共查询到20条相似文献,搜索用时 0 毫秒
1.
Cd2+ and Co2+ at micromolar concentrations increased the cytosolic free Ca2+ concentration, which was measured by fura-2 microfluorometry, in cat adrenal chromaffin cells. Simultaneously, these divalent cations stimulated catecholamine secretion from the perfused adrenal. The present findings suggest that these cations increase the Ca2+ influx by depolarizing the cell membrane and consequently stimulate catecholamine secretion. 相似文献
2.
Measurement of intracellular Ca in the bullfrog sympathetic ganglion cells using fura-2 fluorescence
The intracellular free ([Ca2+]i) of the bullfrog sympathetic ganglion cell was measured with fura-2 fluorescence under various conditions, and compared with changes in membrane potential recorded with an intracellular electrode. The [Ca2+]i was 109 nM on average under the resting condition and increased by raising the extracellular K+, stimulating repetitively the pre- or post-ganglionic nerve, or by applying acetylcholine or muscarine. Since all these procedures depolarized the cell membrane, most of the rise in [Ca2+]i could be the result of opening of voltage-dependent Ca2+ channels. However, Ca2+ entries through nicotinic acetylcholine receptor channels and the channel activated by the muscarinic acetylcholine receptor were also indicated by considering the threshold for the opening of voltage-dependent Ca2+ channels (for both entries) or a limited number of the cells showing the latter response. 相似文献
3.
To understand the mechanisms underlying the Cd2+- and Co2+-induced intracellular Ca2+ mobilization, we measured the levels of inositol phosphates using bovine chromaffin cells. Studies using HPLC indicated that Cd2+, Co2+ and methacholine significantly increased the generation of 1,4,5-IP3. The results suggest that Cd2+ and Co2+ mobilize Ca2+ from IP3-sensitive Ca2+ stores, possibly through the presumptive Cd2+ receptor. 相似文献
4.
To gain some understanding of the characteristics of intracellular Ca2+ stores of cat adrenal chromaffin cells, we investigated the effects of ryanodine, a blocker of Ca2+-induced Ca2+ release channels in muscle, on both cytosolic Ca2+ concentration and catecholamine secretion induced by caffeine or methacholine. The results suggest that Ca2+ stores consist of at least two compartments, one which is sensitive to both caffeine and inositol-1,4,5-trisphosphate (IP3), and the other which is sensitive to IP3 alone. 相似文献
5.
Chromaffin cells were isolated from bovine adrenals and the effects of experimental manipulations which alter the level of internal Na+ on the release of catecholamines and45Ca uptake by these cells were investigated. In response to Na+ deprivation both parameters were increased or decreased when internal Na+ was raised or reduced, respectively. The results suggest the existence of Na+-dependent Ca2+ influx mechanism in these cells. 相似文献
6.
Masaru Sorimachi 《Brain research》1995,669(1):26
Chick embryo ciliary ganglion cells were acutely isolated, and the mechanism(s) underlying the increase in the cytosolic Ca2+ concentration ([Ca]in) induced by high concentrations of nicotine examined using fura-2 microfluorometry. The order of potencies of nicotinic receptor agonists in increasing [Ca]in was ACh > nicotine = dimethylphenylpiperazinium > cytisine. The nicotine-induced increase in [Ca]in was inhibited not only by nicotinic antagonists but also by muscarinic antagonists, while the muscarine-induced [Ca]in increase was little affected by nicotinic antagonists. The nicotine-induced [Ca]in increase was inhibited by both L- and N-type Ca2+ channel blockers and potentiated by an L-type Ca2+ channel agonists, Bay-K-8644. Nicotine also increased the cytosolic Na+ concentration ([Na]in) as measured by sodium binding benzofuranisophthalate microfluorometry, and this [Na]in increase was inhibited by various agents which reportedly affected nicotinic receptor channels resulting in chromaffin cells. These results suggest that nicotine increased Na+ influx nicotinic receptor channels resulting in membrane depolarization, which in turn increased Ca2+ influx through voltage-dependent Ca2+ channels. However, nicotine still increased influxes of Ca2+ and Mn2+ in the absence of external Na+, suggesting that nicotinic receptor channels in these cells are permeable not only to monovalent cations but also to Ca2+ and Mn2+. 相似文献
7.
Hack-Seang Kim Jung-Hwa Lee Yong-Sook Goo Seung-Yeol Nah 《Brain research bulletin》1998,46(3):245-251
We investigated the effects of ginseng total saponins (GTS) and five ginsenosides on voltage-dependent Ca2+ channels and membrane capacitance using rat adrenal chromaffin cells. In this study, cells were voltage-clamped in a whole-cell recording mode and a perforated patch-clamp technique was used. The inward Ca2+ currents (ICa) was elicited by depolarization and the change in cell membrane capacitance (ΔCm) was monitored. The application of GTS (100 μg/ml) induced rapid and reversible inhibition of the Ca2+ current by 38.8 ± 3.6% (n = 16). To identify the particular single component that seems to be responsible for Ca2+ current inhibition, the effects of five ginsenosides (ginsenoside Rb1, Rc, Re, Rf, and Rg1) on the Ca2+ current were examined. The inhibitions to the Ca2+ current by Rb1, Rc, Re, Rf, and Rg1 were 15.3 ± 2.2% (n = 5); 36.9 ± 2.4% (n = 7); 28.1 ± 1.9% (n = 12); 19.0 ± 2.5% (n = 10); and 16.3 ± 1.6% (n = 15), respectively. The order of inhibitory potency (100 μM) was Rc > Re > Rf > Rg1 > Rb1. A software based phase detector technique was used to monitor membrane capacitance change (ΔCm). The application of GTS (100 μg/ml) induced inhibitory effects on ΔCm by 60.8 ± 9.7% (n = 10). The inhibitions of membrane capacitance by Rb1, Rc, Re, Rf, and Rg1 were 35.3 ± 5.5% (n = 7); 41.8 ± 7.0% (n = 8); 40.5 ± 5.9% (n = 9); 51.2 ± 7.6% (n = 9); and 35.9 ± 5.1% (n = 10), respectively. The inhibitory potencies of the ginsenosides on ΔCm were Rf > Rc > Re > Rg1 > Rb1. Therefore, we found that GTS and ginsenosides exerted inhibitory effects on both Ca2+ currents and ΔCm in rat adrenal chromaffin cells. These results suggest that ginseng saponins regulate catecholamine secretion from adrenal chromaffin cells and this regulation could be the cellular basis of antistress effects induced by ginseng. 相似文献
8.
Hiroki Yokoo Seiji Shiraishi Hideyuki Kobayashi Toshihiko Yanagita Shin-ichi Minami Ryuichi Yamamoto Akihiko Wada 《Brain research》2000,873(1)
In cultured bovine adrenal chromaffin cells, NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy) pyrimidine hydrochloride], a newly-synthesized neuroprotective drug, inhibited nicotine-induced 22Na+ influx via nicotinic receptors (IC50=15.5 μM); the suppression by NS-7 was observed in the presence of ouabain, an inhibitor of Na+,K+-ATPase, and was not attenuated upon the washout of NS-7. NS-7 decreased nicotine-induced maximum influx of 22Na+ without altering the EC50 value of nicotine. Also, NS-7 diminished nicotine-induced 45Ca2+ influx via nicotinic receptors and voltage-dependent Ca2+ channels (IC50=14.1 μM) and catecholamine secretion (IC50=19.5 μM). These results suggest that NS-7 produces noncompetitive and long-lasting inhibitory effects on neuronal nicotinic receptors in adrenal chromaffin cells, and interferes with the stimulus-secretion coupling. 相似文献
9.
Activation of ATP receptor increases the cytosolic Ca(2+) concentration in ventral tegmental area neurons of rat brain 总被引:2,自引:0,他引:2
ATP increased the cytosolic Ca(2+) concentration ([Ca](i)) in neurons of ventral tegmental area acutely dissociated from rat brain. The ATP response was dependent on external Ca(2+) and Na(+), and was blocked by voltage-dependent Ca(2+) channel blockers. The results suggest that the ATP-induced depolarization increases Ca(2+) influx via voltage-gated Ca(2+) channels resulting in the increase in [Ca](i). 相似文献
10.
Minoru Sato 《Brain research》1999,828(1-2)
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels. 相似文献
11.
We investigated the endogenous control through vesicular contents of voltage-dependent Ca2+ channels (VDCCs) in cultured porcine adrenal chromaffin cells. To examine paracrine regulation of VDCCs, catecholamine release was monitored amperometrically together with patch-clamp recording under culture conditions at different cell densities. A depolarizing pulse evoked Ca(2+)- (ICa) and Ba(2+)-currents (IBa) in Ca(2+)- and Ba(2+)-containing solutions, respectively. In cells cultured at high density, stop-flow of the external solution decreased the I(Ba) concomitant with a sustained increase of amperometric current (Iamp), but not in cells at low density, suggesting the endogenous modulation of VDCCs in a paracine fashion. The degree of the prepulse facilitation was similar regardless of the flow condition. Application of noradrenaline (NA), ATP, methionine-enkephalin (ENK) or protons decreased IBa. The extent of the prepulse facilitation of the endogenous VDCC inhibition was similar to those induced by NA and ATP. GDPbetaS, pertussis toxin (PTX), blockers for alpha-adrenoceptors and P2-purinoceptors significantly reduced the endogenous VDCC inhibition. These results suggest that VDCCs are regulated by vesicular substances in a paracrine fashion, at least by noradrenaline and ATP, through activation of alpha-adrenoceptors and P2-purinoceptors, respectively, in porcine adrenal chromaffin cells. 相似文献
12.
ATP increased the cytosolic Ca2+ concentration ([Ca]i) in nucleus accumbens neurons acutely dissociated from rat brain. The ATP response was dependent on external Ca2+ and Na+, and was blocked by voltage-dependent Ca2+ channel blockers. The results suggest that the ATP-induced depolarization increases Ca2+ influx resulting in the increase in [Ca]i. 相似文献
13.
It has been reported that pituitary gonadotrophs and lactotrophs contain angiotensin II (Ang II) and suggested that Ang II modulates hormone secretion from endocrine cells of the anterior pituitary through paracrine mechanism among the endocrine cells. However, there has been no report on the effect of Ang II on the folliculo-stellate cells (FSC) which are thought to play a regulatory role in the release of hormones from pituitary endocrine cells. We, therefore, examined the effect of Ang II on FCS in primary culture by Ca2+ imaging technique. Certain proportion (42%) of FSC responded to 100 nM Ang II by increasing [Ca2+]i. In addition, Ang II elicited the Ca2+ response in about 50% of the pituitary endocrine cells. The results indicate that Ang II functions as a paracrine factor among pituitary cells including FSC. 相似文献
14.
Seiji Shiraishi Ryuichi Yamamoto Toshihiko Yanagita Hiroki Yokoo Hideyuki Kobayashi Yasuhito Uezono Akihiko Wada 《Brain research》2001,898(1):93
Long-term (≥12 h) treatment of cultured bovine adrenal chromaffin cells with thapsigargin (TG), an inhibitor of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), caused a time (t1/2=16.3 h)- and concentration (IC50=37.8 nM)-dependent decrease of cell surface 125I-insulin binding by 35%, but did not change the Kd value. TG caused a sustained increase of cytoplasmic concentration of Ca2+ ([Ca2+]c) in a biphasic manner, and the effect of TG on 125I-insulin binding was abolished by BAPTA-AM. Western blot analysis showed that TG lowered insulin receptor (IR) β-subunit level in membrane, but did not alter total cellular levels of IR precursor and IR β-subunit. Internalization of cell surface IR, as measured by using brefeldin A, an inhibitor of vesicular exit from the trans-Golgi network (TGN), was not changed by TG. These results suggest that inhibition of SERCA by TG and the subsequent increase of [Ca2+]c down-regulates cell surface IR by retarding externalization of IR from the TGN. 相似文献
15.
The effect of dibutyryl cGMP (dbcGMP), a membrane permeant cGMP analogue, on cytosolic concentrations of Ca2+ ([Ca2+]i) was studied in cultured nodose ganglion neurons of the rabbit using fura-2AM and microfluorometry. Application of dbcGMP (10–1000 μM) increased [Ca2+]i in 42% of neurons (n=67). The effect was observed in a dose-dependent fashion. The threshold dose was 100 μM and the increase at 500 μM averaged 117±8%. Removal of extracellular Ca2+ abolished the dbcGMP effect. Application of Ni2+ (1 mM) or neomycin (50 μM), a non-L-type voltage-gated Ca2+ channel (VGCC) antagonist, eliminated the dbcGMP effect. ω-conotoxin GVIA (2 μM), the N-type Ca2+ channel antagonist, or L-type Ca2+ channel antagonists (D600, 50 μM, or nifedipine, 10 μM) did not alter the dbcGMP effect. Ryanodine (10 μM) did not alter the effect of dbcGMP. Therefore, cGMP could play a part of role of an intracellular messenger in primary sensory neurons of the autonomic nervous system. 相似文献
16.
Possible occurrence of Na+-dependent Ca2+ influx mechanism in isolated bovine chromaffin cells 总被引:1,自引:0,他引:1
Chromaffin cells were isolated from bovine adrenals and the effects of experimental manipulations which alter the level of internal Na+ on the release of catecholamines and 45Ca uptake by these cells were investigated. In response to NA+ deprivation both parameters were increased or decreased when internal NA+ was raised or reduced, respectively. The results suggest the existence of Na+-dependent Ca2+ influx mechanism in these cells. 相似文献
17.
Damien J. Keating Grigori Y. Rychkov Michael L. Roberts 《International journal of developmental neuroscience》2009
Prior to the development of adrenal innervation, the adrenal medulla is capable of responding to low blood oxygen directly. However, this response is lost once adrenal innervation is established. Previous work by our group has outlined mechanisms involved in this direct hypoxic response and the means by which innervation causes the loss of the direct hypoxic response in the ovine adrenal. The current study further investigates mechanisms which may underlie the developmental loss of the direct hypoxic response by concentrating on two aspects of cell function which regulate catecholamine secretion: the contribution of different types of Ca2+ channels to the total Ca2+ current and the contribution of each Ca2+ channel type to K+ channel activation. We identified that Ca2+ current size at −40 to −10 mV is increased in amplitude in fetal chromaffin cells. This is not due to the increased prevalence or size of T-type Ca2+ currents present at these voltages. The relative contribution of L-, N- or P/Q-type Ca2+ channels to total Ca2+ current and to activation of the K+ current is unchanged during chromaffin cell development, however K+ current density increases with age. Our results indicate that there is a developmental shift in relative expression of T-type, but not L-, N- or P/Q-type, Ca2+ channels in ovine chromaffin cells. The increased K+ current density in adult cells may result in an altered response to an equal stimulus, while larger Ca2+ current at negative voltages in fetal cells may facilitate Ca2+ entry and catecholamine secretion in response to small depolarisations such as those induced by hypoxia. 相似文献
18.
Autoinhibition is a common mechanism observed in neurons to regulate neurotransmission. Released neurotransmitter interacts with presynaptic autoreceptors to inhibit subsequent release. The requisite elements for autoinhibition are present in chromaffin cells: secretory granules contain millimolar levels of ATP which is coreleased with catecholamines upon stimulation and the cells express purinergic receptors. We were interested to determine whether autoinhibition produced by ATP binding to purinergic receptors plays an important role in catecholamine release from chromaffin cells. In these studies, short depolarizations were used to elicit transmitter release measured by membrane capacitance. We find that stimulation of chromaffin cells results in the release of endogenous ATP which may suppress Ca(2+) channel currents and secretion. In the presence of a maximal concentration of ATP, both the amount of secretion and the maximal rate of release are about half that observed in the absence of ATP. ATP-mediated inhibition of secretion was blocked by Reactive Blue-2 suggesting the involvement of P(2Y) purinergic receptors. Prepulses to positive potentials that relieve the Ca(2+) channel block largely relieve the inhibition of secretion. Furthermore, when secretion is plotted as a function of Ca(2+) influx there is no apparent change in the relationship between control cells and those stimulated in the presence of ATP and prepulses. These results suggest that ATP diminishes secretion by inhibiting Ca(2+) influx into the cells. Our results indicate that feedback inhibition by ATP, mediated primarily by Ca(2+) channels, may be an important regulator of catecholamine release in chromaffin cells. 相似文献
19.
T. Hayashi A. Kagaya M. Takebayashi T. Oyamada M. Inagaki Y. Tawara N. Yokota J. Horiguchi T. -P. Su S. Yamawaki 《Journal of neural transmission (Vienna, Austria : 1996)》1997,104(8-9):811-824
Summary Dantrolene has been known to affect intracellular Ca2+ concentration ([Ca2+]i) by inhibiting Ca2+ release from intracellular stores in cultured neurons. We were interested in examining this property of dantrolene in influencing the [Ca2+]i affected by the NMDA receptor ligands, KCl, L-type Ca2+ channel blocker nifedipine, and two other intracellular Ca2+-mobilizing agents caffeine and bradykinin. Effect of dantrolene on the spontaneous oscillation of [Ca2+]i was also examined. Dantrolene in M concentrations dose-dependently inhibited the increase in [Ca2+]i elicited by NMDA and KCl. AP-5, MK-801 (NMDA antagonists), and nifedipine respectively reduced the NMDA and KCl-induced increase in [Ca2+]i. Dantrolene, added to the buffer solution together with the antagonists or nifedipine, caused a further reduction in [Ca2+]i to a degree similar to that seen with dantrolene alone inhibiting the increase in [Ca2+]i caused by NMDA or KCl. At 30 M, dantrolene partially inhibited caffeine-induced increase in [Ca2+]i whereas it has no effect on the bradykinin-induced change in [Ca2+]i. The spontaneous oscillation of [Ca2+]i in frontal cortical neurons was reduced both in amplitude and in base line concentration in the presence of 10 M dantrolene. Our results indicate that dantrolene's mobilizing effects on intracellular Ca2+ stores operate independently from the influxed Ca2+ and that a component of the apparent increase in [Ca2+]i elicited by NMDA or KCl represents a dantrolene-sensitive Ca2+ release from intracellular stores. Results also suggest that dantrolene does not affect the IP3-gated release of intracellular Ca2+ and that the spontaneous Ca2+ oscillation is, at least partially, under the control of Ca2+ mobilization from internal stores.Abbreviations
AP-5
(±)-2-amino-5-phosphonopentanoic acid
-
AMPA
amino-3-hydroxy-5-methyl-isoxazole-4-propionate
-
BSS
balanced salt solution
-
CNS
central nervous system
-
CICR
Ca2+-induced Ca2+ release
-
DCKA
5,7-dichlorokynurenate
-
DNasel
deoxyribonuclease I
-
DMEM
Dulbecco's Modified Eagle's Medium
-
EGTA
ethylene glycol-bis(-aminoethyl ether)N,N,N,N,-tetraacetic acid
-
FCS
fetal calf serum
-
fura-2-AM
1-(2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy-2-ethane-N,N,N,N-te-traacetic acid, pentaacetoxymethyl ester
-
HEPES
N-[2-hydroxyethyl] piperazine-N-[2-ethanesulfonic acid]
-
[Ca
2+]
i
intracellular free Ca2+ concentration
-
LTP
long-term potantiation
-
MK-801
(5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5,10-imine hydrogen maleate
-
NMDA
N-methyl-D-aspartate 相似文献
20.
Using the fluorescent Ca2+ indicator fura-2, we demonstrated that, in a single NG108-15 cell, acute repetitive challenge with leucine-enkephalin (EK) results in a gradual reduction of the increase of the cytosolic Ca2+ concentration ([Ca2+]i) at agonist exposure times of 90 s or less; increasing the EK exposure time of each challenge from 30 to 90 s results in greater desensitization, with complete desensitization occurring at 90 s exposure. Similar results are seen with ATP. In opioid-desensitized cells, bradykinin can still induce a marked [Ca2+]i increase, while exposure of desensitized cell to 50 mM K+ restores the response EK-induced, suggesting a role of intracellular Ca2+ stores in the desensitization process. Pretreatment of cells with certain protein kinase inhibitors, including N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA1004) and staurosporine, prevented desensitization, while others, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and {1-[N,O-bis-(5-isoquinolinesulfonyl)-N-methyl-
-tyrosyl]-4-phenyl-piperazine (KN-62), had no effect. In contrast, activation of protein kinase C by phorbol 12-myristate 13-acetate promoted desensitization. Thus, the desensitization is dependent on protein phosphorylation. HA1004 alone did not alter EK- or bradykinin-induced inositol 1,4,5-trisphosphate (IP3) generation; however, the inhibitory effect of calyculin A on EK- or bradykinin-induced IP3 generation was reversed by HA1004. In addition, in the presence of HA1004, the blockade of Ca2+ influx by either verapamil or removal of extracellular Ca2+ or the depletion of Ca2+ pools by thapsigargin still led to desensitization, suggesting that phosphorylation does not alter the activity of the Ca2+ transporters involved in Ca2+ influx and Ca2+ release. Our results imply that emptying of intracellular Ca2+ stores and protein phosphorylation in the phospholipase C signaling pathway play roles in the process of desensitization. 相似文献