首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coordination of gastrointestinal function relies on joint efforts of enteric neurons and glia, whose crosstalk is vital for the integration of their activity. To investigate the signaling mechanisms and to delineate the spatial aspects of enteric neuron-to-glia communication within enteric ganglia we developed a method to stimulate single enteric neurons while monitoring the activity of neighboring enteric glial cells. We combined cytosolic calcium uncaging of individual enteric neurons with calcium imaging of enteric glial cells expressing a genetically encoded calcium indicator and demonstrate that enteric neurons signal to enteric glial cells through pannexins using paracrine purinergic pathways. Sparse labeling of enteric neurons and high-resolution analysis of the structural relation between neuronal cell bodies, varicose release sites and enteric glia uncovered that this form of neuron-to-glia communication is contained between the cell body of an enteric neuron and its surrounding enteric glial cells. Our results reveal the spatial and functional foundation of neuro-glia units as an operational cellular assembly in the enteric nervous system.  相似文献   

2.
3.
Background The enteric nervous system (ENS) contains chemically coded populations of neurons that serve specific functions for the control of the gastrointestinal tract. The ability of neurons to modify their chemical code in response to luminal changes has recently been discovered. It is possible that enteric neuronal plasticity may sustain the adaptability of the gut to changes in intestinal activity or injury, and that gut neurons may respond to an altered intestinal environment by changing their neuropeptide expression. Methods We used immunohistochemical methods to investigate the presence and localization of several neuronal populations and enteric glia in both the small (ileum) and large (cecum) intestine of piglets. We assessed their abundance in submucosal and myenteric plexus from animals treated with the probiotic Pediococcus acidilactici compared with untreated controls. Key Results The treated piglets had a larger number of galanin‐ and calcitonin gene‐related peptide (CGRP)‐immunoreactive neurons than controls, but this was limited to the submucosal plexus ganglia of the ileum. Moreover, immunohistochemistry revealed that glial fibrillary acidic protein‐positive enteric glial cells were significantly higher in the inner and outer submucosal plexuses of treated animals. Conclusions & Inferences The neuronal and glial changes described here illustrate plasticity of the ENS in response to an altered luminal environment in the gastrointestinal tract.  相似文献   

4.
Background The intimate association between glial cells and neurons within the enteric nervous system has confounded careful examination of the direct responsiveness of enteric glia to different neuroligands. Therefore, we aimed to investigate whether neurotransmitters known to elicit fast excitatory potentials in enteric nerves also activate enteric glia directly. Methods We studied the effect of acetylcholine (ACh), serotonin (5‐HT), and adenosine triphosphate (ATP) on intracellular Ca2+ signaling using aequorin‐expressing and Fluo‐4 AM‐loaded CRL‐2690 rat and human enteric glial cell cultures devoid of neurons. The influence of these neurotransmitters on the proliferation of glia was measured and their effect on the expression of c‐Fos as well as glial fibrillary acidic protein (GFAP), Sox10, and S100 was examined by immunohistochemistry and quantitative RT‐PCR. Key Results Apart from ATP, also ACh and 5‐HT induced a dose‐dependent increase in intracellular Ca2+ concentration in CRL‐2690 cells. Similarly, these neurotransmitters also evoked Ca2+ transients in human primary enteric glial cells obtained from mucosal biopsies. In contrast with ATP, stimulation with ACh and 5‐HT induced early gene expression in CRL‐2690 cells. The proliferation of enteric glia and their expression of GFAP, Sox10, and S100 were not affected following stimulation with these neurotransmitters. Conclusions & Inferences We provide evidence that enteric glial cells respond to fast excitatory neurotransmitters by changes in intracellular Ca2+. On the basis of our experimental in vitro setting, we show that enteric glia are not only directly responsive to purinergic but also to serotonergic and cholinergic signaling mechanisms.  相似文献   

5.
We examined by immunohistochemistry the expression of glial fibrillary acidic protein (GFAP) in enteric ganglia of the chick embryo, using a polyclonal antibody. The morphology of enteric ganglion cells was examined by electron microscopy. Faint GFAP immunoreactivity was detected in ganglion cells and cell processes from around day 7 in ovo. Later in development the intensity of the immunofluorescence increased and it became more evident that immunoreactive small ganglion cells (interpreted as primitive glial cells), and their processes, surrounded larger negative cell profiles (interpreted as primitive neuronal cells); GFAP immunofluorescence was also evident in intramuscular and mucosal nerve trunks. In colocalization experiments, GFAP immunoreactivity was detected in a proportion of HNK-1/N-CAM immunoreactive ganglion cells, in both the myenteric and submucosal plexus. In addition, we observed GFAP immunoreactive nerves in wholemount preparations of chick gut from as early as day 4.5 in ovo. In the ganglionated nerve of Remak, GFAP immunoreactive satellite and Schwann cells were in evidence from day 5 of incubation. Neuronal markers, such as neurofilament, have been detected very early in development in neural crest cell populations in chick enteric ganglia. In contrast, the expression of markers of the glial phenotype has previously been observed only in the late stages of embryonic development. From our experiments, we conclude that neuronal and glial phenotypes are immunohistochemically distinct from as early as day 4.5 of incubation, even if by ultrastructural criteria glial cells are clearly distinguishable from neurons only after day 16 in ovo.  相似文献   

6.
Abstract Myenteric ganglia dissociated from the small intestine of adult guinea-pigs survived in long-term culture (1–2 months) and progressed to structural organization resembling the myenteric plexus in situ. Developmental changes were similar to cultures derived from neonatal intestine. After one week, the neurons gathered into clusters on a glial cell carpet. Processes from the neurons branched and ramified over the glial substrate. As the cultures matured, the processes joined into tracts and the neurons and glia formed compact aggregates reminiscent of ganglia interconnected by fibre bundles. Injection of dye revealed characteristic Dogiel I and II neuronal morphology. Electrical recording identified electrical and synaptic behaviour comparable to intact myenteric plexus, longitudinal muscle preparations, except slow synaptic excitation was absent. Pharmacological responses to forskolin and 5-hydroxytryptamine were essentially the same as in freshly dissected preparations. Lucifer yellow injected into single glial cells spread to a broad population indicative of the dye coupling found among glia in the myenteric plexus in situ. The results suggest that adult myenteric ganglia in culture are a useful model for investigation of aspects of enteric neurobiology including: (a) formation of connections in microcircuits; (b) cellular neurophysiology of enteric neurons; (c) neuropharmacology; and (4) cell biology of neuronal-glial interactions in the myenteric plexus.  相似文献   

7.
The terminal portion of the ls/ls mouse is congenitally aganglionic because the precursors of enteric neurons fail to enter this region. This animal was studied in order to gain insight into the origin of enteric glia and into the process by which the precursors of these cells colonize the gut. In control (CD-1) mice, immunoreactivity of the glial marker, glial fibrillary acidic protein, appeared for the first time in the fetal bowel at day E16 and, in adults, was much more intense within intraenteric neural elements than in nerves outside the bowel. Glial fibrillary acidic protein developed in tissue cultures of fetal intestine explanted before the protein appeared in situ, and before the bowel became innervated by extrinsic nerves; thus, the precursors of cells able to elaborate glial fibrillary acidic protein must have been present, but unrecognizable, in the original explants. This explant assay demonstrated that these glial precursors were present in all regions of the bowel of control mice, but not in the presumptive aganglionic bowel of ls/ls mice. The nerves (of extrinsic origin) in the aganglionic tissue of ls/ls mice showed a high level of immunoreactive glial fibrillary acidic protein; nevertheless, their ultrastructure was typical of peripheral nerve, not enteric plexus, and they contained Schwann cells, not enteric glia. These observations support the view that enteric glia are derived from the single wave of neural crest colonists that populates the enteric nervous system before the gut receives its extrinsic innervation. These glial precursors, like neuronal precursors, tend to be excluded from the presumptive aganglionic ls/ls bowel. In contrast, Schwann cells grow into the abnormal ls/ls gut with the extrinsic innervation. The enteric microenvironment appears to promote the expression of glial fibrillary acidic protein in both enteric glia and Schwann cells; however, even within the bowel, Schwann cells retain their characteristic morphology. It is thus probable that the normal enteric nervous system contains supporting cells of separate lineages, enteric glia and Schwann cells.  相似文献   

8.
Vassilis Pachnis 《Glia》2015,63(2):229-241
Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca2+ imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co‐express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease. GLIA 2015;63:229–241  相似文献   

9.
Peroxisome proliferator-activated receptor γ (PPARγ) is expressed in neurons and glia, and its synthetic agonist, rosiglitazone (RSG), regulates inflammatory process and has neuroprotective effects against neurological disorders. In the present study, we examined the role of PPARγ in the hippocampal CA1 region (CA1) after transient cerebral ischemia and the neuroprotective effects of RSG on ischemic damage. RSG attenuated neuronal damage in the ischemic CA1, not showing perfect neuroprotection: the RSG appeared to delay neuronal death after ischemia/reperfusion (I/R). PPARγ immunoreactivity and protein levels were increased after I/R, and most of PPARγ-immunoreactive cells colocalized with microglia, not astrocytes. In addition, RSG attenuated glial activation and increased IL-4 and IL-13 levels in the ischemic CA1. These results indicate that PPARγ increases and expresses in microglia after I/R, and that RSG delays neuronal damage by interfering with glial activations and increases anti-inflammatory cytokines in response to ischemic damage.  相似文献   

10.
Enteric glial cells were first described at the end of the 19th century, but they attracted more interest from researchers only in the last decades of the 20th. Although, they have a different embryological origin, the enteric GLIA share many characteristics with astrocytes, the main glial cell type of the central nervous system (CNS), such as in their expression of the same markers and in their functions. Here we review the construction of the enteric nervous system (ENS), with a focus on enteric glia, and also the main studies that have revealed the action of enteric glia in different aspects of gastrointestinal tract homeostasis, such as in the intestinal barrier, in communications with neurons, and in their action as progenitor cells. We also discuss recent discoveries about the roles of enteric glia in different disorders that affect the ENS, such as degenerative pathologies including Parkinson's and prion diseases, and in cases of intestinal diseases and injury. GLIA 2015;63:921–935  相似文献   

11.
Niemann‐Pick C (NPC) disease is an autosomal recessive, lethal, neurodegenerative disorder caused by mutations in NPC1. By using the glial fibrillary acidic protein (GFAP) promoter, we demonstrated previously that astrocyte‐specific expression of Npc1 decreased neuronal storage of cholesterol in Npc1?/? mice; reduced numbers of axonal spheroids; and produced less degeneration of neurons, reactive astrocytes, and loss of myelin tracts in the central nervous system. GFAP‐Npc1, Npc1?/? mice exhibited markedly enhanced survival, and death was not associated with the severe terminal weight loss observed in Npc1?/? mice. Intestinal transit is delayed in Npc1?/? mice but is normal in GFAP‐NPC1, Npc1?/? until late in the course of their disease. Because glia play an important role in the enteric nervous system, we studied morphology and cholesterol content of intestines from Npc1?/? mice and examined the effect of GFAP‐promoted restoration of Npc1 in enteric glia. Although the number of neurons was not altered, the total amount of cholesterol stored in the small intestine was decreased, as were the number of neurons with inclusions and the number of inclusions per neuron. We conclude that expression of Npc1 by enteric glial cells can ameliorate the enteric neuropathology, and we speculate that dysfunction of the enteric nervous system contributes to the retarded intestinal transit, weight loss, and demise of Npc1?/? mice. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Adrenergic receptors in the enteric nervous system (ENS) are important in control of the gastrointestinal tract. Here we describe the distribution of adrenergic receptors in the ENS of the ileum and colon of the guinea pig, rat, and mouse by using single- and double-labelling immunohistochemistry. In the myenteric plexus (MP) of the rat and mouse, alpha2a-adrenergic receptors (alpha2a-AR) were widely distributed on neurons and enteric glial cells. alpha2a-AR mainly colocalized with calretinin in the MP, whereas submucosal alpha2a-AR neurons colocalized with vasoactive intestinal polypeptide (VIP), neuropeptide Y, and calretinin in both species. In the guinea pig ileum, we observed widespread alpha2a-AR immunoreactivity on nerve fibers in the MP and on VIP neurons in the submucosal plexus (SMP). We observed extensive beta1-adrenergic receptor (beta1-AR) expression on neurons and nerve fibers in both the MP and the SMP of all species. Similarly, the beta2-adrenergic receptor (beta2-AR) was expressed on neurons and nerve fibers in the SMP of all species, as well as in the MP of the mouse. In the MP, beta1- and beta2-AR immunoreactivity was localized to several neuronal populations, including calretinin and nitrergic neurons. In the SMP of the guinea pig, beta1- and beta2-AR mainly colocalized with VIP, whereas, in the rat and mouse, beta1- and beta2-AR were distributed among the VIP and calretinin populations. Adrenergic receptors were widely localized on specific neuronal populations in all species studied. The role of glial alpha2a-AR is unknown. These results suggest that sympathetic innervation of the ENS is directed toward both enteric neurons and enteric glia.  相似文献   

13.
This study was undertaken to examine the morphological features of cells within ganglia of the guinea pig gallbladder, and to examine the ultrastructure of the ganglionated plexus. Gallbladder neurons are large, with a relatively simple form, having only one or two major processes. Neurobiotin often filled axons to their varicose arbors on smooth muscle in close proximity to the interganglionic connectives. With the exception of connective tissue clefts that sometimes penetrated into them, ganglia were devoid of intercellular spaces, capillaries, or connective tissue elements such as collagen and basal laminae. However, ganglia were surrounded by a single, continuous basal lamina that was enclosed within a fibroblast and collagen capsule. Within ganglia, neurons were insulated by the processes of cells that resembled the astrocyte-like glia of enteric ganglia. Although few classical synapses were observed, numerous sites of direct apposition were identified between vesicle-rich profiles and processes of gallbladder neurons. Direct appositions between vesicle-rich profiles and the ganglion-limiting basal laminae were also observed. Vesiculated profiles contained small clear vesicles and large dense-core vesicles. Within interganglionic connectives, axons were unmyelinated and were isolated from one another by processes of glia that resembled Schwann cells. As was seen in the ganglia, direct appositions between vesicle-rich profiles and the connective-limiting basal laminae were observed. The results of this study demonstrate that gallbladder ganglia are similar, ultrastructurally, to enteric ganglia in the CNS-like composition of the neuropil. However, the greater degree of glial investment, lesser degree of innervation, and simpler neurons indicated differences from the enteric nervous system that may be functionally significant.  相似文献   

14.
Background Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis, their presence in mucosa has not been well described. Mucosa‐derived NSCs are accessible endoscopically and could be used autologously. Brain‐derived Nestin‐positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa‐derived NSCs, determine their relationship to Nestin‐expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. Methods Neurospheres were generated from periventricular brain, colonic muscularis (Musc), and mucosa–submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin‐GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut‐derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. Key Results Musc‐ and MSM‐derived neurospheres expressed Nestin and gave rise to cells of neuronal, glial, and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co‐labelled with glial fibrillary acid protein (GFAP), neurosphere‐derived neurons and glia both expressed Nestin in vitro, suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover, following transplantation into aneural colon, brain‐ and gut‐derived NSCs were able to differentiate into neurons. Conclusions & Inferences Nestin‐expressing intestinal NSCs cells give rise to neurospheres, differentiate into neuronal, glial, and mesenchymal lineages in vitro, generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.  相似文献   

15.
Background The pathogenesis of diverticular disease (DD) is attributed to several aetiological factors (e.g. age, diet, connective tissue disorders) but also includes distinct intestinal motor abnormalities. Although the enteric nervous system (ENS) is the key‐regulator of intestinal motility, data on neuropathological alterations are limited. The study aimed to investigate the ENS by a systematic morphometric analysis. Methods Full‐thickness sigmoid specimens obtained from patients with symptomatic DD (n = 27) and controls (n = 27) were processed for conventional histology and immunohistochemistry using anti‐HuC/D as pan‐neuronal marker. Enteric ganglia, nerve and glial cells were quantified separately in the myenteric, external and internal submucosal plexus compartments. Key Results Compared to controls, patients with DD showed significantly (P < 0.05) (i) reduced neuronal density in all enteric nerve plexus, (ii) decrease of ganglionic nerve cell content in the myenteric plexus, (iii) decreased ganglionic density in the internal submucosal plexus, (iv) reduced glial cell density in the myenteric plexus, (v) decrease of ganglionic glial cell content in the myenteric plexus and increase in submucosal plexus compartments, (vi) increased glia index in all enteric nerve plexus. About 44.4% of patients with DD exhibited myenteric ganglia displaying enteric gliosis. Conclusions & Inferences Patients with DD show substantial structural alterations of the ENS mainly characterized by myenteric and submucosal oligo‐neuronal hypoganglionosis which may account for intestinal motor abnormalities reported in DD. The morphometric data give evidence that DD is associated with structural alterations of the ENS which may complement established pathogenetic concepts.  相似文献   

16.
Abstract  A mature enteric nervous system (ENS) is required to ensure a normal pattern of intestinal motility in order to regulate digestion after birth. We hypothesized that neuronal and glial components of the ENS would mature during the first postnatal days in preterm pigs that are a sensitive animal model of food intolerance and necrotizing enterocolitis (NEC). Stereological volume densities of the general neuronal population [assessed by βIII-tubulin immunoreactivity (IR)] and subsets of neuronal (VIP-IR and nitrergic IR) and glial cells (GFAP-IR and S100-IR) were determined in the small intestine of newborn preterm piglets (93% gestation), after 3 days of receiving total parenteral nutrition (TPN) and after 3 days of TPN plus 2 days of enteral feeding with sow's colostrum or milk formula. Following TPN, VIP in the myenteric and inner submucous plexus and GFAP in the inner submucous plexus increased, while the relative volume of the total neuronal population remained constant. Introduction of enteral food induced variable degrees of food intolerance and NEC, especially after formula feeding, a diet that gave rise to a higher myenteric VIP and GFAP content in the inner submucous plexus than colostrum feeding. However, the ENS seemed unaffected by the presence of NEC-like intestinal lesions. Nevertheless, this study shows that the ENS is highly plastic during the first days after premature birth and adapts in an age- and diet-dependent manner. The observed postnatal adaptation in enteric VIP and GFAP may help to maintain intestinal homeostasis during suboptimal feeding regimens in preterm neonates.  相似文献   

17.
18.
Glial fibrillary acidic (GFA) polypeptides are present in major categories of rat peripheral glia including non-myelin-forming Schwann cells, enteric glia and some satellite cells. They can be detected both immunochemically and immunohistochemically. The immunoreactivity is associated with a polypeptide which has an MW of 49 000, indistinguishable from that of glial fibrillary acidic protein (GFAP) from rat brain. In spite of this, the GFA polypeptides found in the peripheral nervous system and central nervous system are not identical since they can be distinguished both immunohistochemically and immunochemically by a monoclonal GFAP antibody which recognizes GFAP in astrocytes and some enteric glia, but not GFAP in non-myelin-forming Schwann cells, satellite cells and many enteric glia. GFA-related molecules can also be detected in human Schwann cells by immunofluorescence. The results suggest, however, that the glial filament polypeptides of peripheral glia and astrocytes are less closely related in the human than in the rat. The glial distribution of GFAP is closely paralleled by 2 cell surface proteins, Ran-2 and A5E3 antigen. Although GFAP, Ran-2 and A5E3 are individually expressed by diverse cell types, the phenotype GFAP+, Ran-2+, A5E3+ defines a narrow group including only non-myelin-forming Schwann cells, enteric glia and astrocytes. These observations suggest that the non-myelin-forming cells of the central and peripheral nervous system may share some common functions.  相似文献   

19.
Nasser Y  Keenan CM  Ma AC  McCafferty DM  Sharkey KA 《Glia》2007,55(8):859-872
The metabotropic glutamate receptor 5 (mGluR5) is expressed by astrocytes and its expression is modulated by inflammation. Enteric glia have many similarities to astrocytes and are the most numerous cell in the enteric nervous system (ENS). We investigated whether enteric glia express a functional mGluR5 and whether expression of this receptor was altered in colitis. In both enteric plexuses of the ileum and colon of guinea pigs and mice, we observed widespread glial mGluR5 expression. Incubation of isolated segments of the guinea pig ileum with the mGluR5 specific agonist RS-2-chloro-5-hydroxyphenylglycine (CHPG) caused a dose-dependent increase in the glial expression of c-Fos and the phosphorylated form of the extracellular signal-regulated kinase 1/2. Preincubation of tissues with the group I metabotropic glutamate receptor antagonist, S-4-carboxyphenylglycine, abolished the effects of CHPG. We examined mGluR5 expression in the guinea pig trinitrobenzene sulfonic acid and the IL-10 gene-deficient (IL-10(-/-)) mouse models of colitis. In guinea pigs, mGluR5 immunoreactivity became diffusely localized over the colonic myenteric ganglia, suggesting a change in receptor distribution. In contrast, glial mGluR5 expression was significantly reduced in the colonic myenteric plexus of IL-10(-/-) mice, as assessed with both real-time quantitative RT-PCR as well as immunohistochemistry and image analysis. These changes occurred without concomitant changes to enteric ganglia or glial fibrillary acidic protein expression in the IL-10(-/-) mouse. Our data suggest that enteric glia are a functional target of the glutamatergic neurotransmitter system in the ENS and that changes in mGluR5 expression may be of physiological significance during colitis.  相似文献   

20.
p.  gomes    j.  chevalier ‡  §    w.  boesmans  l.  roosen  v.  van den abbeel  m.  neunlist ‡  §    j.  tack  † & p.  vanden berghe 《Neurogastroenterology and motility》2009,21(8):870-e62
Abstract  The importance of dynamic interactions between glia and neurons is increasingly recognized, both in the central and enteric nervous system. However, apart from their protective role, little is known about enteric neuro–glia interaction. The aim was to investigate neuro–glia intercellular communication in a mouse culture model using optical techniques. Complete embryonic (E13) guts were enzymatically dissociated, seeded on coverslips and studied with immunohistochemistry and Ca2+-imaging. Putative progenitor-like cells (expressing both PGP9.5 and S-100) differentiated over approximately 5 days into glia or neurons expressing typical cell-specific markers. The glia–neuron ratio could be manipulated by specific supplements (N2, G5). Neurons and glia were functionally identified both by their Ca2+-response to either depolarization (high K+) or lysophosphatidic acid and by the expression of typical markers. Neurons responded to ACh, DMPP, 5-HT, ATP and electrical stimulation, while glia responded to ATP and ADPβs. Inhibition of glial responses by MRS2179 suggests involvement of P2Y1 receptors. Neuronal stimulation also caused delayed glial responses, which were reduced by suramin and by exogenous apyrases that catalyse nucleotide breakdown. Conversely, glial responses were enhanced by ARL-67156, an ecto-ATPase inhibitor. In this mouse enteric co-culture, functional glia and neurons can be easily monitored using optical techniques. Glial cells can be activated directly by ATP or ADPβs. Activation of neuronal cells (DMPP, K+) causes secondary responses in glial cells, which can be modulated by tuning ATP and ADP breakdown. This strongly supports the involvement of paracrine purinergic communication between enteric neurons and glia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号