首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cocaine (10 and 20 mg/kg i.p.) enhanced the extracellular concentration of acetylcholine (ACh) in the ventral striatum of freely moving rats. The enhancement was prevented both by dopamine (DA) D1 receptor blockade with SCH 23390 (0.1 mg/kg s.c.) and by depletion of endogenous DA after coadministration of reserpine (5 mg/kg i.p.) and alpha-methyltyrosine (alpha-MT) (150 mg/kg i.p.). In contrast, blockade of DA D2 receptors with (-)-sulpiride (20 mg/kg i.p.) did not prevent the cocaine-induced increase in ACh release. These results indicate that the cocaine-induced stimulation of ACh release is mediated by an action of DA on D1 receptors, and suggest that the enhancement of ACh release might play a functional role in the central effects of cocaine. Moreover, DA depletion after reserpine + alpha-MT or D1 receptor blockade with SCH 23390 led to a comparable decrease of baseline ACh release, suggesting that striatal cholinergic interneurons are under D1 receptor-mediated facilitatory dopaminergic control.  相似文献   

2.
Cocaine addicts are reported to have decreased numbers of striatal dopamine D2 receptors. However, in rodents, repeated cocaine administration consistently produces hypersensitivity to the psychomotor activating effects of both indirect dopamine agonists, such as cocaine itself, and importantly, to direct-acting D2 receptor agonists. The current study reports a possible resolution to this long-standing paradox. The dopamine D2 receptor exists in both a low and a high-affinity state, and dopamine exerts its effects via the more functionally relevant high-affinity D2 receptor (D2 High). We report here that cocaine self-administration experience produces a large (approximately 150%) increase in the proportion of D2 High receptors in the striatum with no change in the total number of D2 receptors, and this effect is evident both 3 and 30 days after the discontinuation of cocaine self-administration. Changes in D2 High receptors would not be evident with the probes used in human (and non-human primate) imaging studies. We suggest, therefore, that cocaine addicts and animals previously treated with cocaine may be hyper-responsive to dopaminergic drugs in part because an increase in D2 High receptors results in dopamine supersensitivity. This may also help explain why stimuli that increase dopamine neurotransmission, including drugs themselves, are so effective in producing relapse in individuals with a history of exposure to cocaine.  相似文献   

3.
A whole-cell patch-clamp study was performed to investigate the modulatory role of dopamine (DA), its ionic mechanisms and their developmental changes in the GABAergic synaptic transmission onto cholinergic interneurones in the rat striatal slices. Inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of DA inhibited the IPSCs in a concentration-dependent manner with an IC50 value of 10 microM. Pharmacological studies with DA receptor agonists and antagonists suggest the involvement of D2-like receptors. DA reduced the frequency of miniature inhibitory postsynaptic currents without affecting their amplitude distribution. Analyses using selective blockers for N-, or P/Q type Ca2+ channels could estimate the contribution of each Ca2+ channel subtype to the GABAergic transmission. DA had no longer affected the IPSCs after the effect of an N-type channel blocker, omega-conotoxin (omega-CgTX) had reached its steady state. The inhibitory effects of omega-CgTX and DA or a D2-like receptor agonist decreased in parallel during postnatal 12-60 days. DA's action was occluded by omega-CgTX throughout these developmental stages. These results suggest that activation of presynaptic D2-like receptors selectively blocks N-type Ca2+ channels, thereby inhibiting GABA release, and that contribution of N-type channels and D2-like receptor-mediated presynaptic inhibition decrease in parallel with development.  相似文献   

4.
Clozapine and quetiapine have a low incidence of extrapyramidal side effects at clinically effective doses, which appears to be related to their significantly lower occupancy of striatal dopamine D2 receptors (DA D2r) compared to typical antipsychotic drugs (APDs). Animal studies have indicated that clozapine and quetiapine produce selective effects on cortical and limbic regions of the brain and in particular on dopaminergic neurotransmission in these regions. Previous PET and SPECT studies have reported conflicting results regarding whether clozapine produces preferential occupancy of cortical DA D2r. To examine whether clozapine and/or quetiapine produce preferential occupancy of DA D2r in cortex and limbic regions, we studied the occupancy of putamenal, ventral striatal, thalamic, amygdala, substantia nigra, and temporal cortical DA D2r using PET with [18F]fallypride in six schizophrenic subjects receiving clozapine monotherapy and in seven schizophrenic subjects receiving quetiapine monotherapy. Doses were chosen clinically to minimize psychopathology at tolerable levels of side effects such as drowsiness. All had minimal positive symptoms at the time of the study. Regional receptor occupancies were estimated using mean regional DA D2r levels calculated for 10 off-medication schizophrenic subjects. Both clozapine and quetiapine produced lower levels of putamenal DA D2r occupancy than those reported for typical APDs, 47.8 and 33.5%, respectively. Clozapine produced preferential occupancy of temporal cortical vs putamenal DA D2r, 59.8% (p=0.05, corrected for multiple comparisons), and significantly lower levels of occupancy in the substantia nigra, 18.4% (p=0.0015, corrected for multiple comparisons). Quetiapine also produced preferential occupancy of temporal cortical DA D2r, 46.9% (p=0.03, corrected for multiple comparisons), but did not spare occupancy of substantia nigra DA D2r. The therapeutic effects of clozapine and quetiapine appear to be achieved at less than the 65% threshold for occupancy seen with typical APDs, consistent with the involvement of non-DA D2r mechanisms in at least partially mediating the therapeutic effects of these drugs. Preferential occupancy of cortical DA D2r, sparing occupancy of substantia nigra receptors, and non-DA D2r-mediated actions may contribute to the antipsychotic actions of these and other atypical APDs.  相似文献   

5.
There have been conflicting reports as to whether olanzapine produces lower occupancy of striatal dopamine D(2)/D(3) receptor than typical antipsychotic drugs and preferential occupancy of extrastriatal dopamine D(2)/D(3) receptors. We performed [(18)F] fallypride PET studies in six schizophrenic subjects treated with olanzapine and six schizophrenic subjects treated with haloperidol to examine the occupancy of striatal and extrastriatal dopamine receptors by these antipsychotic drugs. [(18)F] setoperone PET studies were performed in seven olanzapine-treated subjects to determine 5-HT(2A) receptor occupancy. Occupancy of dopamine D(2)/D(3) receptors by olanzapine was not significantly different from that seen with haloperidol in the putamen, ventral striatum, medial thalamus, amygdala, or temporal cortex, that is, 67.5-78.2% occupancy; olanzapine produced no preferential occupancy of dopamine D(2)/D(3) receptors in the ventral striatum, medial thalamus, amygdala, or temporal cortex. There was, however, significantly lower occupancy of substantia nigra/VTA dopamine D(2)/D(3) receptors in olanzapine-treated compared to haloperidol-treated subjects, that is, 40.2 vs 59.3% (p=0.0014, corrected for multiple comparisons); in olanzapine-treated subjects, the substantia nigra/VTA was the only region with significantly lower dopamine D(2)/D(3) receptor occupancy than the putamen, that is, 40.2 vs 69.2% (p<0.001, corrected for multiple comparison). Occupancy of 5-HT(2A) receptors was 85-93% in the olanzapine- treated subjects. The results of this study demonstrated that olanzapine does not produce preferential occupancy of extrastriatal dopamine D(2)/D(3) receptors but does spare substantia nigra/VTA receptors. Sparing of substantia nigra/VTA dopamine D(2)/D(3) receptor occupancy may contribute to the low incidence of extrapyramidal side effects in olanzapine-treated patients.  相似文献   

6.
Positron emission tomography (PET) studies have demonstrated low striatal D2 dopamine receptor occupancy in clozapine-treated schizophrenic patients. The aim of this pilot study was to explore if this low receptor occupancy indeed represents partial saturability of striatal D2 dopamine receptors by clozapine. Three anaesthetized Cynomolgus monkeys were examined during one day with PET and [11C]raclopride at baseline and after intravenous injections of clozapine 1.5 mg/kg followed by 18.5 mg/kg. The estimated corresponding human oral doses were approx. 210 mg/d and 2800 mg/d. D2 dopamine receptor occupancy was calculated using an equilibrium-ratio analysis and ranged from 54 to 58% after 1.5 mg/kg and 87 to 89% after the total dose 20 mg/kg. The calculated maximal occupancy was 93%. We conclude that PET-measured D2 dopamine receptor occupancy by clozapine can be described using a model based on the law of mass action, previously validated for conventional antipsychotics. Therefore, sufficiently high doses of clozapine are expected to produce complete striatal D2 dopamine receptor occupancy. The findings further support our previous findings of low D2 dopamine receptor occupancy in patients treated with standard doses of clozapine.  相似文献   

7.
The effect of histamine on the main input to the striatum - the corticostriatal pathway - was studied using electrophysiological techniques in brain slices from rats and mice. Field potentials (FPs) were recorded in the striatum following stimulation at the border of the striatum and the cortex. Bath application of histamine caused a pronounced and long-lasting depression of FPs in rat slices with an IC(50) of 1.6 microM and a maximal depression of around 40%. In mouse slices histamine also depressed FPs, but to a lesser extent and more transiently. Further experiments in rat slices showed that histamine H(3) receptors were responsible for this depression since the selective H(3) receptor agonist R-alpha-methylhistamine (1 microM) mimicked the action of histamine whilst the selective H(3) receptor antagonist, thioperamide (10 microM) blocked the depression caused by histamine application. The histaminergic depression was probably not mediated indirectly through interneurons since blockade of GABA(A), GABA(B), nicotinic and muscarinic receptors or nitric oxide synthase did not prevent the histamine effect. Intracellular recordings from medium spiny neurons in the striatum revealed that histamine did not affect postsynaptic membrane properties but increased paired-pulse facilitation of excitatory synaptic responses indicating a presynaptic locus of action.  相似文献   

8.

BACKGROUND AND PURPOSE

Dopamine released from the endings of descending dopaminergic nerve fibres in the spinal cord may be involved in modulating functions such as locomotion and nociception. Here, we examined the effects of dopamine on spinal synaptic transmissions in rats.

EXPERIMENTAL APPROACH

Spinal reflex potentials, monosynaptic reflex potential (MSR) and slow ventral root potential (sVRP), were measured in the isolated spinal cord of the neonatal rat. Dopamine release was measured by HPLC.

KEY RESULTS

Dopamine at lower concentrations (<1 µM) depressed sVRP, which is a C fibre-evoked polysynaptic response and believed to reflect nociceptive transmission. At higher concentrations (>1 µM), in addition to a potent sVRP depression, dopamine depolarized baseline potential and slightly depressed MSR. Depression of sVRP by dopamine was partially reversed by dopamine D1-like but not by D2-like receptor antagonists. SKF83959 and SKF81297, D1-like receptor agonists, and methamphetamine, an endogenous dopamine releaser, also caused the inhibition of sVRP. Methamphetamine also depressed MSR, which was inhibited by ketanserin, a 5-HT2A/2C receptor antagonist. Methamphetamine induced the release of dopamine and 5-HT from spinal cords, indicating that the release of endogenous dopamine and 5-HT depresses sVRP and MSR respectively.

CONCLUSION AND IMPLICATIONS

These results suggested that dopamine at lower concentrations preferentially inhibited sVRP, which is mediated via dopamine D1-like and other unidentified receptors. The dopamine-evoked depression is involved in modulating the spinal functions by the descending dopaminergic pathways.  相似文献   

9.
The effects on rat striatal dopamine receptors after chronic nicotine administration (3 and 12 mg kg-1 day-1), and after withdrawal from chronic nicotine (12 mg kg-1 day-1), were studied. After 21 days of continuous minipump infusion, the control (saline) and nicotine-treated rats were killed. The nicotine-withdrawal rats were killed on day 28, 7 days after pump removal. Radioligand studies were performed to determine D1 ([3H]SCH23390) and D2 ([3H]spiperone) striatal dopamine receptor affinity (Kd) and maximum binding (Bmax). Dopamine inhibition of antagonist binding at 3 concentrations and the effect of 0.3 mM GTP on binding affinity were examined. No statistically significant differences between control and nicotine treatment or withdrawal groups were noted in either D1 or D2 receptor Kd or Bmax. Although nicotine has been shown to affect nigrostriatal dopamine release, chronic treatment does not appear to alter overall striatal dopaminergic receptor binding parameters.  相似文献   

10.

Rationale

Subanesthetic doses of ketamine have been reported to induce psychotic states that may mimic positive and negative symptoms as well as cognitive and memory deficits similar to those observed in schizophrenia. The cognitive and memory deficits are persistent, and their underlying cellular mechanisms remain unclear.

Objectives

We sought to investigate the roles of dopamine D1/D5 receptors and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal synaptic transmission and spatial memory impairment induced by ketamine.

Methods

We examined the effects of subanesthetic ketamine on hippocampal synaptic transmission in freely moving rats. Spatial memory was tested with the Morris water maze. Pretreatment with the D1/D5 receptors antagonist SCH23390 or the AMPA receptors endocytosis interfering peptide Tat-GluR23Y was conducted to examine their capacities to reverse ketamine-induced electrophysiological and behavioral alterations. A series of behavioral observations, including locomotion, prepulse inhibition, and social interaction, were also conducted after ketamine treatment.

Results

Ketamine induced synaptic depression lasting at least 4 h at hippocampal Schaffer collateral-CA1 synapses in freely moving rats and long-term spatial memory impairment. Both the effects were blocked by either SCH23390 or Tat-GluR23Y. Ketamine also elicited transient behavioral changes lasting less than 90 min, such as hyperlocomotion and prepulse inhibition deficits. These changes were ameliorated by SCH23390 but not by Tat-GluR23Y. Rats treated with ketamine showed social withdrawal that was also attenuated by either SCH23390 or Tat-GluR23Y.

Conclusions

Our results indicate that hippocampal synaptic depression is involved in ketamine-induced memory impairment, and this is modulated by D1/D5 receptors activation and AMPA receptors endocytosis.  相似文献   

11.
The dorsal striatum (DS) is implicated in behavioral and neural processes including action control and reinforcement. Alcohol alters these processes in rodents, and it is believed that the development of alcohol use disorder involves changes in DS dopamine signaling. In nonhuman primates, the DS can be divided into caudate and putamen subregions. As part of a collaborative effort examining the effects of long-term alcohol self-administration in rhesus macaques, we examined DS dopamine signaling using fast-scan cyclic voltammetry. We found that chronic alcohol self-administration resulted in several dopamine system adaptations. Most notably, dopamine release was altered in a sex- and region-dependent manner. Following long-term alcohol consumption, male macaques, regardless of abstinence status, had reduced dopamine release in putamen, while only male macaques in abstinence had reduced dopamine release in caudate. In contrast, female macaques had enhanced dopamine release in the caudate, but not putamen. Dopamine uptake was also enhanced in females, but not males (regardless of abstinence state). We also found that dopamine D2/3 autoreceptor function was reduced in male, but not female, alcohol drinkers relative to control groups. Finally, we found that blockade of nicotinic acetylcholine receptors inhibited evoked dopamine release in nonhuman primates. Altogether, our findings demonstrate that long-term alcohol consumption can sex-dependently alter dopamine release, as well as its feedback control mechanisms in both DS subregions.Subject terms: Addiction, Reward  相似文献   

12.
Amphetamine (AMPH) releases dopamine (DA) from striatal synaptosomes and concomitantly increases DA synthesis. Since AMPH may release DA through carrier-mediated diffusion via reversal of the DA uptake system, the increase in DA synthesis might depend on a functioning uptake carrier. Consistent with such a mechanism, the uptake inhibitors nomifensine (NMF) and benztropine (BZT) completely prevented the AMPH-induced increase in DA synthesis at concentrations known to inhibit DA uptake. Changes in the Na+ gradient across the synaptosomal membrane also promote DA release, since DA and Na+ are cotransported by the neuronal uptake carrier. Incubation of synaptosomes in medium containing decreasing Na+ increased DA synthesis inversely proportional to Na+ over the range 128 to 20 mM. Similarly, incubations in the presence of 10(-4) M ouabain to inhibit Na+, K+-ATPase and allow intracellular accumulation of Na+ also increased DA synthesis. These changes in DA synthesis could also be prevented by BZT and were non-additive with the AMPH-induced increase in DA synthesis. However, a concentration of ouabain (10(-6) M) which by itself did not increase DA synthesis, and does not promote DA release, potentiated the AMPH-induced increase in DA synthesis. Further, the increased DA synthesis promoted by all three manipulations was only marginally dependent on the presence of Ca2+ in the incubation medium. However, at 5 and 10 mM Na+, a second component of increased DA synthesis was observed which was insensitive to BZT, but was prevented by Ca2+ removal. These results suggest that the increase in DA synthesis, and presumably DA release promoted by AMPH, lowered Na+, and ouabain, depend on the availability of the DA carrier at the internal face of the neuronal membrane and the intracellular content of Na+. The second component of increased DA synthesis which is evident at 5 and 10 mM Na+ is discussed in terms of a possible Ca2+-mediated change in DA synthesis which is independent of the DA carrier.  相似文献   

13.
Rats were trained to self-administer cocaine on a fixed-ratio 5 schedule of reinforcement with a 1-min time-out period following each infusion. Cocaine was available at doses of either 0.1, 0.3 or 1.0 mg/kg/infusion. A low dose (3 microgram/kg) of the D1 antagonist SCH23390 caused an increase in cocaine self-administration which was more prominent at higher, as compared to lower, doses of cocaine. Higher doses of SCH23390 generally caused decreases in self-administration which may in part be due to the response-decreasing properties of this agent. The D2 antagonist spiperone generally caused an increase in self-administration of cocaine. These data suggest that cocaine reinforcement depends upon both D1 and D2 receptor subtypes.  相似文献   

14.
Several experiments investigated the involvement of D1 and D2 dopamine receptors in the ventral striatum in the control over behaviour by a conditioned reinforcer using an acquisition of new response procedure. Intra-accumbens infusion of either the D1 receptor antagonist, SCH 23390, or the D2 receptor antagonist, raclopride, completely blocked the potentiative effects of intra-accumbensd-amphetamine on responding with conditioned reinforcement and reduced responding to control levels. SCH 23390 was more potent than raclopride. At higher doses in the absence ofd-amphetamine, both antagonists also blocked the preference for responding on the lever producing the conditioned reinforcer. Intra-accumbens infusions of either the D1 receptor agonist, SKF 38393, or the D2/3 receptor agonist, LY 171555 (quinpirole), selectively potentiated responding on the lever producing the conditioned reinforcer. Various combined infusions of the D1 and D2 agonists in specific low doses had additive, but not synergistic, effects on responding with conditioned reinforcement. None of the drugs affected the drinking of water in deprived subjects when infused intra-accumbens. These results suggest that both D1 and D2 receptors in the nucleus accumbens are involved in mediating the effects of dopamine in potentiating the control over behaviour by conditioned reinforcers.  相似文献   

15.
Manganese (Mn) plays an important role in the etiology of several neurobehavioral disorders, but there is a lack of data regarding its specific effects on neurotransduction, especially dopaminergic neurotransduction. We investigated the relationship between motor deficits and alterations in the expression of tyrosine hydroxylase (TH) and dopamine D2-like receptors (DR), including the three dopaminergic subtypes, D2, D3, and D4, in low- and high-dose Mn-treated mice. After administration of Mn (intraperitoneal injections of 20 or 40 mg/kg MnCl(2).4H(2)O once per day for 5 d), motor activity and expression of TH and DR were examined in the striatum of the mouse brain. Mn treatment resulted in significant decrease in coordination and/or impaired motor learning after 5 d of treatment and this effect remained until 10 d after the end of Mn treatment. The expression of dopamine D2-like receptor D2 (DRD2), but not TH, DRD3, or DRD4, in the striatum was dose-dependent, and statistically significant increases were seen at the mRNA and protein levels. These findings indicate that Mn-induced motor deficits may be modulated in part by the expression of DRD2 in the striatum. In addition, our results suggest that the disturbance of dopaminergic neurotransmission mediated by DRD2 may be involved in the pathogenesis of Mn neurotoxicity.  相似文献   

16.
Acrylamide inhibits dopamine uptake in rat striatal synaptic vesicles.   总被引:1,自引:0,他引:1  
Evidence suggests that acrylamide (ACR) neurotoxicity is mediated by decreased presynaptic neurotransmitter release. Defective release might involve disruption of neurotransmitter storage, and therefore, we determined the effects of in vivo and in vitro ACR exposure on 3H-dopamine (DA) transport into rat striatal synaptic vesicles. Results showed that vesicular DA uptake was decreased significantly in rats intoxicated at either 50 mg/kg/day x 5 days or 21 mg/kg/day x 21 days. ACR intoxication also was accompanied by a reduction in KCl-evoked synaptosomal DA release, although consistent changes in presynaptic membrane transport were not observed. Silver stain and immunoblot analyses suggested that reduced vesicular uptake was not due to active nerve terminal degeneration or to a reduction in the synaptic vesicle content of isolated striatal synaptosomes. Nor did the in vivo presynaptic effects of ACR involve changes in synaptosomal glutathione concentrations. In vitro exposure of striatal vesicles showed that both ACR and two sulfhydryl reagents, N-ethylmaleimide (NEM) and iodoacetic acid (IAA), produced concentration-dependent decreases in 3H-DA uptake. Although ACR was significantly less potent than either NEM or IAA, all three chemicals caused comparable maximal inhibitions of vesicular uptake. Kinetic analysis of DA uptake showed that in vitro exposure to either ACR or NEM decreased V(max) and increased K(m). Determination of radiolabel efflux from 3H-DA-loaded vesicles indicated that in vitro ACR did not affect neurotransmitter retention. These data suggest that ACR impaired neurotransmitter uptake into striatal synaptic vesicles, possibly by interacting with sulfhydryl groups on functionally relevant proteins. The resulting disruption of neurotransmitter storage might mediate defective presynaptic release.  相似文献   

17.
18.
The striatum contains a high density of histamine H(3) receptors, but their role in striatal function is poorly understood. Previous studies have demonstrated antagonistic interactions between striatal H(3) and dopamine D(1) receptors at the biochemical level, while contradictory results have been reported about interactions between striatal H(3) and dopamine D(2) receptors. In this study, by using reserpinized mice, we demonstrate the existence of behaviorally significant antagonistic postsynaptic interactions between H(3) and D(1) and also between H(3) and dopamine D(2) receptors. The selective H(3) receptor agonist imetit inhibited, while the H(3) receptor antagonist thioperamide potentiated locomotor activation induced by either the D(1) receptor agonist SKF 38393 or the D(2) receptor agonist quinpirole. High scores of locomotor activity were obtained with H(3) receptor blockade plus D(1) and D(2) receptor co-activation, i.e., when thioperamide was co-administered with both SKF 38393 and quinpirole. Radioligand binding experiments in striatal membrane preparations showed the existence of a strong and selective H(3)-D(2) receptor interaction at the membrane level. In agonist/antagonist competition experiments, stimulation of H(3) receptors with several H(3) receptor agonists significantly decreased the affinity of D(2) receptors for the agonist. This kind of intramembrane receptor-receptor interactions are a common biochemical property of receptor heteromers. In fact, by using Bioluminescence Resonance Energy Transfer techniques in co-transfected HEK-293 cells, H(3) (but not H(4)) receptors were found to form heteromers with D(2) receptors. This study demonstrates an important role of postsynaptic H(3) receptors in the modulation of dopaminergic transmission by means of a negative modulation of D(2) receptor function.  相似文献   

19.
BackgroundMethylphenidate (MP) and amphetamine, which are the mainstay for the treatment of ADHD, have raised concerns because of their reinforcing effects and the fear that their chronic use during childhood or adolescence could induce changes in the brain that could facilitate drug abuse in adulthood.MethodsHere we measured the effects of chronic treatment (8 months) with oral MP (1 or 2 mg/kg), which was initiated in periadolescent rats (postnatal day 30). Following this treatment, rats were tested on cocaine self-administration. In addition at 2 and 8 months of treatment we measured dopamine D2 receptor (D2R) availability in the striatum using [11C]raclopride microPET (μPET) imaging.ResultsAnimals treated for 8 months with 2 mg/kg of MP showed significantly reduced rates of cocaine self-administration at adulthood than vehicle treated rats. D2R availability in the striatum was significantly lower in rats after 2 months of treatment with MP (1 and 2 mg/kg) but significantly higher after 8 months of MP treatment than in the vehicle treated rats. In vehicle treated rats D2R availability decreased with age whereas it increased in rats treated with MP. Because low D2R levels in the striatum are associated with a propensity for self-administration of drugs both in laboratory animals and in humans, this effect could underlie the lower rates of cocaine self-administration observed in the rats given 8 months of treatment with MP.ConclusionsEight month treatment with oral MP beginning in adolescence decreased cocaine-self administration (1 mg/kg) during adulthood which could reflect the increases in D2R availability observed at this life stage since D2R increases are associated with reduced propensity for cocaine self administration. In contrast, two month treatment with MP started also at adolescence decreased D2R availability, which could raise concern that at this life stage short treatments could possibly increase vulnerability to drug abuse during adulthood. These findings indicate that MP effects on D2R expression in the striatum are sensitive not only to length of treatment but also to the developmental stage at which treatment is given. Future studies evaluating the effects of different lengths of treatment on drug self-administration are required to assess optimal duration of treatment regimes to minimize adverse effects on the propensity for drug self administration.  相似文献   

20.
A history of sodium depletions has been found to potentiate the psychomotor as well as the rewarding effects of amphetamine, an indirect dopamine agonist. The present experiments were conducted to further define the role of dopamine receptor subtypes in this cross-sensitization effect. Rats with a history of sodium depletions were found to display psychomotor sensitization to a D2 but not a D1 direct agonist. Cross-sensitization between salt appetite and amphetamine was found to be blocked by a D2 but not a D1 antagonist. Together, these results implicate D2 but not D1 receptor function in the cross-sensitization seen after sodium depletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号