首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chronic medial temporal lobe epilepsy (MTLE) is associated with memory loss due to damage in the hippocampal system. To investigate the relationship between volume of medial temporal lobe structures and performance on neuropsychological tests, we studied 39 consecutive patients with MTLE and unilateral hippocampal atrophy (HA) determined by volumetric magnetic resonance imaging (MRI). Structures of interest comprised hippocampus, amygdala, and entorhinal, perirhinal, parahippocampal, and temporopolar cortices. The findings indicated that (1) performance was significantly worse in the group with left HA as compared with the group with right HA on general memory, verbal memory, delayed recall, and verbal fluency tests and the Boston Naming Test (BNT), and (2) the volume of the left hippocampus and also the degree of asymmetry of perirhinal cortex volume were significant and independent predictors of performance on general memory, verbal memory, and verbal fluency tests and the BNT in patients with MTLE.  相似文献   

2.
Memory impairment observed in patients with medial temporal lobe epilepsy (MTLE) is classically attributed to hippocampal atrophy. The contribution of extrahippocampal structures in shaping memory impairment in patients with MTLE is not yet completely understood, even though atrophy in MTLE extends beyond the hippocampus. We aimed to evaluate the neuropsychological profile of patients with MTLE focusing on memory, and to investigate whether gray matter concentration (GMC) distribution within and outside the medial portion of the temporal lobes would be associated with their neuropsychological performance. We performed a voxel based morphometry study of 36 consecutive patients with MTLE and unilateral hippocampal atrophy. We observed a significant simple regression between general and verbal memory performance based on Wechsler Memory Scale-Revised and the GMC of medial temporal and extratemporal structures in patients with left MTLE. We also performed a "regions of interest analysis" of the medial temporal lobe, and we observed that the GMC of the hippocampus, entorhinal, and perirhinal cortices were consistently associated with general and verbal memory performance in patients with MTLE. We also observed that the GMC of the cingulate and orbito-frontal cortex are independently associated with verbal and general memory performances. Our results suggest that general and verbal memory impairments in patients with left MTLE are associated with atrophy of the hippocampus, the entorhinal, and the perirhinal cortex. We also suggest that atrophy and dysfunction of limbic and frontal structures such as the cingulate and the orbito-frontal cortex contribute to memory impairment in MTLE.  相似文献   

3.
Background Early pathological involvement of specific medial temporal lobe areas is characteristic for Alzheimer’s disease (AD). Objective To determine the extent of regional medial temporal lobe atrophy, including hippocampus, amygdala, and entorhinal, perirhinal, and parahippocampal cortices in mild AD patients and healthy controls, and to compare diagnostic accuracy across volumetric markers. Methods We studied 34 patients with clinically probable AD and 22 healthy elderly control subjects. Regional volumetric measures were obtained from volumetric T1–weighted MRI scans after accounting for global brain atrophy using affine transformation into standard space. Results Volumes of medial temporal lobe structures were significantly smaller in AD patients than in controls with exception of the left entorhinal cortex. The degree of atrophy was comparable between all structures. Diagnostic accuracy (number of correctly allocated cases divided by number of all cases) was highest for the right parahippocampal cortex with 85%, but only slightly lower for the right hippocampus and right entorhinal cortex with 82% and 84%. Using a linear combination of markers, the unilateral volumes of the right hippocampus, parahippocampal cortex and perirhinal cortex yielded an accuracy of 93%. Conclusion Extent of atrophy is similar between the different regions of the medial temporal lobe in mild AD.Volume measurements of medial temporal lobe structures in addition to the hippocampus only yield improved diagnostic accuracy if a combination of these structures is used.  相似文献   

4.
Smaller medial temporal lobe volume is a frequent finding in studies of patients with schizophrenia, but the relative contributions of the hippocampus and three surrounding cortical regions (entorhinal cortex, perirhinal cortex, and parahippocampal cortex) are poorly understood. We tested the hypothesis that the volumes of medial temporal lobe regions are selectively changed in schizophrenia. We studied 19 male patients with schizophrenia and 19 age-matched male control subjects. Hippocampal and cortical volumes were estimated using a three-dimensional morphometric protocol for the analysis of high-resolution structural magnetic resonance images, and repeated measures ANOVA was used to test for region-specific differences. Patients had smaller overall medial temporal lobe volumes compared to controls. The volume difference was not specific for either region or hemisphere. The finding of smaller medial temporal lobe volumes in the absence of regional specificity has important implications for studying the functional role of the hippocampus and surrounding cortical regions in schizophrenia.  相似文献   

5.
The thalamus has been implicated in various stages of medial temporal lobe epilepsy (MTLE) seizure evolution. The relative density and functional significance (in epileptogenesis) of thalamic projections to MTL subregions, however, remains to be determined. This study used structural and diffusion magnetic resonance imaging (MRI) to evaluate thalamic connection density with distinct MTL subregions in terms of location and volume. Nineteen MTLE patients with unilateral hippocampal sclerosis (HS; 12 right; 10 female) were compared to 19 age‐matched controls. Five regions of interest (ROIs) per hemisphere were created in native space: thalamus, amygdala, entorhinal cortex, hippocampus, and parahippocampus. Separate probabilistic tractography analyses were performed between the thalamus and each ipsilateral MTL subregion (four per hemisphere). Individual connectivity profiles and regional volumes were assessed. The medial pulvinar consistently showed the highest connection density with the hippocampus in healthy controls and in MTLE patients. Decreased thalamic connected volume was observed for thalamohippocampal pathways in patients with MTLE, and indicates pathway‐specific deafferentation. Regional hippocampal and thalamic atrophy was also observed, indicating gray and white matter loss in the thalamohippocampal pathway. Consistent localization of dense medial pulvinar (PuM) connectivity with the hippocampus suggests chronic PuM stimulation could modulate the MTLE seizure network. Decreased thalamic connected volume is a promising biomarker for epileptogenesis that merits longitudinal validation. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here .  相似文献   

6.
BACKGROUND: Conventional volumetric studies have shown that brain structures functionally and anatomically related to the hippocampus are smaller in patients with drug-refractory medial temporal lobe epilepsy (MTLE). OBJECTIVES: To determine the extent of gray matter atrophy in the brains of patients with MTLE and to examine the pattern of atrophy. DESIGN: We performed a voxel-based morphometric study of 43 consecutive patients with unilateral drug-refractory MTLE (21 patients with right-sided MTLE and 22 patients with left-sided MTLE) whose magnetic resonance images showed signs of unilateral hippocampal atrophy. The data from the patients with MTLE were compared with the data from 49 healthy control subjects to identify differences between groups in gray matter concentration (GMC). SETTING: Academic hospital's epilepsy clinic. RESULTS: We observed that patients with left- and right-sided MTLE exhibited GMC reduction in the hippocampus ipsilateral to the seizure origin. In addition, we found GMC reduction in the ipsilateral parahippocampal and isocortical temporal regions. Patients with MTLE also showed GMC reduction in subcortical nuclei such as the thalamus and caudate, in the cerebellum, in the midbrain, and in parieto-occipital regions. CONCLUSIONS: Patients with MTLE exhibit a reduction in GMC in regions outside the temporal lobe, specifically in areas that are connected to the hippocampus and parahippocampal region, suggesting an anatomical route for atrophy.  相似文献   

7.
A number of studies in rodents and monkeys report a distinction between the contributions of the hippocampus and perirhinal cortex to memory, such that the hippocampus is crucial for spatial memory whereas the perirhinal cortex has a pivotal role in perception and memory for visual objects. To determine if there is such a distinction in humans, we conducted a functional magnetic resonance imaging study to compare the medial temporal lobe responses to changes in object identity and spatial configurations of objects. We found evidence for the predicted distinction between hippocampal and perirhinal cortical activations, although part of the hippocampus was also activated by identification of novel objects. Additionally, an anterior-posterior activation gradient emerged inside the hippocampus and parahippocampal cortex. The anterior hippocampus, perirhinal cortex and anterior parahippocampal cortex are involved in perception of contextually novel objects, whereas the posterior hippocampus and posterior parahippocampal cortex are involved in processing of novel arrangements of familiar objects. These results demonstrate that there is a functional dissociation between processing of novel object identities and new spatial locations of objects among the subregions of medial temporal lobe structures in humans also.  相似文献   

8.
Although it is well established that the integrity of the medial temporal lobe (MTL) is critical for declarative memory, the functional organization of the MTL remains a matter of intense debate. One issue that has received little consideration so far is whether the hippocampus can function normally in the presence of a lesion to perirhinal cortex that produces noticeable memory impairments. This question is intriguing as the MTL forms a hierarchical system, in which perirhinal cortex represents one of the critical nodes in the reciprocal projections between neocortical association areas and the hippocampus. Here, we used functional magnetic resonance imaging to examine whether NB, an individual who underwent surgical resection of the left anterior temporal lobe that included large aspects of perirhinal and entorhinal cortex but spared the hippocampus, exhibits intact hippocampal novelty responses to auditory sentences. Our results revealed such evidence in NB's left and right hippocampus. They complement previous behavioral work in NB, indicating that recollective processes considered to rely on hippocampal integrity are also preserved. Further analyses revealed intact novelty responses in structures that provide neuroanatomical input to the hippocampus, including remaining perirhinal cortex and surgically spared parahippocampal cortex. These findings point to viable neuroanatomical mechanisms as to how functional integrity in the hippocampus may be maintained in the face of widespread, but incomplete removal of its input structures. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
During the past decade, work with monkeys has helped identify the structures in the medial temporal lobe that are important for memory: the hippocampal region (including the hippocampus proper, the dentate gyrus, and the subicular complex) and adjacent cortical areas that are anatomically linked to the hippocampus, i.e., the entorhinal, perirhinal, and parahippocampal cortices. One idea that has emerged from this work is that the severity of memory impairment might increase as more components of the medial temporal lobe are damaged. We have evaluated this idea directly by examining behavioral data from 30 monkeys (ten normal monkeys and 20 monkeys with bilateral lesions involving structures within the medial temporal lobe) that have completed testing on our standard memory battery during the last 10 years. The main finding was that the severity of memory impairment depended on the locus and extent of damage to the medial temporal lobe. Specifically, damage limited to the hippocampal region produced a mild memory impairment. More severe memory impairment was produced when the damage was increased to include the adjacent entorhinal and parahippocampal cortices (the H+ lesion). Finally, memory impairment was even more severe when the H+ lesion was extended forward to include the anterior entorhinal cortex and the perirhinal cortex (H++ lesion). Taken together, these findings suggest that, whereas damage to the hippocampal region produces measurable memory impairment, a substantial part of the severe memory impairment produced by large medial temporal lobe lesions in humans and monkeys can be attributed to damage to entorhinal, perirhinal, and parahippocampal cortices adjacent to the hippocampal region. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Weniger G  Boucsein K  Irle E 《Hippocampus》2004,14(6):785-796
There has been growing interest in the differential role of medial temporal lobe structures in learning and memory. The goal of the present study was to clarify how lesions of hippocampus, parahippocampal gyrus, and amygdala interfere with associative learning and memory. Thirty subjects with pharmacoresistant medial temporal lobe epilepsy (TLE) and temporal lobe removal were compared with 30 matched healthy control subjects. A set of neuropsychological test measures and an associative learning task requiring the learning and recall of objects and faces were administered. The lesions of hippocampus, parahippocampal gyrus, amygdala, and fusiform gyrus of TLE subjects were determined by three-dimensional magnetic resonance imaging (3-D MRI) volumetric assessment. The results indicate that TLE subjects with combined large hippocampal lesions, large parahippocampal gyrus (i.e., perirhinal/entorhinal) lesions, and large amygdala lesions learned and recalled the associative task significantly worse than control subjects or subjects with small lesions of the hippocampus, parahippocampal gyrus, and amygdala. Regression analysis revealed that larger lesions of the parahippocampal gyrus (i.e., perirhinal/entorhinal cortices) were significantly related to increasing deficits on the task, and that hippocampal and amygdala lesion size did not significantly improve the prediction. Our results suggest that perirhinal and entorhinal cortices may contribute predominantly to the associative learning and recall of objects and faces.  相似文献   

11.
The human medial temporal lobe (MTL) is an important part of the limbic system, and its substructures play key roles in learning, memory, and neurodegeneration. The MTL includes the hippocampus (HC), amygdala (AG), parahippocampal cortex (PHC), entorhinal cortex, and perirhinal cortex—structures that are complex in shape and have low between‐structure intensity contrast, making them difficult to segment manually in magnetic resonance images. This article presents a new segmentation method that combines active appearance modeling and patch‐based local refinement to automatically segment specific substructures of the MTL including HC, AG, PHC, and entorhinal/perirhinal cortex from MRI data. Appearance modeling, relying on eigend‐ecomposition to analyze statistical variations in image intensity and shape information in study population, is used to capture global shape characteristics of each structure of interest with a generative model. Patch‐based local refinement, using nonlocal means to compare the image local intensity properties, is applied to locally refine the segmentation results along the structure borders to improve structure delimitation. In this manner, nonlocal regularization and global shape constraints could allow more accurate segmentations of structures. Validation experiments against manually defined labels demonstrate that this new segmentation method is computationally efficient, robust, and accurate. In a leave‐one‐out validation on 54 normal young adults, the method yielded a mean Dice κ of 0.87 for the HC, 0.81 for the AG, 0.73 for the anterior parts of the parahippocampal gyrus (entorhinal and perirhinal cortex), and 0.73 for the posterior parahippocampal gyrus. Hum Brain Mapp 35:377–395, 2014. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Gold JJ  Squire LR 《Hippocampus》2005,15(1):79-85
Studies of memory-impaired patients will be most useful when quantitative neuroanatomical information is available about the patients being studied. Toward that end, in the case of medial temporal lobe amnesia, protocols have been developed from histological material that identify the boundaries of relevant structures on magnetic resonance images. Because the size of these structures varies considerably in the normal population, some correction for overall brain size is usually employed when calculating volume measurements. Although different correction procedures have been used to normalize for brain size, there has been little study of how well different methods reduce variability and which methods might be most useful. We measured the volume of the hippocampal region (hippocampus proper, dentate gyrus, and subicular complex) and the volumes of the temporopolar, entorhinal, perirhinal, and parahippocampal cortices in five memory-impaired patients and 30 controls. We then compared three different methods for normalizing the volume measurements: normalization by intracranial volume, normalization by aligning the brain to a standard atlas, and normalization by brain area at the level of the anterior commissure. Normalization by intracranial volume reduced variability in the volume measurements of nearly all brain regions to a greater extent than did normalization by other methods. When normalized by intracranial volume, the patients exhibited a mean reduction in hippocampal volume of about 40% and negligible reductions in the volumes of other medial temporal lobe structures. On the basis of earlier histological analysis of two other patients (L.M. and W.H.), who also had reductions in hippocampal size of about 40%, we suggest that a volume reduction in this range likely indicates a nearly complete loss of hippocampal neurons.  相似文献   

13.
Purpose : In refractory mesial temporal lobe epilepsy (MTLE) extrahippocampal and neocortical abnormalities have been described in patients with or without mesial temporal sclerosis (MTS). Recently we observed gray matter reductions in regions outside the hippocampus in benign MTLE with or without MTS. Cortical thickness has been proposed as a viable methodologic alternative for assessment of neuropathologic changes in extratemporal regions. Herein, we aimed to use this technique to describe cortical abnormalities in patients with benign TLE. Methods : Whole‐brain cortical thickness analysis (FreeSurfer) was performed in 32 unrelated patients with benign TLE [16 patients with signs of MTS on magnetic resonance imaging (MRI), pMTLE; 16 without, nMTLE] and 44 healthy controls. Key Findings : In the pMTLE group, the most significant thinning was found in the sensorimotor cortex bilaterally but was more extensive in the left hemisphere (false discovery rate, p < 0.05). Other areas were localized in the occipital cortex, left supramarginal gyrus, left superior parietal gyrus, left paracentral sulcus, left inferior/middle/superior frontal gyrus, left inferior frontal sulcus, right cingulate cortex, right superior frontal gyrus, right inferior parietal gyrus, right fusiform gyrus, and cuneus/precuneus. In the nMTLE, a similar neurodegenerative pattern was detected, although not surviving correction for multiple comparisons. Direct comparison between pMTLE and nMTLE did not reveal significant changes. Significance : Patients with either benign pMTLE or nMTLE showed comparable cortical thinning, mainly confined to the sensorimotor cortex. This finding that is not appreciated on routine MRI supports the hypothesis that similar to refractory MTLE, even in benign MTLE, pathology in neocortical regions maybe implicated in the pathophysiology of this syndrome.  相似文献   

14.
CONTEXT: Patients with schizophrenia exhibit olfactory deficits, but it is unclear whether these represent a specific abnormality. The link between olfactory impairments and regional brain abnormalities has yet to be established. OBJECTIVES: To determine whether patients with schizophrenia exhibit volumetric deficits in the anterior ventromedial temporal lobe, the target for neuronal inputs from the olfactory bulb, and whether these are related to olfactory performance deficits. DESIGN: A cohort study of patients and healthy control subjects who underwent both 1-mm spoiled-gradient echo magnetic resonance imaging and behavioral tests of olfaction and memory. SETTING: Schizophrenia Research Center at the University of Pennsylvania, Philadelphia. PARTICIPANTS: Fifty-two patients with a DSM-IV diagnosis of schizophrenia and 38 healthy control subjects. Individuals were excluded for history of head trauma, significant substance abuse, and medical conditions affecting brain function or olfactory capacity. MAIN OUTCOME MEASURES: Gray matter volumes of the left and right temporal poles and the perirhinal and entorhinal cortexes; olfactory threshold detection sensitivity and identification test scores; composite indexes of verbal and spatial memory ability. RESULTS: Patients had reduced volumes, relative to cranial size, in left (P =.003) and right (P =.01) perirhinal and left (P =.002) and right (P =.002) entorhinal cortexes, but not in the temporal pole. Perirhinal, but not entorhinal, cortical volume decrement was associated with decreased olfactory threshold sensitivity. Neither region was associated with impaired memory performance. CONCLUSIONS: Patients with schizophrenia have reduced cortical volumes in brain regions that receive afferents directly from the olfactory bulb. Behavioral olfactory deficits are related to structural brain abnormalities in these regions.  相似文献   

15.
OBJECTIVE: To investigate whether the fornix and mamillary bodies, being part of the limbic system, are abnormal in patients with mesial temporal lobe epilepsy (MTLE). BACKGROUND: The limbic system comprises the hippocampal formation, fornix, mamillary bodies, thalamus, and other integrated structures. This system is implicated in complex functions, including memory and emotion, and in diseases such as MTLE. METHODS: The authors performed volumetric measurements of hippocampus, amygdala, fornix, and mamillary bodies in 50 patients with MTLE and compared the results with normal controls and patients with extratemporal lobe epilepsy. RESULTS: Control (n = 17) measurements of the amygdala, hippocampus, and fornix revealed larger volumes of the right hemisphere structures (p < 0.001). Normalized fornix volumes revealed atrophy in 86% of studies concordant with hippocampal atrophy in all cases but one. Similarly, the mean hippocampal and fornix volumes for the group discriminated the epileptogenic temporal lobe (p < 0.001). Limbic volumes were normal in all patients with extratemporal lobe epilepsy. CONCLUSIONS: Quantitative MRI findings support the concept that MTLE is not a process limited to the hippocampus but also involves other interrelated limbic system structures, in particular, the fornix.  相似文献   

16.
Quantitative analysis of brain structures in normal subjects and in different neurological conditions can be carried out in vivo through magnetic resonance imaging (MRI) volumetric studies. The use of high-resolution MRI combined with image post-processing that allows simultaneous multiplanar view may facilitate volumetric segmentation of temporal lobe structures. We define a protocol for volumetric studies of medial temporal lobe structures using high-resolution MR images and we studied 30 healthy subjects (19 women; mean age, 33 years; age range, 21-55 years). Images underwent field non-homogeneity correction and linear stereotaxic transformation into a standard space. Structures of interest comprised temporopolar, entorhinal, perirhinal, parahippocampal cortices, hippocampus, and the amygdala. Segmentation was carried out with multiplanar assessment. There was no statistically significant left/right-sided asymmetry concerning any structure analyzed. Neither gender nor age influenced the volumes obtained. The coefficient of repeatability showed no significant difference of intra- and interobserver measurements. Imaging post-processing and simultaneous multiplanar view of high-resolution MRI facilitates volumetric assessment of the medial portion of the temporal lobe with strict adherence to anatomic landmarks. This protocol shows no significant inter- and intraobserver variations and thus is reliable for longitudinal studies.  相似文献   

17.
PURPOSE: Surgical removal of the hippocampus is the standard of care of patients with drug-resistant medial temporal lobe epilepsy (MTLE). The procedure carries a success rate of approximately 75%, but the reasons that some patients fail to achieve seizure control after surgery remain inexplicable. The question of whether the resection of medial temporal lobe structures in addition to the hippocampus would influence the surgical outcome in patients with MTLE was examined. METHODS: We conducted voxel-based statistical analyses of postoperative high-resolution MRI of MTLE patients who underwent anteromedial temporal resection. We applied a cost function transformation of the resection maps for each patient to a common set of spatial coordinates, and we analyzed the contribution of histologically distinct segments of the medial temporal lobe cortex to the surgical outcome. We also performed a voxel-wise mapping of surgical outcome to the temporal lobe. RESULTS: We observed that the extent of hippocampal removal was associated with better outcomes. However, when the resection of the hippocampus was combined with the resection of the medial temporal lobe, specifically the entorhinal cortex, a greater likelihood of higher seizure control after surgery was found. CONCLUSIONS: Based on this finding, it is possible that the efficiency of the surgical treatment of MTLE can be improved by adjusting the procedure to include the resection of the entorhinal cortex, in addition to the resection of the hippocampus.  相似文献   

18.
Kirwan CB  Stark CE 《Hippocampus》2004,14(7):919-930
The human medial temporal lobe (MTL) is known to be involved in declarative memory, yet the exact contributions of the various MTL structures are not well understood. In particular, the data as to whether the hippocampal region is preferentially involved in the encoding and/or retrieval of associative memory have not allowed for a consensus concerning its specific role. To investigate the role of the hippocampal region and the nearby MTL cortical areas in encoding and retrieval of associative versus non-associative memories, we used functional magnetic resonance imaging (fMRI) to measure brain activity during learning and later recognition testing of novel face-name pairs. We show that there is greater activity for successful encoding of associative information than for non-associative information in the right hippocampal region, as well as in the left amygdala and right parahippocampal cortex. Activity for retrieval of associative information was greater than for non-associative information in the right hippocampal region also, as well as in the left perirhinal cortex, right entorhinal cortex, and right parahippocampal cortex. The implications of these data for a clear functional distinction between the hippocampal region and the MTL cortical structures are discussed.  相似文献   

19.
Memory for context information (source memory) has been reported to rely on structures in the medial temporal lobe (MTL). Perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL) have distinct connectivity patterns with sensory neocortex, suggesting a possible modality-dependent organization of memory processes. The present study investigated the neural substrates of two different types of source information of newly encoded material using functional magnetic resonance imaging: auditory (speaker voice) and visual (texture and colour). Source judgements during retrieval were reliably above chance level for both modalities and performance did not differ between the auditory and visual condition. During encoding, activity predictive of subsequent source recollection was observed in the anterior hippocampus/parahippocampal gyrus, irrespective of source modality. During retrieval, on the other hand, a regional dissociation emerged: bilateral parahippocampal cortex discriminated between correct and incorrect auditory but not visual source judgements, whereas left perirhinal/entorhinal cortex showed the reverse pattern. These findings are consistent with recent lesion evidence of disrupted auditory but intact visual source memory following damage to the parahippocampal cortex. Results are discussed with respect to anatomical models of corticoparahippocampal connectivity and the functional organization of the MTL.  相似文献   

20.
Pittau F  Grova C  Moeller F  Dubeau F  Gotman J 《Epilepsia》2012,53(6):1013-1023
Purpose: In mesial temporal lobe epilepsy (MTLE) the epileptogenic area is confined to the mesial temporal lobe, but other cortical and subcortical areas are also affected and cognitive and psychiatric impairments are usually documented. Functional connectivity methods are based on the correlation of the blood oxygen level dependent (BOLD) signal between brain regions, which exhibit consistent and reproducible functional networks from resting state data. The aim of this study is to compare functional connectivity of patients with MTLE during the interictal period with healthy subjects. We hypothesize that patients show reduced functional connectivity compared to controls, the interest being to determine which regions show this reduction. Methods: We selected electroencephalography–functional magnetic resonance imaging (EEG‐fMRI) resting state data without EEG spikes from 16 patients with right and 7 patients with left MTLE. EEG‐fMRI resting state data of 23 healthy subjects matched for age, sex, and manual preference were selected as controls. Four volumes of interest in the left and right amygdalae and hippocampi (LA, RA, LH, and RH) were manually segmented in the anatomic MRI of each subject. The averaged BOLD time course within each volume of interest was used to detect brain regions with BOLD signal correlated with it. Group differences between patients and controls were estimated. Key Findings: In patients with right MTLE, group difference functional connectivity maps (RMTLE ? controls) showed for RA and RH decreased connectivity with the brain areas of the default mode network (DMN), the ventromesial limbic prefrontal regions, and contralateral mesial temporal structures; and for LA and LH, decreased connectivity with DMN and contralateral hippocampus. Additional decreased connectivity was found between LA and pons and between LH and ventromesial limbic prefrontal structures. In patients with left MTLE, functional connectivity maps (LMTLE ? controls) showed for LA and LH decreased connectivity with DMN, contralateral hippocampus, and bilateral ventromesial limbic prefrontal regions; no change in connectivity was detected for RA; and for RH, there was decreased connectivity with DMN, bilateral ventromesial limbic prefrontal regions, and contralateral amygdala and hippocampus. Significance: In unilateral MTLE, amygdala and hippocampus on the affected and to a lesser extent on the healthy side are less connected, and are also less connected with the dopaminergic mesolimbic and the DMNs. Changes in functional connectivity between mesial temporal lobe structures and these structures may explain cognitive and psychiatric impairments often found in patients with MTLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号