首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
A total of 16 water samples from four rivers in Japan were examined for their agonistic activities against five human nuclear receptors (estrogen receptor [ER] α, thyroid hormone receptor α, retinoic acid receptor [RAR] α, retinoid X receptor α, and vitamin D receptor) by using a yeast two-hybrid assay. The results suggest that the river environment is contaminated with endocrine disrupting chemicals (EDCs) that can interact with a variety of nuclear receptors and that contamination with those that have RAR agonistic activity may be more serious than contamination with well-known EDCs that act as ER agonists.  相似文献   

3.
The effects of vitamin A nutritional status on the levels of expression of retinoic acid nuclear receptors (RAR), and the retinoic acid-responsive gene, tissue transglutaminase, were determined in rats. Weanling male Sprague-Dawley rats fed a vitamin A-deficient diet for approximately 7 wk developed vitamin A deficiency, as confirmed by the depletion of liver retinol and retinyl palmitate. Controls were fed the same diet supplemented with 24 mg/kg retinyl acetate. The levels of expression of RAR beta mRNA were approximately 80% lower in bladder, brain, liver, lung and trachea and those of RAR gamma mRNA were approximately 50% lower in bladder, lung and trachea of rats fed the vitamin A-deficient diet than in controls. The levels of expression of RAR alpha mRNA were approximately 90% lower in brain and approximately 30% greater in liver, kidney, intestine and lung of rats fed the vitamin A-deficient diet. Vitamin A deficiency also resulted in reduced expression of tissue transglutaminase in the bladder, lungs and trachea, which paralleled the effects observed for RAR beta and RAR gamma. When vitamin A-deficient rats were subsequently fed a retinol-deficient diet supplemented with retinoic acid for 4 wk, the expression of RAR (beta and gamma) and tissue transglutaminase returned to the control levels. These results indicate that vitamin A nutritional status in rats influences the expression of both RAR and tissue transglutaminase in certain tissues.  相似文献   

4.
BACKGROUND: Retinoic acid is necessary for the growth and differentiation of organisms and exerts its molecular actions by binding to specific nuclear receptors that belong to the thyroid-steroid hormone receptor superfamily. Steroids and retinoids control the differentiation of the female reproductive epithelia: estrogen maintains the squamous differentiation of vaginal and ectocervical epithelia, whereas retinoic acid maintains the simple columnar endocervical and uterine epithelia. These lining epithelia transform into a squamous metaplastic phenotype in vitamin A-deficient animals. Furthermore, mortality due to vitamin A deficiency is usually attributed to infection resulting in part from dysfunction of the protective epithelia. OBJECTIVE: Our objective was to test the hypothesis that estrogen depletion might change the squamous metaplastic response to vitamin A deficiency and affect animal survival. DESIGN: We used female SENCAR mice maintained on a purified vitamin A-deficient diet containing either 0 or 3 microg retinoic acid/g diet. Mice were either ovariectomized or intact. Squamous cells arising in the normally simple columnar epithelium of the endocervix and uterine cavity were monitored by keratin 5 expression with immunohistochemistry. RESULTS: Ovariectomy did not change the time to onset of vitamin A deficiency. It increased the number of squamous metaplastic cells and prolonged survival in mice consuming a vitamin A-deficient diet by as much as 40%. CONCLUSIONS: Factors other than epithelial differentiation per se control survival outcome of vitamin A-deficient mice. The results also show a significant increase in longevity of vitamin A- deficient mice when ovariectomized.  相似文献   

5.
Recent studies have revealed that retinoids play an important role in the adult central nervous system and cognitive functions. Previous investigations in mice have shown that vitamin A deficiency (VAD) generates a hypo-expression of retinoic acid (RA, the active metabolite of vitamin A) receptors and of neurogranin (RC3, a neuronal protein involved in synaptic plasticity) and a concomitant selective behavioural impairment. Knowing that RC3 is both a triiodothyronine (T3) and a RA target gene, and in consideration of the relationships between the signalling pathways of retinoids and thyroid hormones, the involvement of T3 on RA signalling functionality in VAD was investigated. Thus, the effects of vitamin A depletion and subsequent administration with RA and/or T3 on the expression of RA nuclear receptors (RAR, RXR), T3 nuclear receptor (TR) and on RC3 in the brain were examined. Rats fed a vitamin A-deficient diet for 10 weeks exhibited a decreased expression of RAR, RXR and TR mRNA and of RC3 mRNA and proteins. RA administration to these vitamin A-deficient rats reversed only the RA hypo-signalling in the brain. Interestingly, T3 is able to restore its own brain signalling simultaneously with that of vitamin A and the hypo-expression of RC3. These results obtained in vivo revealed that one of the consequences of VAD is a dysfunction in the thyroid signalling pathway in the brain. This seems of crucial importance since the down regulation of RC3 observed in the depleted rats was corrected only by T3.  相似文献   

6.
Function of vitamin A in vertebrate embryonic development   总被引:19,自引:0,他引:19  
  相似文献   

7.
Chronic alcohol intake interferes with retinoid metabolism and signaling   总被引:15,自引:0,他引:15  
Chronic and excessive ethanol consumption is associated with cellular proliferation, fibrosis, cirrhosis, and cancer of the liver. The critical event in early alcohol-induced hepatic injury is an alcohol-induced activation (cell proliferation and increased fibrogenesis) of hepatic stellate cells. However, the mechanisms by which alcohol causes proliferative activation in hepatic stellate cells have not been identified. An important characteristic of alcohol-induced injury is impaired vitamin A nutritional status. The demonstration that retinoic acid is the most physiologically active derivative of vitamin A and the discovery of retinoic acid receptors provide a mechanistic basis for understanding the actions of vitamin A and alcohol on hepatic cell proliferation. Recent studies have demonstrated that chronic alcohol intake can reduce hepatic retinoic acid concentrations, diminish retinoid signaling, and enhance activator protein-1 (AP-1 (c-Jun and c-Fos)) expression in rat liver. These are the possible biochemical and molecular mechanisms whereby ethanol ingestion results in hepatic stellate cell proliferative activation and hepatic fibrogenesis.  相似文献   

8.
Alcohol, vitamin A, and cancer.   总被引:1,自引:0,他引:1  
Xiang-Dong Wang 《Alcohol》2005,35(3):251-258
Chronic and excessive alcohol intake is associated with an increased risk of a variety of cancers (e.g., oral cavity, larynx, esophagus, liver, lung, colorectal, and breast). Retinoids (vitamin A and its derivatives) are known to exert profound effects on cellular growth, cellular differentiation, and apoptosis, thereby controlling carcinogenesis. Lower hepatic vitamin A levels have been well documented in alcoholics. Substantial research has been done, investigating the mechanisms by which excessive alcohol interferes with retinoid metabolism. More specifically, (1) alcohol acts as a competitive inhibitor of vitamin A oxidation to retinoic acid involving alcohol dehydrogenases and acetaldehyde dehydrogenases; (2) alcohol-induced cytochrome P450 enzymes (CYP), particularly CYP2E1, enhance catabolism of vitamin A and retinoic acid; and (3) alcohol alters retinoid homeostasis by increasing vitamin A mobilization from liver to extrahepatic tissues. As a consequence, long-term and excessive alcohol intake results in impaired status of retinoic acid, the most active derivative of vitamin A and a ligand for both retinoic acid receptors and retinoid X receptors. Moreover, this alcohol-impaired retinoic acid homeostasis interferes with (1) retinoic acid signaling (e.g., down-regulates retinoid target gene expression) and (2) retinoic acid "cross-talk" with the mitogen-activated protein kinase [(MAPK), including Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 kinase] signaling pathway. In addition, restoration of retinoic acid homeostasis by retinoic acid supplementation restored the normal status of both retinoid and MAPK signaling, thereby maintaining normal cell proliferation and apoptosis in alcohol-fed animals. These observations would have implications for the prevention of alcohol-promoted liver (and peripheral tissue) carcinogenesis. However, a better understanding of the alcohol-retinoid interaction and the molecular mechanisms involved is needed before retinoids can be pursued in the prevention of alcohol-related carcinogenesis in human beings, particularly regarding the detrimental effects of polar metabolites of vitamin A.  相似文献   

9.
10.
11.
Zinc is thought to be an integral part of nuclear receptor proteins, stabilizing them in a conformation required for binding to target genes. However, we have recently shown that restriction of zinc availability with a chelator (diethylenetriaminepenta-acetic acid, DTPA) enhances, rather than inhibits, the ability of thyroid hormone to induce growth hormone mRNA expression in GH3 rat pituitary tumor cells. In this report, we have extended these observations by showing that a prolonged (48 h) exposure to DTPA is required to see these effects. The induction by DTPA can be reversed by subsequent addition of zinc, but again, this reversal is slow. A second chelator, EDTA, can also induce growth hormone gene expression in the presence of thyroid hormone, though it is less potent than DTPA. Other agents which act via the nuclear receptor pathway, all-trans and 9-cis retinoic acid, also induce expression of growth hormone mRNA. Addition of DTPA amplifies these effects in a zinc-dependent manner. Thus chelation of zinc potentiates the action of ligands acting via nuclear receptors on growth hormone gene expression. The delayed nature of the response suggests an indirect effect.  相似文献   

12.
13.
14.
15.
16.
Vitamin A is the first defined vitamin and is also known as an anti-inflammatory micronutrient. Although the primary biological function is preservation of epithelial tissue integrity, vision and growth, vitamin A also plays a role in immune system regulation. It is known that susceptibility to infections increases in developing countries due to vitamin A deficiency. Therefore, the purpose of this review is to evaluate the role of vitamin A on the immune system in line with current studies. In this review, we focused on the immunobiological effects of vitamin A and its precursors. Vitamin A refers to retinoids and carotenoids, but both function in the body through the most active form, all trans retinoic acid. All trans retinoic acid has the highest affinity of nuclear retinoic acid receptor. Reports from in-vivo and in-vitro studies shown that the formation of retinoic acid/retinoic acid receptor complex is important in the generation of innate and adaptive immune cell response. In addition to immune cell response, vitamin A also plays an important role in mucus secretion, morphological formation and functional maturation of epithelial cells. In this way, vitamin A appears to contribute to immune development by regulating immune cell response and providing mechanistic defense. Vitamin A has received particular attention in recent years as the vitamin have been shown to have a crucial effect on the immune response. Although more randomized controlled studies are needed, data from observational human studies have shown that vitamin A is associated with infectious, inflammatory, allergic diseases and cancers.  相似文献   

17.
18.
19.
20.
The purpose of this study was to differentiate between the effects of the amount and the type of dietary lipids on the expression of the retinoic acid receptor (RAR), but also the peroxisome proliferator-activated receptor (PPAR) and the receptor of the 9-cis retinoic acid (retinoid X receptor (RXR)) in rat liver. Six groups of eight rats (5-weeks old) were fed during 4 weeks on the following diets: control 50 g vegetable oil/kg, high-fat diet 250 g vegetable oil/kg. These oils were either coconut oil (rich in saturated fatty acids) or olive oil (rich in monounsaturated fatty acids) or safflower oil (rich in polyunsaturated fatty acids, mainly as n-6). The three high-fat diets induced a significant decrease of the maximal binding capacity of RAR and of the abundance of RAR beta mRNA. Simultaneously, an increased expression of PPAR alpha mRNA was observed while no significant difference on abundance of RXR alpha mRNA was observed. The mechanisms involved are probably multiple, but one hypothesis is that a modification of the equilibrium between the nuclear receptors, resulting from an increased expression of PPAR, induces a decreased expression of RAR in rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号