首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth hormone-releasing factor (GRF) synthesizing neuronal perikarya and terminals were investigated by light and electron microscopic immunocytochemistry using rat hypothalamus. Immunoreactive neuronal perikarya were located mainly in the ventrolateral part of the arcuate nucleus. They contained well developed cell organella such as mitochondria and rough surfaced endoplasmic reticulum with some expansion. They also contained immunoreactive dense granules (80-120 nm in diameter). On the surface of the immunoreactive neuronal perikarya were frequently found non-immunoreactive axo-somatic synapses. Therefore, the GRF-like immunoreactive neurons were assumed to receive neuronal inputs from other neurons on their neuronal soma. In the external layer of the median eminence large numbers of immunoreactive terminals were distributed particularly around the capillaries of the portal vessel. Electron microscopic immunocytochemistry revealed large numbers of immunoreactive terminals containing immunoreactive dense granules, synaptic vesicles and mitochondria in the vicinity of the basement membrane of the pericapillary space of the portal vessel. Therefore, we concluded that GRF-like immunoreactive substances are released into the portal capillaries from the nerve terminals, which originate from the neuronal perikarya in the ventrolateral part of the arcuate nucleus, and act on growth hormone release in the anterior pituitary. We also suggest that GRF-like immunoreactive neurons have abundant terminal arborization in the external layer of the median eminence.  相似文献   

2.
J Kiss  B Halász 《Brain research》1990,532(1-2):107-114
A combination of electron microscopic immunocytochemistry and autoradiography was employed to examine the synaptic organization of thyrotropin-releasing hormone (TRH) neurons in the periventricular subdivision of the paraventricular nucleus of the rat hypothalamus. TRH neurons were identified by immunocytochemistry. Selective uptake of tritiated serotonin (5-HT) was used to identify serotoninergic elements. TRH-immunoreactive axon terminals were found to be in synaptic contact with TRH-immunoreactive dendrites and with unlabeled dendritic branchlets. There were direct appositions between radiolabeled 5-HT terminals and TRH-immunoreactive dendrites, but differential synaptic contacts between 5-HT axonal elements and TRH neurons were not seen. TRH-immunopositive cell bodies and dendrites received a very intense innervation by unlabeled axon terminals or axonal varicosities showing morphologically defined synaptic junctions. These were mostly of the asymmetrical variety and different types could be distinguished. The findings substantiate the view that TRH neurons of the periventricular subvision of the paraventricular nucleus may be influenced by TRH axons, serotoninergic fibers and a large number of unidentified nerve terminals.  相似文献   

3.
To determine whether GABA-ergic axons are anatomically situated to directly influence TRH neurons in the PVN, double-labeling light- and electronmicroscopic immunocytochemistry was performed using antisera against glutamic acid decarboxylase (GAD) and prothyrotropin-releasing hormone (proTRH). In the anterior, periventricular and medial parvocellular subdivisions of the PVN, GAD-immunoreactive (IR) axon varicosities were closely apposed to all proTRH containing cell bodies and proximal dendrites. Ultrastucturally, GAD-IR nerve terminals established symmetric type synapses with both perikarya and dendrites of proTRH-IR neurons, indicating the inhibitory nature of the contacts. Since a subpopulation of neuropeptide Y (NPY) neurons in the hypothalamic arcuate nucleus co-synthesize GABA, and NPY-containing neurons of arcuate nucleus origin densely innervate TRH neurons in the PVN, we performed triple labeling immunocytochemistry to elucidate the origin of the GAD-IR innervation of hypophysiotropic TRH neurons. While axons co-containing GAD and NPY were observed throughout the PVN, only approximately 10% of GAD-IR terminals in contact with TRH neurons were found to contain NPY-immunoreactivity. We conclude that GABA-ergic neurons are in position to act directly on hypophysiotropic TRH neurons and while this innervation arises partly from neurons in the arcuate nucleus that co-synthesize NPY, the majority of the GABA-ergic input arises from other neuronal groups.  相似文献   

4.
M Piotte  A Beaudet  J R Brawer 《Brain research》1988,439(1-2):127-137
The topography, fine structure, and patterns of connections of tyrosine hydroxylase (TH)-immunoreactive tubero-infundibular dopaminergic (TIDA) neurons were examined by light and electron microscopic immunocytochemistry in the arcuate nucleus of 2-, 15- and 30-day-old female Wistar rats. In 2-day-old animals, TH-immunoreactive perikarya were mainly located in the ventrolateral portion of the arcuate nucleus. In 15-day-old rats numerous TH-positive cell bodies were still present ventrolaterally, but a cluster of labeled cells was also apparent in the mediodorsal segment of the nucleus. In the 30-day-old rats, most TH-immunoreactive neurons were concentrated mediodorsally, as seen in the adult. At the ultrastructural level, TH-immunoreactive somata exhibited, in all age groups, a large nucleus surrounded by a thin rim of cytoplasm containing mitochondria, Golgi apparatus, endoplasmic reticulum, multivesicular bodies and lysosomes. These labeled somata were synaptically contacted by unlabeled axon terminals and often laid adjacent to either labeled or unlabeled dendrites. Similarly, in all age groups, labeled dendrites were synaptically contacted by unlabeled axon terminals and were often directly apposed to either labeled or unlabeled perikarya and dendrites, or to tanycytic processes. These results indicate that TIDA neurons establish extensive connections early in development, and that their pattern of intercellular relationships remains qualitatively unchanged from 2 days to adulthood. It is suggested that TIDA neurons may be already functional at birth, and could therefore, influence the maturation of other arcuate neuronal populations.  相似文献   

5.
Phaseolus vulgaris leucoagglutinin (PHA-L) was injected into the individual vestibular nuclei of the rat to study their efferent connections. One of the major differences between the connections of these nuclei was found at the level of the mesencephalon: the eye-moving cranial nerve nuclei received the densest projection from the superior vestibular nucleus (SVN). In the present electron microscopic study, we have found that terminals of SVN origin established symmetric synaptic contacts in the oculomotor nucleus. More than two-thirds of PHA-L-labeled boutons terminated on dendrites, the rest of them established axosomatic contacts. Most of the labeled terminals were GABA-positive, supporting the results of previous physiological experiments, which showed inhibitory effects. In the mesencephalon, the other termination area was found in the red nucleus. The PHA-L-labeled boutons of SVN origin were in close contact with the perikarya and proximal dendrites of the magnocellular part of the red nucleus. The types of synaptic contacts and distribution of terminals of SVN origin were similar to those found in the oculomotor nucleus. Our results indicate that the SVN can modify the activity of the cerebellorubral and corticorubral pathways, exerting inhibitory action on the neurons of the red nucleus.  相似文献   

6.
Connections between adrenocorticotropic hormone (ACTH)-immunoreactive neurons in the arcuate nucleus and the preoptic area were studied in the female rat. ACTH-immunopositive terminals were observed in the medial preoptic area in contact with dendritic shafts, while in the ventrolateral preoptic area the majority of ACTH-immunoreactive synapses were found on dendritic spines. Double-label electron microscopic immunocytochemistry using peroxidase and avidin-ferritin as contrasting electron-dense markers revealed numerous synaptic contacts between ACTH-immunopositive boutons and luteinizing hormone-releasing hormone (LH-RH)-immunoreactive dendritic shafts in the medial preoptic area. Following injection of horseradish peroxidase (HRP) into the medial preoptic area, retrogradely HRP-labeled perikarya were observed throughout the arcuate nucleus. Double-staining experiments revealed that a proportion of these retrogradely labeled cells, in the ventromedial arcuate nucleus, are also immunoreactive for ACTH. These results suggest that pro-opiomelanocortin peptide-producing neurons in the ventromedial arcuate nucleus project to the medial preoptic area. Some of these neurons establish direct synaptic contacts with LH-RH-immunoreactive cells.  相似文献   

7.
Thyrotropin-releasing hormone stimulates vagally mediated gastric acid secretion and motility by an undefined central mechanism in the rat. The present study sought to determine the anatomical basis for this stimulatory effect by examining the ultrastructural relationship of nerve terminals immunoreactive for thyrotropin-releasing hormone with the dendrites of gastric vagal motoneurons. A light and electron microscopic double immunostaining technique was employed using the beta subunit of unconjugated cholera toxin as a neural tracer. Cholera toxin (50 microliters, 0.25%) was injected into the ventral stomach musculature in five rats. After 72 hours' survival, animals were sacrificed by transcardiac perfusion fixation. Retrogradely transported cholera toxin was immunocytochemically localized in vagal gastric motoneurons and their dendrites in the dorsal motor nucleus of the vagus and nucleus of the solitary tract, alone or in combination with the immunocytochemical localization of thyrotropin-releasing hormone. Ultrastructural analysis of double-labeled material revealed thyrotropin-releasing hormone-immunoreactive nerve terminals making asymmetric synaptic contacts on the retrogradely labeled dendrites of vagal gastric motoneurons. Nerve terminals immunoreactive for thyrotropin-releasing hormone also made asymmetric and symmetric synaptic contacts with unlabeled dendrites of undetermined perikaryal origin. In addition, nonsynaptic varicosities immunoreactive for thyrotropin-releasing hormone were frequently observed in the vagal nuclei. The synaptic contacts between thyrotropin-releasing hormone-immunoreactive nerve terminals and vagal gastric motoneuronal dendrites provide one possible basis for the profound stimulatory effect of central thyrotropin-releasing hormone on gastric vagal motor activity.  相似文献   

8.
The relationship between leucine5-enkephalin-containing nerve terminals and midbrain dopaminergic neurons was studied in the adult rat by light and electron microscopy. For light microscopy, alternate midbrain sections were immunostained with rabbit polyclonal antibodies against leucine5-enkephalin and tyrosine hydroxylase, by means of the peroxidase antiperoxidase technique. Leucine5-enkephalin stained fibers and terminals were observed with varying density in the retrorubral field (dopaminergic nucleus A8 region), substantia nigra pars compacta (dopaminergic nucleus A9 region), and ventral tegmental area and related nuclei (dopaminergic nucleus A10 region). For electron microscopy, midbrain sections were immunostained with a mouse monoclonal antibody against leucine5-enkephalin and a rabbit polyclonal antibody against tyrosine hydroxylase, by means of the peroxidase antiperoxidase technique and silver-intensified colloidal gold reactions, respectively. The nucleus A10 area was examined at the electron microscopic level, and there were (a) both symmetric (75%) and asymmetric (25%) synapses made between leucine5-enkephalin axon terminals and dopaminergic dendrites, and also synaptic contacts with unlabeled dendrites; (b) leucine5-enkephalin synaptic contacts with dopaminergic dendrites that were covered with astrocytic membranes; and (c) leucine5-enkephalin appositions with unlabeled nerve terminals that made synaptic contacts with dopaminergic dendrites, suggestive of axo-axonic connections. These findings provide the structural basis for both direct and indirect control of A10 dopaminergic neurons by enkephalin-containing nerve terminals. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Synaptic connections were demonstrated between tyrosine hydroxylase (TH) immunoreactive axons and dendrites in the arcuate nucleus of the rat, by electron microscopic immunocytochemistry. These connections were primarily found in the lateral part of the nucleus. The results of two types of medial-dorsal-lateral surgical de-afferentation suggest that the TH-TH contacts represent intrinsic connections.  相似文献   

10.
The relationships both between cholinergic neurons and substance P (SP) and between cholinergic neurons and calcitonin gene-related peptide (CGRP) terminals were examined in the rat sacral intermediolateral nucleus at the light and electron microscopic levels by means of double-immunostaining methods. Cholinergic neurons were labeled by a monoclonal antibody to choline acetyltransferase (CAT) with the avidin-biotin technique and stained bluish-green by indolyl-beta-galactoside reaction products with beta-galactosidase as a marker. On the same sections, SP or CGRP fibers were labeled by polyclonal antisera to SP or CGRP after application of the peroxidase-antiperoxidase (PAP) method and stained brown by the p-dimethylaminoazobenzene (DAB) reaction. After embedding in Epon, light and electron microscopic sections were examined. At the light microscopic level, CGRP-like immunoreactive (CGRP-I) fibers and SP-like immunoreactive (SP-I) fibers were found to pass through the lateral edge of the dorsal horn and then into the dorsal region of the sacral intermediolateral nucleus. In addition, SP-I fibers also extend from the dorsolateral funiculus into the entire sacral intermediolateral region. At the electron microscopic level, many axosomatic and axodendritic synapses were found between CAT-I structures and SP-I terminals in the intermediolateral nucleus, whereas most of the CGRP-I terminals in this area made axodendritic synapses with CAT-I dendrites. These results indicate that cholinergic neurons in the sacral intermediolateral nucleus receive direct synaptic input from SP-I and CGRP-I terminals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The hypoglossal nucleus of the macaque monkey Macaca fuscata was investigated with light and electron microscopic immunocytochemistry with an antibody directed against gamma-aminobutyric acid (GABA). At the light microscopic level, GABA immunoreactivity was present in small neurons, punctate structures, and thin, fiberlike structures. These GABA-positive elements were distributed throughout the hypoglossal nucleus at rostrocaudal levels. There was no immunoreactivity in the hypoglossal motoneurons. The GABA-positive small neurons were fusiform or ovoid (15 X 9 micron) and extended a few proximal dendrites from both poles. At the ultrastructural level, these small neurons were characterized by a markedly invaginated nucleus and a scanty cytoplasm in which cisternae of rough endoplasmic reticulum were not organized into extensive lamellar arrays as seen in the motorneurons. The GABA-positive punctate structures at the light microscopic level were identified as vesicle-containing axon boutons at the electron microscopic level. These GABA-positive axon terminals made synaptic contacts mainly with the dendrites of the motoneurons and infrequently with the somata. The majority of them made symmetric synapses and they contained pleomorphic synaptic vesicles. However, a small number of GABA-positive terminals (7%) formed asymmetric synapses with the dendrites of motoneurons, and these contacts exhibited postsynaptic dense bars or Taxi bodies lying beneath the postsynaptic membranes. There were no GABA-positive boutons that contacted the cell bodies of the small neurons. Although GABA-positive myelinated and unmyelinated axons were seen as thin, fiberlike structures, these myelinated and unmyelinated axons rarely gave rise to boutons on the motoneurons. The present study suggests that GABAergic inhibition in the monkey hypoglossal nucleus occurs mainly on the dendrites of the motoneurons and to some extent on the somata.  相似文献   

12.
The nucleus preopticus medianus (POMe) is known to serve as a relay site in the neural pathway, from the subfornical organ to the paraventricular nucleus of the hypothalamus (PVN), and to play an important role in the regulation of fluid balance and caridovascular control. A neural connection of noradrenergic nerve terminals in the POMe was examined using electron microscopic immunohistochemistry with the retrograde tract tracing method. Double immunofluorescent labelling revealed nerve terminals immunoreactive to both tyrosine hydroxylase (TH) and neuropeptide Y (NPY) and those immunoreactive to both TH and noradrenaline in the POMe. This indicates that there is an NPY-immunoreactive noradrenergic innervation in the POMe. At the electron microscopic level, nerve terminals immunoreactive to TH or NPY in the POMe formed synapses with dendrites or cell bodies of neurons which were retrogradely labeled after injection of the retrograde tracer, WGA-HRP-colloidal gold, in the PVN. These observations suggest that neurons in the POMe with projections to the PVN may be directly affected by NPY-immunoreactive noradrenergic afferent fibers which presumably originate in the brainstem.  相似文献   

13.
14.
A recent physiological report suggested that neurotensin could inhibit the vasopressin releasing from vasopressin-producing neurons in the hypothalamic paraventricular nucleus but not in the supraoptic nucleus. In the present study, the synaptic relationship between the neurotensin-like immunoreactive and vasopressin-like immunoreactive neurons has been examined using a pre-embedding double immunostaining technique in the rat hypothalamic paraventricular nucleus. At the light microscopic level, many neurotensin-like immunoreactive fibers were found near the vasopressin-like immunoreactive neurons. At the electron microscopic level, the neurotensin-like immunoreactive fibers were identified as axon terminals that made many synapses on the vasopressin-like immunoreactive perikarya and dendrites. The synapses were both asymmetrical and symmetrical. These findings of the present study suggest that the inhibitory effect of neurotensin on the vasopressin neurons in the hypothalamic paraventricular nucleus may be due to the direct synapses made by neurotensin-like immunoreactive axon terminals on the vasopressin-like immunoreactive neurons.  相似文献   

15.
M Watanabe 《Brain research》1987,401(2):279-291
The nucleus dorsolateralis anterior thalami (DLA) of birds is the homologue of the mammalian dorsal lateral geniculate nucleus. The positions of terminals from the retina and visual Wulst upon identified relay neurons in the DLA were examined in Japanese quail with both light and electron microscopic techniques. Injection of horseradish peroxidase (HRP) into the visual Wulst showed that relay neurons projecting ipsilaterally or contralaterally were located in a rostrolateral subdivision (DLAlr) and in Zones A and B of a lateral subdivision (DLL) of the DLA. Removal of the contralateral eye resulted in dense terminal degeneration in the DLAlr and moderate terminal degeneration in Zones A and B. By contrast, lesions in the visual Wulst produced dense degenerating terminals in Zones A and B of the DLL. The somata and proximal dendrites of relay neurons or terminals from the retina in the DLA were identified electron microscopically following HRP injection into the visual Wulst or optic nerve, respectively. Terminals from the retina contained spherical vesicles, glycogen granules, and mitochondria with widely spaced cristae. Terminals from the retina made synaptic contact with proximal dendrites and somata of HRP-labeled relay neurons. Presynaptic dendrites formed symmetric synaptic contact with dendrites of relay neurons. Synaptic glomeruli were observed in the DLAlr that involved dendrites of relay neurons, terminals from the retina and presynaptic dendrites. Lesions of the visual Wulst resulted in degeneration of small terminals with spherical vesicles. These terminals were not involved in the synaptic glomeruli of the DLA, but made asymmetric contacts with spines of unidentified neurons and with terminals of presynaptic dendrites.  相似文献   

16.
Following injection of HRP into contralateral thalamus, retrogradely labeled cells were observed in principal sensory trigeminal nucleus (Vp) and an area of juxtatrigeminal nucleus (JX) formerly described by John and Tracey (1987). When PHA-L was delivered to dorsomedial part of the subnucleus oralis (Vodm), PHA-L labeled terminals were seen in dorsomedial part of the Vp (Vpdm) and in the JX region. Comparing the distribution of PHA-L labeled terminal field with that of HRP labeled JX neurons showed that the labeled terminals and neurons were overlapped closely in the JX. The distribution patterns of the labeled terminals and JX neurons were also the same: viewed on the coronal planes caudal-rostrally, both of the labelings began to appear at the levels where the facial nerve root was just broken. Rostrally, at middle levels of the motor trigeminal nucleus (Vmo), the labelings showed their typical view covering dorsal and ventral JX (dJX, vJX). The labelings disappeared at rostral poles of the Vmo and Vp. When injections of PHA-L into the Vodm and HRP into the contralateral thalamus was made in one rat, the contacts between Vodm projecting terminals labeled with PHA-L and HRP labeled trigemino-thalamic neurons were seen in the JX and also in the Vpdm. Then, electron microscopic (EM) study was done, injections of kainic acid into the Vodm and HRP into the contralateral thalamus was performed simultaneously. After EM embedding, the JX and Vpdm regions were selected, ultrathin sections were cut and observed with EM. In both areas, axo-somatic and axo-dendritic synapses were seen between degenerated boutons and HRP labeled somata or dendrites. Namely, the Vodm projecting terminals synapsed on trigemino-thalamic neurons in the JX and Vpdm. Anyway, axo-dendritic synapses was the main type of observed synapses. Thus, the present work demonstrated 1. the JX containing a group of trigemno-thalamic neurons was a target of special projections froin the Vodm; 2. The Vodm neurons projected to the contralateral thalamus through the relay of JX and Vpdm neurons.  相似文献   

17.
Tract tracing techniques combined with immunohistochemistry in rats and guinea pigs have demonstrated the existence of a hypothalamo-lateral septum enkephalinergic pathway. Numerous enkephalinergic nerve endings encompass cell bodies located in the lateral septum. The present immunocytochemical study, at light and electron microscopic levels, was undertaken in the guinea pig brain to determine whether the contacted perikarya contain gamma-aminobutyric acid (GABA). The antisera against GABA revealed the presence of immunoreactive cell bodies throughout the lateral septum. At the light microscopic level, most GABA neurons appeared round while others were oval with one or two emerging dendrites. Ultrastructurally, cell bodies displayed a moderate number of organelles and a pale nucleus with frequent indentations of the nuclear envelope. The precise relationship between GABA neurons and enkephalinergic terminals was examined by means of a double-immunostaining method showing that 60% of cell bodies receiving synaptic inputs from enkephalinergic afferents contained GABA. These results show that the hypothalamo-septal enkephalinergic pathway prominently innervates GABA-containing neurons and also provide anatomical basis suggesting a disinhibitory role for this enkephalinergic tract.  相似文献   

18.
Abstract The hypothalamic arcuate nucleus contains a number of neurochemically different cell populations, among others neuropeptide Y (NPY)- and pro-opiomelanocortin (POMC)-derived peptide-expressing neurons; both are involved in the regulation of feeding and energy homeostasis, NPY neurons also in the release of hypophysiotropic hormones, sexual behaviour and thermogenesis. Recent observations indicate that there is a dense plexus of glutamatergic fibres in the arcuate nucleus. The aim of the present studies was to examine the relationship of these fibres to the NPY and POMC neurons in the arcuate nucleus. Double-label immunoelectron microscopy was used. Glutamatergic elements were identified by the presence of vesicular glutamate transporter 1 (VGluT1) or 2 (VGluT2) (selective markers of glutamatergic elements) immunoreactivity. A significant number of VGluT2-immunoreactive terminals was observed to make asymmetric type of synapses with NPY and with beta-endorphin (a marker of POMC neurons)-immunostained nerve cells of the arcuate nucleus. About 15% of VGluT2 synapsing terminals established asymmetric synapses with NPY-positive cells and more than 40% of VGlut2-positive terminals formed synapse on beta-endorphin-positive neurons. VGluT2-positive perikarya were also observed, part of them also contained beta-endorphin. Nerve terminals containing both VGluT2 and beta-endorphin were demonstrated in the cell group. Only very few VGluT1 fibres were detected. Our observations provide the first direct neuromorphological evidence for the existence of glutamatergic innervation of NPY and POMC neurons of the arcuate nucleus.  相似文献   

19.
The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.  相似文献   

20.
The ultrastructure and synaptic relationships of the angiotensin II-containing neurons in the area postrema of the rat were studied by immunocytochemistry using the avidin-biotin-complex-DAB method, and also using silver-gold intensification following the DAB reaction. At the light microscopic level, the angiotensin II-like immunoreactive neurons were observed within the area postrema, especially in the upper region. At the electron microscopic level, the angiotensin II-like immunoreactive cell bodies were observed as having a round, unindented nucleus. The nuclei of these neurons were not immunostained. The angiotensin II-like immunoreactive axon terminals often contained a few dense core vesicles in addition to many small clear synaptic vesicles. Numerous axon terminals were found to make synapses on immunonegative dendrites; they were also found to make synapses on angiotensin II-like immunoreactive dendrites. Many angiotensin II-like immunoreactive dendrites received synapses from immunonegative axon terminals. Although angiotensin II-like immunoreactive cell bodies were sometimes postsynaptic to immunoreactive axon terminals, they did not receive synapses from immunonegative axon terminals. These results provide solid morphological evidence of AP endogenous angiotensin II and confirm that in spite of circulating angiotensin II, the local neurons in the AP may also play an important role in angiotensin II-induced cardiovascular regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号