-dependent as well as biophysical migration mechanisms on or within many structurally and functionally different substrates. We describe central aspects of amoeboid movement in leukocytes and the implications for leukocyte crawling and positioning strategies within interstitial tissues.  相似文献   

3.
The burgeoning field of leukocyte trafficking has created new and exciting opportunities in the clinic. Trafficking signals are being defined that finely control the movement of distinct subsets of immune cells into and out of specific tissues. Because the accumulation of leukocytes in tissues contributes to a wide variety of diseases, these 'molecular codes' have provided new targets for inhibiting tissue-specific inflammation, which have been confirmed in the clinic. However, immune cell migration is also critically important for the delivery of protective immune responses to tissues. Thus, the challenge for the future will be to identify the trafficking molecules that will most specifically inhibit the key subsets of cells that drive disease processes without affecting the migration and function of leukocytes required for protective immunity.  相似文献   

4.
L. Castan  A. Magnan  G. Bouchaud 《Allergy》2017,72(5):682-690
Under homeostatic conditions, as well as in various diseases, leukocyte migration is a crucial issue for the immune system that is mainly organized through the activation of bone marrow‐derived cells in various tissues. Immune cell trafficking is orchestrated by a family of small proteins called chemokines. Leukocytes express cell‐surface receptors that bind to chemokines and trigger transendothelial migration. Most allergic diseases, such as asthma, rhinitis, food allergies, and atopic dermatitis, are generally classified by the tissue rather than the type of inflammation, making the chemokine/chemokine receptor system a key point of the immune response. Moreover, because small antagonists can easily block such receptors, various molecules have been developed to suppress the recruitment of immune cells during allergic reactions, representing potential new drugs for allergies. We review the chemokines and chemokine receptors that are important in asthma, food allergies, and atopic dermatitis and their respectively developed antagonists.  相似文献   

5.
Chemokines: immunology's high impact factors   总被引:1,自引:0,他引:1  
Chemokines facilitate leukocyte migration and positioning as well as other processes such as angiogenesis and leukocyte degranulation. The burgeoning knowledge on chemokines and their receptors has influenced many aspects of immunology, in part because cell migration is intimately related to leukocyte function. This overview assesses the impact that chemokines have had on our understanding of immunology and infectious diseases. These include the role of chemokines in leukocyte-endothelial cell interactions; dendritic cell function; T cell differentiation and function; inflammatory diseases; mucosal and subcutaneous immunity; and subversion of immune responses by viruses, including HIV-1. This knowledge heralds new opportunities for the manipulation of immune responses and the development of new anti-inflammatory therapies. It has also provided a new perspective on the functioning of the immune system.  相似文献   

6.
Leukocyte entry from the blood into inflamed tissues, exit into the lymphatics, and migration to regional lymph nodes are all crucial processes for mounting an effective adaptive immune response. Leukocytes must cross two endothelial cell layers, the vascular and the lymphatic endothelial cell layers, during the journey from the blood to the lymph node. The proteins and cellular interactions which regulate leukocyte migration across the vascular endothelium are well studied; however, little is known about the factors that regulate leukocyte migration across the lymphatic endothelium. Here, we will summarize evidence for a role for galectins, a family of carbohydrate-binding proteins, in regulating leukocyte migration across the vascular endothelium and propose that galectins are also involved in leukocyte migration across the lymphatic endothelium.  相似文献   

7.
Macrophage tissue infiltration is a hallmark of several pathological situations including cancer, neurodegenerative disorders and chronic inflammation. Hence, deciphering the mechanisms of macrophage migration across a variety of tissues holds great potential for novel anti-inflammatory therapies. Leukocytes have long been thought to migrate through tissues by using the amoeboid (protease-independent) migration mode; however, recent evidence indicates that macrophages can use either the amoeboid or the mesenchymal (protease-dependent) migration mode depending on the environmental constraints. Proteolytic activity is required for several key processes including cell migration. Paradoxically, the role of proteases in macrophage migration has been poorly studied. Here, by focusing on the best characterized extracellular protease families - MMPs, cathepsins and urokinase-type plasminogen activator - we give an overview of their probable involvement in macrophage migration. These proteases appear to play a role in all of the situations encountered by migrating macrophages, i.e. diapedesis, 2D and 3D migration. Migration of macrophages across tissues seems to proceed through an integrative analysis of numerous environmental clues allowing the cells to adapt their migration mode (amoeboid/mesenchymal) and secrete dedicated proteases to ensure efficient tissue infiltration, as discussed in this review. The role of proteases in macrophage migration is an emerging field of research, which deserves further work to allow a more precise understanding.  相似文献   

8.
The leukocyte integrin LFA-1 plays an important role in leukocyte trafficking and the immune response. Using LFA-1-deficient mice, we demonstrate that LFA-1 regulates the trafficking of lymphocytes to peripheral lymph nodes, and, to a lesser degree, to mesenteric lymphnodes and acute inflammatory sites. LFA-1, either because of its role in initial adhesion and/or the passage of leukocytes across endothelial cells, plays a vital role in T lymphocyte and neutrophil transendothelial migration. Neutrophils and activated T lymphocytes from LFA-1-deficient mice were unable to cross endothelial cell monolayers in response to a chemokine gradient, whereas wild-type (WT) T lymphocytes and neutrophils were capable of migration. By contrast, LFA-1-deficient T lymphocytes displayed normal chemotaxis to the same chemokine. Our studies with LFA-1-deficient monocytes indicate that LFA-1 acts in concert with complement receptor 3 to mediate transendothelial migration of these cells, as anti-CD18 monoclonal antibodies (mAb) blocked both WT and LFA-1-deficient monocyte transendothelial migration, whereas anti-CD11b mAb preferentially blocked transendothelial migration of LFA-1-deficient monocytes. Finally, whereas anti-CD31 mAb blocked WT monocyte and neutrophil transendothelial cell migration they did not block LFA-1-deficient monocyte and neutrophil transendothelial migration.  相似文献   

9.
In contrast to leukocyte migration through blood vessels, trafficking via lymphatic vessels (LVs) is much less well characterized. An important cell type migrating via this route is antigen-presenting dendritic cells (DCs), which are key for the induction of protective immunity as well as for the maintenance of immunological tolerance. In this review, we will summarize and discuss current knowledge of the cellular and molecular events that control DC migration from the skin towards, into, and within LVs, followed by DC arrival and migration in draining lymph nodes. Finally, we will discuss potential strategies to therapeutically target this migratory step to modulate immune responses.  相似文献   

10.
Leukocyte trafficking from the blood into the tissues represents a key process during inflammation and requires multiple steps mediated by adhesion molecules and chemoattractants. Inflammation has a detrimental role in several diseases, and in such cases, the molecular mechanisms controlling leukocyte migration are potential therapeutic targets. Over the past 20 years, leukocyte migration in the CNS has been investigated almost exclusively in the context of stroke and MS. Experimental models of ischemic stroke have led to the characterization of adhesion molecules controlling leukocyte migration during acute inflammation, whereas EAE, the animal model of MS, has provided similar data for chronic inflammation. Such experiments have led to clinical trials of antileukocyte adhesion therapy, with consistently positive outcomes in human subjects with MS, showing that interference with leukocyte adhesion can ameliorate chronic inflammatory CNS diseases. This review summarizes our current understanding of the roles of adhesion molecules controlling leukocyte-endothelial interactions in stroke and MS, focusing on recently discovered, novel migration mechanisms. We also discuss the growing evidence suggesting a role for vascular inflammation and leukocyte trafficking in neurodegenerative diseases such as AD. Moreover, we highlight recent findings suggesting a role for leukocyte-endothelial interactions in the pathogenesis of seizures and epilepsy, thus linking endothelial activation and leukocyte trafficking to neuronal electrical hyperactivity. These emerging roles for leukocytes and leukocyte adhesion mechanisms in CNS diseases provide insight into the mechanisms of brain damage and may contribute to the development of novel therapeutic strategies.  相似文献   

11.
In vivo imaging of leukocyte trafficking in blood vessels and tissues   总被引:8,自引:0,他引:8  
Selective recruitment of blood-borne leukocytes to tissues and their proper positioning within them is crucial for the many integrated functions of the immune system. Intravital microscopy (IVM) techniques have been employed for more than a century to study these events at the single-cell level in living animals. Conventional video-based IVM allows the visualization of extremely rapid adhesion events at the interface between blood and tissue. Multiphoton IVM is a relatively new tool for imaging the slower dynamics of cell migration and cell-cell interactions in the extravascular space in three dimensions. Fueled by the burgeoning development of sophisticated fluorescent markers and increasingly powerful imaging tools, we are currently witnessing the emergence of a new field in immuno-imaging, in which leukocyte function and cell-cell communication is explored in a truly physiological context.  相似文献   

12.
Macrophages are professional migrating cells found in all body tissues from the early embryonic stages till the end of the adult life. Tissue macrophages do not only play beneficial roles. In several diseases, macrophages recruited from blood monocytes have a deleterious action such as favoring cancer progression and destroying tissues in chronic inflammation. To migrate in 3D environments, all leukocytes use the amoeboid movement while macrophages use the amoeboid and the mesenchymal migration modes. Mesenchymal migration takes place in dense matrices and involves podosomes and proteolysis of the extracellular matrix to create paths. Podosome disruption has been correlated with reduced mesenchymal migration of macrophages and unaffected amoeboid migration. Therefore, podosomes are proposed as a therapeutic target. Inhibiting podosome regulators that are only expressed in macrophages and few cell types would avoid collateral effects often encountered when ubiquitous proteins are used as drug targets. With the current status of our knowledge on human macrophage podosomes and 3D migration, the tyrosine kinase Hck appears to be a good candidate.  相似文献   

13.
A broad range of immunological processes oscillates over the course of a day. Recent findings have identified a molecular basis for the circadian clock in the regulation of the immune system. These rhythms manifest themselves in oscillatory behavior of immune cells and proinflammatory mediators, which causes a time-dependent sensitivity in the reaction to pathogens. This rhythmicity impacts disease manifestations and severity and provides an option for therapy that incorporates chronopharmacological considerations. This review will focus on the current knowledge and relevance of rhythmic immune cell trafficking. It will provide an overview of the molecular clock machinery and its interrelations with leukocyte migration and the immune response.  相似文献   

14.
Chemokines and their receptors are essential elements in leukocyte trafficking during health and disease. There are three (or more) distinct routes of leukocyte entry into the central nervous system (CNS), and molecular mechanisms of physiological and neuroinflammatory leukocyte recruitment to the CNS are slowly coming into view. Migration of immune cells into cerebrospinal fluid supports CNS immunosurveillance. Current knowledge of the trafficking determinants that direct the leukocyte recruitment in CNS pathology relies in large part on studies of multiple sclerosis and its models including experimental autoimmune encephalomyelitis. Overlapping molecular signals are responsible for the migration of specific cells into the CNS during pathological inflammation and host defense, raising challenges and opportunities for therapeutic manipulation.  相似文献   

15.
Dendritic cells (DCs) are the key link between innate immunity and adaptive immunity and play crucial roles in both the promotion of immune defense and the maintenance of immune tolerance. The trafficking of distinct DC subsets across lymphoid and nonlymphoid tissues is essential for DC-dependent activation and regulation of inflammation and immunity. DC chemotaxis and migration are triggered by interactions between chemokines and their receptors and regulated by multiple intracellular mechanisms, such as protein modification, epigenetic reprogramming, metabolic remodeling, and cytoskeletal rearrangement, in a tissue-specific manner. Dysregulation of DC migration may lead to abnormal positioning or activation of DCs, resulting in an imbalance of immune responses and even immune pathologies, including autoimmune responses, infectious diseases, allergic diseases and tumors. New strategies targeting the migration of distinct DC subsets are being explored for the treatment of inflammatory and infectious diseases and the development of novel DC-based vaccines. In this review, we will discuss the migratory routes and immunological consequences of distinct DC subsets, the molecular basis and regulatory mechanisms of migratory signaling in DCs, and the association of DC migration with the pathogenesis of autoimmune and infectious diseases.  相似文献   

16.
Chemoattractants are pivotal mediators of host defense, orchestrating the recruitment of immune cells into sites of infection and inflammation. Chemoattractants display vast chemical diversity and include bioactive lipids, proteolytic fragments of serum proteins, and chemokines (chemotactic cytokines). All chemoattractants induce chemotaxis by activating seven-transmembrane-spanning GPCRs expressed on immune cells, establishing the concept that all chemoattractants are related in function. However, although chemoattractants have overlapping functions in vitro, recent in vivo data have revealed that they function, in many cases, nonredundantly in vivo. The chemically diverse nature of chemoattractants contributes to the fine control of leukocyte trafficking in vivo, with sequential chemoattractant use guiding immune cell recruitment into inflammatory sites. Lipid mediators frequently function as initiators of leukocyte recruitment, attracting the first immune cells into tissues. These initial responding immune cells produce cytokines locally, which in turn, induce the local release of chemokines. Local chemokine production then markedly amplifies subsequent waves of leukocyte recruitment. These new discoveries establish a paradigm for leukocyte recruitment in inflammation--described as lipid-cytokine-chemokine cascades--as a driving force in the effector phase of immune responses.  相似文献   

17.
Chemokines direct leukocyte trafficking and positioning within tissues. They thus play critical roles in regulating immune responses and inflammation. The chemokine system is complex involving interactions between multiple chemokines and their receptors that operate in combinatorial cascades with adhesion molecules. The involvement of multiple chemokines and chemokine receptors in these processes brings flexibility and specificity to recruitment. The hepatic vascular bed is a unique low flow environment through which leukocyte are recruited to the liver during homeostatic immune surveillance and in response to infection or injury. The rate of leukocyte recruitment and the nature of cells recruited through the sinusoids in response to inflammatory signals will shape the severity of disease. At one end of the spectrum fulminant liver failure results from a rapid recruitment of leukocytes that leads to hepatocyte destruction and liver failure at the other diseases such as chronic hepatitis C infection may progress over many years from hepatitis to fibrosis and cirrhosis. Chronic hepatitis is charactezised by a T lymphocyte rich infiltrate and the nature and outcome of hepatitis will depend on the T cell subsets recruited, their activation and function within the liver. Different subsets of effector T cells have been described based on their secretion of cytokines and specific functions. These include Th1 and Th2 cells and more recently Th17 and Th9 cells which are associated with different types of immune response and which express distinct patterns of chemokine receptors that promote their recruitment under particular conditions. The effector function of these cells is balanced by the recruitment of regulatory T cells that are able to suppress antigen-specific effectors to allow resolution of immune responses and restoration of immune homeostasis. Understanding the signals that are responsible for recruiting different lymphocyte subsets to the liver will elucidate disease pathogenesis and open up new therapeutic approaches to modulate recruitment in favour of resolution rather than injury.  相似文献   

18.
Chemokine receptors and transplantation   总被引:1,自引:0,他引:1  
A complex process including both the innate and acquired immune responses results in allograft rejection.Somechemokine receptors and their ligands play essential roles not only for leukocyte migration into the graft but alsoin facilitating dendritic and T cell trafficking between lymph nodes and the transplant in the early and late stage ofthe aliogeneic response.This review focuses on the impact of these chemoattractant proteins on transplant outcomeand novel diagnostic and therapeutic approaches for antirejection therapy based on targeting of chemokinereceptors and/or their ligands.Cellular & Molecular Immunology.2005;2(5):343-349.  相似文献   

19.
Dynamic regulation of integrin-mediated adhesion is central to lymphocyte trafficking and antigen recognition. The small GTPase Rap1 is a potent stimulator of leukocyte integrins through modulation of affinity and avidity. In addition, lymphocyte Rap1 has unique abilities to trigger cell polarization and enhance cell motility. These characteristics of Rap1 contribute to adhesive interactions with antigen-presenting cells (APC) and the vascular endothelium. In the process of elucidating the molecular mechanisms of Rap1-mediated integrin activation, we have identified a novel Rap1-binding molecule, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL). RAPL is predominantly expressed in immune cells, and mediates Rap1-triggered integrin activation upon TCR engagement and chemokine stimulation. Importantly, Rap1/RAPL signaling cooperatively regulates cell polarization and integrin activation. The linkage between cell polarization and integrin activation through Rap1/RAPL signaling likely provides immune cells with their dynamic trafficking capability.  相似文献   

20.
Chemokines are a superfamily of small proteins that bind to G protein-coupled receptors on target cells and were originally discovered as mediators of directional migration of immune cells to sites of inflammation and injury. In recent years, it has become clear that the function of chemokines extends well beyond the role in leukocyte chemotaxis. They participate in organ development, angiogenesis/angiostasis, leukocyte trafficking and homing, tumorigenesis and metastasis, as well as in immune responses to microbial infection. Therefore, chemokines and their receptors are important targets for modulation of host responses in pathophysiological conditions and for therapeutic intervention of human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号