首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.  相似文献   

2.
To investigate whether a period of 1 Hz repetitive transcranial magnetic stimulation (rTMS) over M1 preconditioned by tDCS improves bradykinesia of the upper limb in Parkinson’s disease (PD). Fifteen patients with PD performed index finger, hand tapping and horizontal pointing movements as well as reach-to-grasp movements with either hand before (baseline conditions) and after a period of 1 Hz rTMS preconditioned by (1) sham, (2) anodal or (3) cathodal tDCS over the primary motor cortex contralateral to the more affected body side. Movement kinematics was analysed using an ultrasound-based motion analyser at baseline, immediately after and 30 min after each stimulation session. Dopaminergic medication was continued. Compared to baseline, 1 Hz rTMS significantly increased the frequency of index finger and hand tapping as well as horizontal pointing movements performed with the contralateral hand. Movement frequency increased up to 40% over 30 min after cessation of the stimulation. Preconditioning with cathodal tDCS, but not with anodal tDCS, reduced the effectiveness of 1 Hz rTMS to improve tapping and pointing movements. There was no significant increase of movement frequencies of the ipsilateral hand induced by 1 Hz rTMS preconditioned by either tDCS session. Movement kinematics of reach-to-grasp movements were not significantly influenced by either stimulation session. In PD the beneficial effects of 1 Hz rTMS over the primary motor cortex on bradykinesia of simple finger, hand and pointing movements is reduced by preconditioning with cathodal tDCS, but not with anodal tDCS. Preconditioning with tDCS is a powerful tool to modulate the behavioural effect of 1 Hz rTMS over the primary motor cortex in PD.  相似文献   

3.
《Brain stimulation》2019,12(5):1213-1221
BackgroundCreativity is the use of original ideas to accomplish something innovative. Previous research supports the notion that creativity is facilitated by an activation of the right and/or a deactivation of the left prefrontal cortex. In contrast, recent brain imaging studies suggest that creativity improves with left frontal activation.ObjectiveThe present study was designed to further elucidate the neural basis of and ways to modulate creativity, based on the modulation of prefrontal cortical activity through the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS).MethodsNinety healthy University students performed three tasks on major aspects of creativity: conceptual expansion (Alternate Uses Task, AUT), associative thinking (Compound Remote Associate Task, CRA), and set shifting ability (Wisconsin Card Sorting Task, WCST). Simultaneously, they received cathodal stimulation of the left and anodal stimulation of the right inferior frontal gyrus (IFG), the reverse protocol, or sham stimulation.ResultsThe main pattern of results was a superior performance with bilateral left cathodal/right anodal stimulation, and an inferior performance in the reversed protocol compared to sham stimulation. As a potential underlying physiological mechanism, resting state EEG beta power, indicative of enhanced cortical activity, in the right frontal area increased with anodal stimulation and was associated with better performance.ConclusionThe findings provide new insights into ways of modulating creativity, whereby a deactivation of the left and an activation of the right prefrontal cortex with tDCS is associated with increased creativity. Potential future applications might include tDCS for patients with mental disorders and for healthy individuals in creative professions.  相似文献   

4.
Cognitive performance usually declines in older adults as a result of neurodegenerative processes. One of the cognitive domains usually affected is decision‐making. Based on our recent findings suggesting that non‐invasive brain stimulation can improve decision‐making in young participants, we studied whether bifrontal transcranial direct current stimulation (tDCS) applied over the right and left prefrontal cortex of older adult subjects can change balance of risky and safe responses as it can in younger individuals. Twenty‐eight subjects (age range from 50 to 85 years) performed a gambling risk task while receiving either anodal tDCS over the right and cathodal tDCS over the left dorsolateral prefrontal cortex (DLPFC), anodal tDCS over the left with cathodal tDCS over the right DLPFC, or sham stimulation. Our main finding was a significant group effect showing that participants receiving left anodal/right cathodal stimulation chose more often high‐risk prospects as compared with participants receiving sham or those receiving right anodal/left cathodal stimulation. This result is contrary to previous findings in young subjects, suggesting that modulation of cortical activity in young and elderly results in opposite behavioral effects; thus supporting fundamental changes in cognitive processing in the elderly.  相似文献   

5.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that induces changes in cortical excitability: anodal stimulation increases while cathodal stimulation reduces excitability. Imaging studies performed after unilateral stimulation have shown conflicting results regarding the effects of tDCS on surrogate markers of neuronal activity. The aim of this study was to directly measure these effects on activation-induced changes in regional cerebral blood flow (ΔrCBF) using positron emission tomography (PET) during bilateral tDCS. Nine healthy subjects underwent repeated rCBF measurements with 15O-water and PET during a simple motor task while receiving tDCS or sham stimulation over the primary motor cortex (M1). Motor evoked potentials (MEPs) were also assessed before and after real and sham stimulation. During tDCS with active movement, ΔrCBF in M1 was significantly lower on the cathodal than the anodal side when compared with sham stimulation. This decrease in ΔrCBF was accompanied by a decrease in MEP amplitude on the cathodal side. No effect was observed on resting or activated rCBF relative to sham stimulation. We thus conclude that it is the interaction of cathodal tDCS with activation-induced ΔrCBF rather than the effect on resting or activated rCBF itself which constitutes the physiological imaging correlate of tDCS.  相似文献   

6.
《Brain stimulation》2020,13(5):1358-1369
BackgroundCognitive control (CC) is an important prerequisite for goal-directed behaviour and efficient information processing. Impaired CC is associated with reduced prefrontal cortex activity and various mental disorders, but may be effectively tackled by transcranial direct current stimulation (tDCS)-enhanced training. However, study data are inconsistent as efficacy depends on stimulation parameters whose implementations vary widely between studies.ObjectiveWe systematically tested various tDCS parameter effects (anodal/cathodal polarity, 1/2 mA stimulation intensity, left/right prefrontal cortex hemisphere) on a six-session CC training combined with tDCS.MethodsNine groups of healthy humans (male/female) received either anodal/cathodal tDCS of 1/2 mA over the left/right PFC or sham stimulation, simultaneously with a CC training (modified adaptive Paced Auditory Serial Addition Task [PASAT]). Subjects trained thrice per week (19 min each) for two weeks. We assessed performance progress in the PASAT before, during, and after training. Using a hierarchical approach, we incrementally narrowed down on optimal stimulation parameters supporting CC. Long-term CC effects as well as transfer effects in a flanker task were assessed after the training period as well as three months later.ResultsCompared to sham stimulation, anodal but not cathodal tDCS improved performance gains. This was only valid for 1 mA stimulation intensity and particularly detected when applied to the left PFC.ConclusionsOur results confirm beneficial, non-linear effects of anodal tDCS on cognitive training in a large sample of healthy subjects. The data consolidate the basis for further development of functionally targeted tDCS, supporting cognitive control training in mental disorders and guiding further development of clinical interventions.  相似文献   

7.
BackgroundPrevious research on hemispatial neglect has provided evidence for dissociable mechanisms for egocentric and allocentric processing. Although a few studies have examined whether tDCS to posterior parietal cortex can be beneficial for attentional processing in neurologically intact individuals, none have examined the potential effect of tDCS on allocentric and/or egocentric processing.Objective/hypothesisOur objective was to examine whether transcranial direct current stimulation (tDCS), a noninvasive brain stimulation technique that can increase (anodal) or decrease (cathodal) cortical activity, can affect visuospatial processing in an allocentric and/or egocentric frame of reference.MethodsWe tested healthy individuals on a target detection task in which the target – a circle with a gap – was either to the right or left of the viewer (egocentric), or contained a gap on the right or left side of the circle (allocentric). Individuals performed the task before, during, and after tDCS to the posterior parietal cortex in one of three stimulation conditions – right anodal/left cathodal, right cathodal/left anodal, and sham.ResultsWe found an allocentric hemispatial effect both during and after tDCS, such that right anodal/left cathodal tDCS resulted in faster reaction times for detecting stimuli with left-sided gaps compared to right-sided gaps.ConclusionsOur study suggests that right anodal/left cathodal tDCS has a facilitatory effect on allocentric visuospatial processing, and might be useful as a therapeutic technique for individuals suffering from allocentric neglect.  相似文献   

8.
Executing difficult actions with the left hand results in bilateral activity of motor areas along the precentral gyrus. Using TMS and fMRI, we explored the functional relationship between primary (M1) and premotor areas during unimanual actions, focusing on M1 activity in the ipsilateral hemisphere. Single-pulse TMS revealed that the amplitude of motor-evoked potentials (MEPs), elicited in the stationary right-hand muscles following left M1 stimulation, fluctuated with the state of homologous muscles in the moving left hand. This ipsilateral excitability was pronounced when the left-hand movements were more complex. We used fMRI to visualize the cortical dynamics during unimanual actions. Trial-by-trial fluctuations in ipsilateral M1 activity were correlated with contralateral M1 responses and this correlation increased with movement complexity. Consistent with previous studies, the left caudal precentral premotor area (pcPM) was engaged during movements of either hand. Following low-frequency rTMS over left pcPM, the correlation between the activity level in the two M1s increased. This finding indicates that left pcPM may regulate the unintentional mirroring of motor commands in M1 during unilateral movement.  相似文献   

9.
OBJECTIVE: To study the after-effect of transcranial direct current stimulation (tDCS) over the sensorimotor cortex on the size of somatosensory evoked potentials (SEPs) in humans. METHODS: SEPs were elicited by electrical stimulation of right or left median nerve at the wrist before and after anodal or cathodal tDCS in 8 healthy subjects. tDCS was applied for 10 min to the left motor cortex at a current strength of 1 mA. RESULTS: Amplitudes of P25/N33, N33/P40 (parietal components) and P22/N30 (frontal component) following right median nerve stimulation were significantly increased for at least 60 min after the end of anodal tDCS, whereas P14/N20, N20/P25 (parietal components) and N18/P22 (frontal component) were unaffected. There was no effect on SEPs evoked by left median nerve stimulation. Cathodal tDCS had no effect on SEPs evoked from stimulation of either arm. CONCLUSIONS: Anodal tDCS over the sensorimotor cortex can induce a long-lasting increase in the size of ipsilateral cortical components of SEPs. SIGNIFICANCE: tDCS can modulate cortical somatosensory processing in humans and might be a useful tool to induce plasticity in cortical sensory processing.  相似文献   

10.
Transcranial direct current stimulation (tDCS) is currently attracting increasing interest as a tool for neurorehabilitation. However, local and distant effects of tDCS on motor-related cortical activation patterns remain poorly defined, limiting the rationale for its use. Here we describe the results of a functional magnetic resonance imaging (MRI) experiment designed to characterize local and distant effects on cortical motor activity following excitatory anodal stimulation and inhibitory cathodal stimulation. Fifteen right-handed subjects performed a visually cued serial reaction time task with their right hand in a 3-T MRI scanner both before and after 10 min of 1-mA tDCS applied to the left primary motor cortex (M1). Relative to sham stimulation, anodal tDCS led to short-lived activation increases in the M1 and the supplementary motor area (SMA) within the stimulated hemisphere. The increase in activation in the SMA with anodal stimulation was found also when directly comparing anodal with cathodal stimulation. Relative to sham stimulation, cathodal tDCS led to an increase in activation in the contralateral M1 and dorsal premotor cortex (PMd), as well as an increase in functional connectivity between these areas and the stimulated left M1. These increases were also found when directly comparing cathodal with anodal stimulation. Significant within-session linear decreases in activation occurred in all scan sessions. The after-effects of anodal tDCS arose primarily from a change in the slope of these decreases. In addition, following sham stimulation compared with baseline, a between-session decrease in task-related activity was found. The effects of cathodal tDCS arose primarily from a reduction of this normal decrease.  相似文献   

11.
PURPOSE: Weak direct currents induce lasting alterations of cortical excitability in animals and humans, which are controlled by polarity, duration of stimulation, and current strength applied. To evaluate its anticonvulsant potential, transcranial direct current stimulation (tDCS) was tested in a modified cortical ramp-stimulation model of focal epilepsy. METHODS: The threshold for localized seizure activity (TLS) was determined in freely moving rats by applying a single train of rising bipolar pulses through a unilateral epicranial electrode. After tDCS, TLS was determined repeatedly for 120 min at intervals of 15 min. The first group of animals received two sessions of cathodal tDCS at 100 microA, one for 30 and one for 60 min. A third session consisted of 60 min of anodal tDCS. A second group received cathodal tDCS at 200 microA for 15 and for 30 min, as well as anodal tDCS for 30 min. RESULTS: Sixty minutes of cathodal tDCS at 100 microA resulted in a TLS increase lasting for >or=2 h. When the intensity was increased to 200 microA, a similar lasting TLS elevation occurred after a stimulation of just 30-min duration. In contrast, anodal tDCS at identical stimulation durations and current strengths had no significant effect on TLS. CONCLUSIONS: The anticonvulsive effect induced by cathodal tDCS depends on stimulation duration and current strength and may be associated with the induction of alterations of cortical excitability that outlast the actual stimulation. The results lead to the reasonable assumption that cathodal tDCS could evolve as a therapeutic tool in drug-refractory partial epilepsy.  相似文献   

12.
《Clinical neurophysiology》2019,130(11):2038-2052
ObjectiveTo investigate whether anodal and cathodal transcranial direct current stimulation (tDCS) can modify cognitive performance and neural activity in healthy elderly and Alzheimer’s disease (AD) patients.MethodsFourteen healthy elderly and twelve AD patients performed a working memory task during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex. Behavioural performance, event-related potentials (P200, P300) and evoked cortical oscillations were studied as correlates of working memory.ResultsAnodal tDCS increased P200 and P300 amplitudes in healthy elderly. Cathodal tDCS increased P200 amplitude and frontal theta activity between 150 and 300 ms in AD patients. Improved working memory after anodal tDCS correlated with increased P300 in healthy elderly. In AD patients, slight tendencies between enhanced working memory and increased P200 after cathodal tDCS were observed.ConclusionsFunctional neural modulations were promoted by anodal tDCS in healthy elderly and by cathodal tDCS in AD patients.SignificanceInteraction between tDCS polarity and the neural state (e.g., hyper-excitability exhibited by AD patients) suggests that appropriate tDCS parameters (in terms of tDCS polarity) to induce behavioural improvements should be chosen based on the participant’s characteristics. Future studies using higher sample sizes should confirm and extend the present findings.  相似文献   

13.
《Brain stimulation》2014,7(6):800-806
BackgroundFlexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching.ObjectiveIntention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established.MethodsAnodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction.ResultsLeft PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found.ConclusionThe present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability.  相似文献   

14.
《Clinical neurophysiology》2014,125(3):585-592
ObjectiveTo evaluate the influence of frontal transcranial direct current stimulation (tDCS) on auditory mismatch negativity (MMN).MethodsMMN is an event related potential calculated by subtracting the amplitude of the evoked potentials in response to a “standard” stimulus from the evoked potentials produced by a rare “oddball” stimulus. Here we assessed the influence of anodal tDCS, cathodal tDCS or sham stimulation delivered over the right inferior frontal cortex on MMN in response to duration and frequency auditory deviants in 10 healthy subjects.ResultsMMN to frequency deviants was significantly reduced after anodal tDCS compared with sham or cathodal stimulation which did not change MMN to frequency deviants. Neither anodal nor cathodal tDCS had any effect on MMN to duration deviants.ConclusionsNon-invasive brain stimulation with tDCS can influence MMN. The differing networks known to be activated by duration and frequency deviants could account for the differential effect of tDCS on duration and frequency MMN.SignificanceNon-invasive brain stimulation could be a useful method to manipulate MMN for experimental purposes.  相似文献   

15.
We have recently shown that two techniques of brain stimulation - repetitive electrical stimulation (ES) (that mimics transcranial magnetic stimulation) and transcranial direct current stimulation (tDCS) - modify the velocity of cortical spreading depression (CSD) significantly. Herein we aimed to study the effects of these two techniques combined on CSD. Thirty-two Wistar rats were divided into four groups according to the treatment: sham tDCS/sham ES, sham tDCS/1 Hz ES, anodal tDCS/1 Hz ES, cathodal tDCS/1 Hz ES. Our findings show that 1 Hz ES reduced CSD velocity, and this effect was modified by either anodal or cathodal tDCS. Anodal tDCS induced larger effects than cathodal tDCS. Hereby CSD velocity was actually increased significantly after anodal tDCS/1 Hz ES. Our results show that combining two techniques of brain stimulation can modify significantly the effects of ES alone on cortical excitability as measured by the neurophysiological parameter of cortical spreading depression and therefore provide important insights into the effects of this new approach of brain stimulation on cortical activity.  相似文献   

16.
In the past few years, noninvasive cerebral stimulations have been used to modulate language task performance in healthy and aphasic patients. In this study, a dual transcranial direct current stimulation (tDCS) on anterior and posterior language areas was applied for 2 weeks to a patient with a possible crossed aphasia following a right hemisphere stroke. Inhibitory cathodal stimulation of the right Brodmann areas (BA) 44/45 and simultaneous anodal stimulation of the left BA 44/45 improved the patient’s performance in picture naming. Conversely, the same bilateral montage on BA 39/40 did not produce any significant improvement; finally, electrode polarity inversion over BA 39/40 yielded a further improvement compared with the first anterior stimulation. Our findings suggest that ipsilesional and contralesional areas could be useful in poststroke functional reorganization and provide new evidences for the therapeutic value of tDCS in aphasia.  相似文献   

17.
Cognitive functions such as numerical processing and spatial attention show varying degrees of lateralization. Transcranial direct current stimulation (tDCS) can be used to investigate how modulating cortical excitability affects performance of these tasks. This study investigated the effect of bi‐parietal tDCS on numerical processing, spatial and sustained attention. It was hypothesized that tDCS would have distinct effects on these tasks because of varying lateralization (numerical processing left, spatial attention right) and that these effects are partly mediated by modulation of sustained attention. A single‐blinded, crossover, sham‐controlled study was performed. Eighteen healthy right‐handed participants performed cognitive tasks during three sessions of oppositional parietal tDCS stimulation: sham; right anodal with left cathodal (RA/LC); and right cathodal with left anodal (RC/LA). Participants performed a number comparison task, a modified Posner task, a choice reaction task (CRT) and the rapid visual processing task (RVP). RA/LC tDCS impaired number comparison performance compared with sham, with slower responses to numerically close numbers pairs. RA/LC and RC/LA tDCS had distinct effects on CRT performance, specifically affecting vigilance level during the final block of the task. No effect of stimulation on the Posner task or RVP was found. It was demonstrated that oppositional parietal tDCS affected both numerical performance and vigilance level in a polarity‐dependent manner. The effect of tDCS on numerical processing may partly be due to attentional effects. The behavioural effects of tDCS were specifically observed under high task demands, demonstrating the consequences of an interaction between stimulation type and cognitive load.  相似文献   

18.
《Brain stimulation》2014,7(1):113-121
In this study we tested the hypothesis whether a lasting change in the excitability of cortical output circuits can be obtained in healthy humans by combining a peripheral nerve stimulation during a concomitant depolarization and/or hyperpolarization of motor cortex. To reach this aim we combined two different neurophysiological techniques each of them able to induce a lasting increase of cortical excitability by them self: namely median nerve repetitive electrical stimulation (rEPNS) and transcranial direct current stimulation (tDCS). Ten normal young volunteers were enrolled in the present study. All subjects underwent five different protocols of stimulation: (1, 2) tDCS alone (anodal or cathodal); (3) Sham tDCS plus rEPNS; (4, 5) anodal or cathodal tDCS plus rEPNS. The baseline MEP amplitude from abductor pollicis brevis (APB) and flexor carpi radialis (FCR) muscle, the FCR H-reflex were compared with that obtained immediately after and 10, 20, 30, 60 min after the stimulation protocol. Anodal tDCS alone induced a significant transient increase of MEP amplitude immediately after the end of stimulation while anodal tDCS + rEPNS determined MEP changes which persisted for up 60 min. Cathodal tDCS alone induced a significant reduction of MEP amplitude immediately after the end of stimulation while cathodal tDCS + rEPNS prolonged the effects for up to 60 min. Sham tDCS + rEPNS did not induce significant changes in corticospinal excitability. Anodal or cathodal tDCS + rEPNS and sham tDCS + rEPNS caused a lasting facilitation of H-reflex. These findings suggest that by providing afferent input to the motor cortex while its excitability level is increased or decreased by tDCS may be a highly effective means for inducing an enduring bi-directional plasticity. The mechanism of this protocol may be complex, involving either cortical and spinal after effects.  相似文献   

19.
Recent studies have shown that repetitive transcranial magnetic stimulation (rTMS) over the premotor cortex (PM) modifies the excitability of the ipsilateral primary motor cortex (M1). Transcranial direct current stimulation (tDCS) is a new method to induce neuroplasticity in humans non-invasively. tDCS generates neuroplasticity directly in the cortical area under the electrode, but might also induce effects in distant brain areas, caused by activity modulation of interconnected areas. However, this has not yet been tested electrophysiologically. We aimed to study whether premotor tDCS can modify the excitability of the ipsilateral M1 via cortico-cortical connectivity. Sixteen subjects received cathodal and anodal tDCS of the PM and eight subjects of the dorsolateral prefrontal cortex. Premotor anodal, but not premotor cathodal or prefrontal tDCS, modified selectively short intracortical inhibition/intracortical facilitation (SICI/ICF), while motor thresholds, single test-pulse motor-evoked potential and input–output curves were stable throughout the experiments. Specifically, anodal tDCS decreased intracortical inhibition and increased paired-pulse excitability. The selective influence of premotor tDCS on intracortical excitability of the ipsilateral M1 suggests a connectivity-driven effect of tDCS on remote cortical areas. Moreover, this finding indirectly substantiates the efficacy of tDCS to modulate premotor excitability, which might be of interest for applications in diseases accompanied by pathological premotor activity.  相似文献   

20.
Transcranial direct current stimulation (tDCS) has the capacity to enhance force output during a short‐lasting maximal voluntary contraction (MVC) as well as during a long‐lasting submaximal voluntary contraction until task failure. However, its effect on an intermittent maximal effort is not known. We hypothesized that anodal tDCS applied during or before a maximal fatigue task increases the amplitude of maximal voluntary contraction (aMVC) and voluntary activation (VA) in young healthy male participants. We measured VA, potentiated twitch at rest (Ptw), root mean square electromyogram (EMG), and aMVC during a fatiguing task that consisted of 35 × 5 s MVC of knee extensors and was performed during tDCS or 10 min after the end of tDCS (sham, anodal, or cathodal treatments). No effect of tDCS was detected on the first MVC but, when compared to sham tDCS, both anodal tDCS and cathodal tDCS reduced aMVC when tDCS was applied during the task (p < .001) and only anodal tDCS reduced aMVC when applied 10 min before the task (p = .03). The reductions in aMVC were accompanied by reductions in EMG of M. vastus lateralis for both tDCS treatments as well as in Ptw only during anodal tDCS and in VA only during cathodal tDCS. Both cathodal tDCS and anodal tDCS impaired force production during an intermittent fatiguing MVC task. The detrimental effects were stronger when tDCS was applied during the task. Here, cathodal and anodal tDCS specifically affected Ptw and VA indicating different underlying mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号