首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vascularization is thought to be a principle obstacle in the reconstruction of skeletal muscle defects. Long‐term survival of reconstructed skeletal muscle is dependent on good vascularization. In this study, we upregulated angiogenic gene expression in myoblasts in an attempt to promote vascularization during repair of skeletal muscle defects. Skeletal myoblasts were isolated and expanded from newborn male Sprague–Dawley (SD) rats. The cells were transfected with human vascular endothelial growth factor 165 (VEGF‐165) or human stromal cell‐derived factor 1 (SDF‐1), using Lipofectamine? 2000 transfection reagent, prior to seeding onto calf collagen scaffolds. Gene and protein overexpression was verified by ELISA, RT–PCR and western blot analysis. Cell‐seeded scaffolds were transplanted into back muscle defects in female SD rats. At weeks 2, 4 and 8 after transplantation, Y chromosome detection was used to observe the survival of growth factor‐producing cells within the scaffolds in vivo. Capillary density was investigated using microvessel density detection, haematoxylin and eosin (H&E) staining and immunohistochemical staining. We found that vascularization was enhanced by transfected myoblasts compared with non‐transfected myoblasts. In addition, VEGF‐165 and SDF‐1 had a synergistic effect on vascularization during repair of skeletal muscle defects in vivo. In conclusion, we have combined myoblast‐seeded collagen sponge with gene therapy, resulting in a promising approach for the construction of well‐vascularized skeletal muscle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We have isolated a population of muscle-derived stem cells (MDSCs) that, when compared with myoblasts, display an improved regeneration capacity, exhibit better cell survival, and improve myogenesis and angiogenesis. In addition, we and others have observed that the origin of the MDSCs may reside within the blood vessel walls (endothelial cells and pericytes). Here, we investigated the role of vascular endothelial growth factor (VEGF)–mediated angiogenesis in MDSC transplantation–based skeletal muscle regeneration in mdx mice (an animal model of muscular dystrophy). We studied MDSC and MDSC transduced to overexpress VEGF; no differences were observed in vitro in terms of phenotype or myogenic differentiation. However, after in vivo transplantation, we observe an increase in angiogenesis and endogenous muscle regeneration as well as a reduction in muscle fibrosis in muscles transplanted with VEGF-expressing cells when compared to control cells. In contrast, we observe a significant decrease in vascularization and an increase in fibrosis in the muscles transplanted with MDSCs expressing soluble forms-like tyrosine kinase 1 (sFlt1) (VEGF-specific antagonist) when compared to control MDSCs. Our results indicate that VEGF-expressing cells do not increase the number of dystrophin-positive fibers in the injected mdx muscle, when compared to the control MDSCs. Together the results suggest that the transplantation of VEGF-expressing MDSCs improved skeletal muscle repair through modulation of angiogenesis, regeneration and fibrosis in the injected mdx skeletal muscle.  相似文献   

3.
A major limitation with current tissue‐engineering approaches is creating functionally vascularized constructs that can successfully integrate with the host; this often leads to implant failure, due to avascular necrosis. In order to overcome this, the objective of the present work was to develop a method to incorporate growth factor‐eluting alginate microparticles (MPs) into freeze‐dried, collagen‐based scaffolds. A collagen–hydroxyapatite (CHA) scaffold, previously optimized for bone regeneration, was functionalized for the sustained delivery of an angiogenic growth factor, vascular endothelial growth factor (VEGF), with the aim of facilitating angiogenesis and enhancing bone regeneration. VEGF was initially encapsulated in alginate MPs by spray‐drying, producing particles of < 10 µm in diameter. This process was found to effectively encapsulate and control VEGF release while maintaining its stability and bioactivity post‐processing. These VEGF‐MPs were then incorporated into CHA scaffolds, leading to homogeneous distribution throughout the interconnected scaffold pore structure. The scaffolds were capable of sustained release of bioactive VEGF for up to 35 days, which was proficient at increasing tubule formation by endothelial cells in vitro. When implanted in vivo in a rat calvarial defect model, this scaffold enhanced vessel formation, resulting in increased bone regeneration compared to empty‐defect and VEGF‐free scaffolds. This biologically functionalized scaffold, composed entirely of natural‐based materials, may offer an ideal platform to promote angiogenesis and tissue regeneration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Human adult skeletal muscle has a limited ability to regenerate after injury and therapeutic options for volumetric muscle loss are few. Technologies to enhance regeneration of tissues generally rely upon bioscaffolds to mimic aspects of the tissue extracellular matrix (ECM). In the present study, silk fibroins from four Lepidoptera (silkworm) species engineered into three‐dimensional scaffolds were examined for their ability to support the differentiation of primary human skeletal muscle myoblasts. Human skeletal muscle myoblasts (HSMMs) adhered, spread and deposited extensive ECM on all the scaffolds, but immunofluorescence and quantitative polymerase chain reaction analysis of gene expression revealed that myotube formation occurred differently on the various scaffolds. Bombyx mori fibroin scaffolds supported formation of long, well‐aligned myotubes, whereas on Antheraea mylitta fibroin scaffolds the myotubes were thicker and shorter. Myotubes were oriented in two perpendicular layers on Antheraea assamensis scaffolds, and scaffolds of Philosamia/Samia ricini (S. ricini) fibroin poorly supported myotube formation. These differences were not caused by fibroin composition per se, as HSMMs adhered to, proliferated on and formed striated myotubes on all four fibroins presented as two‐dimensional fibroin films. The Young's modulus of A. mylitta and B. mori scaffolds mimicked that of normal skeletal muscle, but A. assamensis and S. ricini scaffolds were more flexible. The present study demonstrates that although myoblasts deposit matrix onto fibroin scaffolds and create a permissive environment for cell proliferation, a scaffold elasticity resembling that of normal muscle is required for optimal myotube length, alignment, and maturation. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. StartCopTextStartCopText© 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.  相似文献   

6.
After skeletal muscle injury, neutrophils, monocytes, and macrophages infiltrate the damaged area; this is followed by rapid proliferation of myoblasts derived from muscle stem cells (also called satellite cells). Although it is known that inflammation triggers skeletal muscle regeneration, the underlying molecular mechanisms remain incompletely understood. In this study, we show that granulocyte colony-stimulating factor (G-CSF) receptor (G-CSFR) is expressed in developing somites. G-CSFR and G-CSF were expressed in myoblasts of mouse embryos during the midgestational stage but not in mature myocytes. Furthermore, G-CSFR was specifically but transiently expressed in regenerating myocytes present in injured adult mouse skeletal muscle. Neutralization of endogenous G-CSF with a blocking antibody impaired the regeneration process, whereas exogenous G-CSF supported muscle regeneration by promoting the proliferation of regenerating myoblasts. Furthermore, muscle regeneration was markedly impaired in G-CSFR-knockout mice. These findings indicate that G-CSF is crucial for skeletal myocyte development and regeneration and demonstrate the importance of inflammation-mediated induction of muscle regeneration.  相似文献   

7.
Vascularization is a major hurdle for growing three‐dimensional tissue engineered constructs. This study investigated the mechanisms involved in hypoxic preconditioning of primary rat myoblasts in vitro and their influence on local angiogenesis postimplantation. Primary rat myoblast cultures were exposed to 90 min hypoxia at <1% oxygen followed by normoxia for 24 h. Real time (RT) polymerase chain reaction evaluation indicated that 90 min hypoxia resulted in significant downregulation of miR‐1 and miR‐206 (p < 0.05) and angiopoietin‐1 (p < 0.05) with upregulation of vascular endothelial growth factor‐A (VEGF‐A; p < 0.05). The miR‐1 and angiopoietin‐1 responses remained significantly downregulated after a 24 h rest phase. In addition, direct inhibition of miR‐206 in L6 myoblasts caused a significant increase in VEGF‐A expression (p < 0.05), further establishing that changes in VEGF‐A expression are influenced by miR‐206. Of the myogenic genes examined, MyoD was significantly upregulated, only after 24 h rest (p < 0.05). Preconditioned or control myoblasts were implanted with Matrigel? into isolated bilateral tissue engineering chambers incorporating a flow‐through epigastric vascular pedicle in severe combined immunodeficiency mice and the chamber tissue harvested 14 days later. Chambers implanted with preconditioned myoblasts had a significantly increased percentage volume of blood vessels (p = 0.0325) compared with chambers implanted with control myoblasts. Hypoxic preconditioned myoblasts promote vascularization of constructs via VEGF upregulation and downregulation of angiopoietin‐1, miR‐1 and miR‐206. The relatively simple strategy of hypoxic preconditioning of implanted cells ‐ including non‐stem cell types – has broad, future applications in tissue engineering of skeletal muscle and other tissues, as a technique to significantly increase implant site angiogenesis.  相似文献   

8.
Capito RM  Spector M 《Gene therapy》2007,14(9):721-732
This study investigated the use of a type II collagen-glycosaminoglycan (CG) scaffold as a nonviral gene delivery vehicle for facilitating gene transfer to seeded adult articular chondrocytes to produce an elevated, prolonged and local expression of insulin-like growth factor (IGF)-1 for enhancing cartilage regeneration. Gene-supplemented CG (GSCG) scaffolds were synthesized by two methods: (1) soaking a pre-cross-linked CG scaffold in a plasmid solution followed by a freeze-drying process, and (2) chemically cross-linking the plasmid DNA to the scaffold. Two different plasmid solutions were also compared: (1) naked plasmid IGF-1 alone, and (2) plasmid IGF-1 with a lipid transfection reagent. Plasmid release studies revealed that cross-linking the plasmid to the CG scaffold prevented passive bolus release of plasmid and resulted in vector release controlled by scaffold degradation. In chondrocyte-seeded GSCG scaffolds, prolonged and elevated IGF-1 expression was enhanced by using the cross-linking method of plasmid incorporation along with the addition of the transfection reagent. The sustained level of IGF-1 overexpression resulted in significantly higher amounts of tissue formation, chondrocyte-like cells, GAG accumulation, and type II collagen production, compared to control scaffolds. These findings demonstrate that CG scaffolds can serve as nonviral gene delivery vehicles of microgram amounts of IGF-1 plasmid (<10 microg per scaffold) to provide a locally sustained therapeutic level of overexpressed IGF-1, resulting in enhanced cartilage formation.  相似文献   

9.
We examined whether expediting angiogenesis in porous polycaprolactone (PCL) scaffolds could reduce hypoxia and consequently improve the survival of transplanted enteric cells. To accelerate angiogenesis, we delivered vascular endothelial growth factor (VEGF) using PCL scaffolds with surface crosslinked heparin. The fabrication and characterization of scaffolds has been reported in our previous study. Enteric cells, isolated from intestinal tissue of neonatal mice and expanded in vitro for 10 days, exhibited high expression levels for contractile protein α‐smooth muscle actin and desmin. The cultured enteric cells were seeded in scaffolds and were implanted subcutaneously in immunodeficient mice for 7 and 14 days. At day 7, the heparin‐modified PCL scaffolds with VEGF exhibited significantly increased angiogenesis and engraftment of enteric cells, with a simultaneous reduction in hypoxia. At day 14, the blood vessels grew across the entire thickness of the scaffold and resulted in a significantly diminished hypoxic environment; however, the transplanted cell density did not increase further. In conclusion, the enhancement of angiogenesis reduced cellular hypoxia and improved the engraftment of enteric cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2−/− γC−/− immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.  相似文献   

11.
Myoblast transplantation for cardiac repair has generated beneficial results in both animals and humans; however, poor viability and poor engraftment of myoblasts after implantation in vivo limit their regeneration capacity. We and others have identified and isolated a subpopulation of skeletal muscle-derived stem cells (MDSCs) that regenerate skeletal muscle more effectively than myoblasts. Here we report that in comparison with a myoblast population, MDSCs implanted into infarcted hearts displayed greater and more persistent engraftment, induced more neoangiogenesis through graft expression of vascular endothelial growth factor, prevented cardiac remodeling, and elicited significant improvements in cardiac function. MDSCs also exhibited a greater ability to resist oxidative stress-induced apoptosis compared to myoblasts, which may partially explain the improved engraftment of MDSCs. These findings indicate that MDSCs constitute an alternative to other myogenic cells for use in cardiac repair applications.  相似文献   

12.
背景:有报道以生物可降解的胶原盘或聚L-乳酸、聚羟基乙酸、聚L-乳酸/聚羟基乙酸共聚物等作为骨骼肌组织工程的支架材料,各有优缺点,不能完全满足骨骼肌组织工程的需要。目的:探讨静电纺丝纳米纤维膜作为骨骼肌组织工程支架材料的可行性。方法:制备7种不同组分的静电纺丝纳米纤维膜,以其浸提液为培养基培养第3代SD乳鼠成肌细胞,以含体积分数20%新生小牛血清的F12培养基培养的为对照。采用MTT法和扫描电镜检测成肌细胞在各组材料的黏附及生长情况。结果与结论:各组分静电纺丝纳米纤维膜吸光度值与对照组间差异无显著性意义(P>0.05)。各组分静电纺丝纳米纤维膜组成肌细胞黏附率差异有显著性意义(P<0.05)。扫描电镜与上述结果一致。含70%聚乳酸+20%蚕丝蛋白+10%胶原组成电纺丝纳米纤维膜组可见大量成肌细胞黏附,呈梭形,两极伸展,排列规律,效果最好。其他各组细胞少,形态不规则,似衰退期成肌细胞。提示静电纺丝纳米纤维膜无细胞毒性,对成肌细胞的增殖无影响,成肌细胞能良好地黏附;以70%聚乳酸+20%蚕丝蛋白+10%胶原组分效果最佳。  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. We have recently shown that human mesenchymal stem cells (hMSCs) modified to release glial cell line-derived neurotrophic factor (GDNF) decrease disease progression in a rat model of ALS when delivered to skeletal muscle. In the current study, we determined whether or not this effect could be enhanced by delivering GDNF in concert with other trophic factors. hMSC engineered to secrete GDNF (hMSC-GDNF), vascular endothelial growth factor (hMSC-VEGF), insulin-like growth factor-I (hMSC-IGF-I), or brain-derived neurotrophic factor (hMSC-BDNF), were prepared and transplanted bilaterally into three muscle groups. hMSC-GDNF and hMSC-VEGF prolonged survival and slowed the loss of motor function, but hMSC-IGF-I and hMSC-BDNF did not have any effect. We then tested the efficacy of a combined ex vivo delivery of GDNF and VEGF in extending survival and protecting neuromuscular junctions (NMJs) and motor neurons. Interestingly, the combined delivery of these neurotrophic factors showed a strong synergistic effect. These studies further support ex vivo gene therapy approaches for ALS that target skeletal muscle.  相似文献   

14.
Skeletal muscle defects are notoriously difficult to manage and the current methods used are associated with many limitations. Engineered skeletal muscle tissue has the potential to provide a solution that circumvents these disadvantages. Our previous work has identified a novel three‐dimensionally aligned degradable phosphate glass fibre scaffold that can support myoblast differentiation and maturation. This current study has further developed the scaffold by encasing the fibres within a collagen gel to produce a smart composite scaffold that provides key biomimetic cues and supports the formation of a tissue that may be implanted in vivo. The constructs formed were approximately 30 mm long and microscopic examination confirmed favourable unidirectional cell alignment. There was good cell survival, and gene expression studies demonstrated upregulation of the myogenic regulatory factors and developmental and adult myosin heavy chain isoforms indicating myofibre formation and maturation respectively. Compared with the three‐dimensional glass fibre scaffolds, the composite scaffolds had later gene upregulation, however, the use of collagen gels reinforced with degradable aligned glass fibres offers the opportunity to create a tissue analogue that can be easily manipulated. Furthermore, the glass fibre ends could support tendon/bone formation, and the channels formed as the fibres degrade could allow for vascular ingrowth. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Positively‐charged oligo[poly(ethylene glycol)fumarate] (OPF+) is a biodegradable hydrogel used for spinal cord injury repair. We compared scaffolds containing primary Schwann cells (SCs) to scaffolds delivering SCs genetically modified to secrete high concentrations of glial cell‐derived neurotrophic factor (GDNF). Multichannel OPF+ scaffolds loaded with SCs or GDNF‐SCs were implanted into transected rat spinal cords for 4 weeks. GDNF‐SCs promoted regeneration of more axons into OPF+ scaffolds (2773.0 ± 396.0) than primary SC OPF+ scaffolds (1666.0 ± 352.2) (p = 0.0491). This increase was most significant in central and ventral‐midline channels of the scaffold. Axonal remyelination was quantitated by stereologic analysis. Increased myelination of regenerating axons was observed in the GDNF‐SC group. Myelinating cell and axon complexes were formed by host SCs and not by implanted cells or host oligodendrocytes. Fast Blue retrograde tracing studies determined the rostral‐caudal directionality of axonal growth. The number of neurons that projected axons rostrally through the GDNF‐SC scaffolds was higher (7929 ± 1670) than in animals with SC OPF+ scaffolds (1069 ± 241.5) (p < 0.0001). The majority of ascending axons were derived from neurons located more than 15 mm from the scaffold‐cord interface, and were identified to be lumbosacral intraspinal motor neurons. Transected animals with GDNF‐SC OPF+ scaffolds partially recovered locomotor function at weeks 3 and 4 following surgery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Muscle injury and repair   总被引:4,自引:0,他引:4  
Muscle injury triggers a sequence of events that begin with a host inflammatory response that is followed by muscle fiber regeneration and new collagen synthesis. The inflammatory response involves at least three types of cells, including neutrophils, ED1+ macrophages, and ED2+ macrophages. A host of growth factors and cytokines appear to play a role in the inflammatory process and repair of the damaged tissue. Satellite cells play an integral role in normal development of skeletal muscle by providing a source for postmitotic myonuclei. In addition, the satellite cell is essential to the repair of injured muscle by serving as a source of myoblasts for fiber regeneration. At the same time muscle fiber regeneration is occurring, there is expression of types I and III collagen that under certain circumstances can lead to scarring and fibrosis. Current studies of treatment of muscle injury often incorporate investigations of basic principles of injury and repair together with clinical experience and principles in an effort to coordinate basic science and outcome studies.  相似文献   

18.
背景:有报道以生物可降解的胶原盘或聚L-乳酸、聚羟基乙酸、聚L-乳酸/聚羟基乙酸共聚物等作为骨骼肌组织工程的支架材料,各有优缺点,不能完全满足骨骼肌组织工程的需要。目的:探讨静电纺丝纳米纤维膜作为骨骼肌组织工程支架材料的可行性。方法:制备7种不同组分的静电纺丝纳米纤维膜,以其浸提液为培养基培养第3代SD乳鼠成肌细胞,以含体积分数20%新生小牛血清的F12培养基培养的为对照。采用MTT法和扫描电镜检测成肌细胞在各组材料的黏附及生长情况。结果与结论:各组分静电纺丝纳米纤维膜吸光度值与对照组间差异无显著性意义(P〉0.05)。各组分静电纺丝纳米纤维膜组成肌细胞黏附率差异有显著性意义(P〈0.05)。扫描电镜与上述结果一致。含70%聚乳酸+20%蚕丝蛋白+10%胶原组成电纺丝纳米纤维膜组可见大量成肌细胞黏附,呈梭形,两极伸展,排列规律,效果最好。其他各组细胞少,形态不规则,似衰退期成肌细胞。提示静电纺丝纳米纤维膜无细胞毒性,对成肌细胞的增殖无影响,成肌细胞能良好地黏附;以70%聚乳酸+20%蚕丝蛋白+10%胶原组分效果最佳。  相似文献   

19.
Binary blend polymers offer the opportunity to combine different desirable properties into a single scaffold, to enhance function within the field of tissue engineering. Previous in vitro and murine in vivo analysis identified a polymer blend of poly(l ‐lactic acid)–poly(ε‐caprolactone) (PLLA:PCL 20:80) to have characteristics desirable for bone regeneration. Polymer scaffolds in combination with marrow‐derived skeletal stem cells (SSCs) were implanted into mid‐shaft ovine 3.5 cm tibial defects, and indices of bone regeneration were compared to groups implanted with scaffolds alone and with empty defects after 12 weeks, including micro‐CT, mechanical testing and histological analysis. The critical nature of the defect was confirmed via all modalities. Both the scaffold and scaffold/SSC groups showed enhanced quantitative bone regeneration; however, this was only found to be significant in the scaffold/SSCs group (p = 0.04) and complete defect bridging was not achieved in any group. The mechanical strength was significantly less than that of contralateral control tibiae (p < 0.01) and would not be appropriate for full functional loading in a clinical setting. This study explored the hypothesis that cell therapy would enhance bone formation in a critical‐sized defect compared to scaffold alone, using an external fixation construct, to bridge the scale‐up gap between small animal studies and potential clinical translation. The model has proved a successful critical defect and analytical techniques have been found to be both valid and reproducible. Further work is required with both scaffold production techniques and cellular protocols in order to successfully scale‐up this stem cell/binary blend polymer scaffold. © 2015 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.  相似文献   

20.
There has been a growing demand for bone grafts for correction of bone defects in complicated fractures or tumours in the craniofacial region. Soft flexible membrane like material that could be inserted into defect by less invasive approaches; promote osteoconductivity and act as a barrier to soft tissue in growth while promoting bone formation is an attractive option for this region. Electrospinning has recently emerged as one of the most promising techniques for fabrication of extracellular matrix such as nano‐fibrous scaffolds that can serve as a template for bone formation. To overcome the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA)‐poly (ε) caprolactone (PCL)‐Hydroxyapatite based bioceramic (HAB), namely, PVA‐PCL‐HAB. The scaffold prepared by dual electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic PCL by combination with a hydrophilic PVA and the HAB can contribute to enhance osteoconductivity. We characterized the physicochemical and biocompatibility properties of the new scaffold material. Our results indicate PVA‐PCL‐HAB scaffolds support attachment and growth of stromal stem cells; [human bone marrow skeletal (mesenchymal) stem cells and dental pulp stem cells]. In addition, the scaffold supported in vitro osteogenic differentiation and in vivo vascularized bone formation. Thus, PVA‐PCL‐HAB scaffold is a suitable potential material for therapeutic bone regeneration in dentistry and orthopaedics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号