首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study an identification problem which estimates the parameters of the underlying random distribution for uncertain scalar conservation laws. The hyperbolic equations are discretized with the so-called discontinuous stochastic Galerkin method, i.e., using a spatial discontinuous Galerkin scheme and a Multielement stochastic Galerkin ansatz in the random space. We assume an uncertain flux or uncertain initial conditions and that a data set of an observed solution is given. The uncertainty is assumed to be uniformly distributed on an unknown interval and we focus on identifying the correct endpoints of this interval. The first-order optimality conditions from the discontinuous stochastic Galerkin discretization are computed on the time-continuous level. Then, we solve the resulting semi-discrete forward and backward schemes with the Runge-Kutta method. To illustrate the feasibility of the approach, we apply the method to a stochastic advection and a stochastic equation of Burgers' type. The results show that the method is able to identify the distribution parameters of the random variable in the uncertain differential equation even if discontinuities are present.  相似文献   

2.
Polynomial chaos methods (and generalized polynomial chaos methods) have been extensively applied to analyze PDEs that contain uncertainties. However, this approach is rarely applied to hyperbolic systems. In this paper we analyze the properties of the resulting deterministic system of equations obtained by stochastic Galerkin projection. We consider a simple model of a scalar wave equation with random wave speed. We show that when uncertainty causes the change of characteristic directions, the resulting deterministic system of equations is a symmetric hyperbolic system with both positive and negative eigenvalues. A consistent method of imposing the boundary conditions is proposed and its convergence is established. Numerical examples are presented to support the analysis.  相似文献   

3.
An entropy stable fully discrete shock capturing space-time Discontinuous Galerkin (DG) method was proposed in a recent paper [20] to approximate hyperbolic systems of conservation laws. This numerical scheme involves the solution of a very large nonlinear system of algebraic equations, by a Newton-Krylov method, at every time step. In this paper, we design efficient preconditioners for the large, nonsymmetric linear system, that needs to be solved at every Newton step. Two sets of preconditioners, one of the block Jacobi and another of the block Gauss-Seidel type are designed. Fourier analysis of the preconditioners reveals their robustness and a large number of numerical experiments are presented to illustrate the gain in efficiency that results from preconditioning. The resulting method is employed to compute approximate solutions of the compressible Euler equations, even for very high CFL numbers.  相似文献   

4.
This paper is concerned with a new version of the Osher-Solomon Riemann solver and is based on a numerical integration of the path-dependent dissipation matrix. The resulting scheme is much simpler than the original one and is applicable to general hyperbolic conservation laws, while retaining the attractive features of the original solver: the method is entropy-satisfying, differentiable and complete in the sense that it attributes a different numerical viscosity to each characteristic field, in particular to the intermediate ones, since the full eigenstructure of the underlying hyperbolic system is used. To illustrate the potential of the proposed scheme we show applications to the following hyperbolic conservation laws: Euler equations of compressible gasdynamics with ideal gas and real gas equation of state, classical and relativistic MHD equations as well as the equations of nonlinear elasticity. To the knowledge of the authors, apart from the Euler equations with ideal gas, an Osher-type scheme has never been devised before for any of these complicated PDE systems. Since our new general Riemann solver can be directly used as a building block of high order finite volume and discontinuous Galerkin schemes we also show the extension to higher order of accuracy and multiple space dimensions in the new framework of PNPM schemes on unstructured meshes recently proposed in [9].  相似文献   

5.
This paper presents a novel high-order space-time method for hyperbolic conservation laws. Two important concepts, the staggered space-time mesh of the space-time conservation element/solution element (CE/SE) method and the local discontinuous basis functions of the space-time discontinuous Galerkin (DG) finite element method, are the two key ingredients of the new scheme. The staggered space-time mesh is constructed using the cell-vertex structure of the underlying spatial mesh. The universal definitions of CEs and SEs are independent of the underlying spatial mesh and thus suitable for arbitrarily unstructured meshes. The solution within each physical time step is updated alternately at the cell level and the vertex level. For this solution updating strategy and the DG ingredient, the new scheme here is termed as the discontinuous Galerkin cell-vertex scheme (DG-CVS). The high order of accuracy is achieved by employing high-order Taylor polynomials as the basis functions inside each SE. The present DG-CVS exhibits many advantageous features such as Riemann-solver-free, high-order accuracy, point-implicitness, compactness, and ease of handling boundary conditions. Several numerical tests including the scalar advection equations and compressible Euler equations will demonstrate the performance of the new method.  相似文献   

6.
Numerically solving 3D seismic wave equations is a key requirement for forward modeling and inversion. Here, we propose a weighted Runge-Kutta discontinuous Galerkin (WRKDG) method for 3D acoustic and elastic wave-field modeling. For this method, the second-order seismic wave equations in 3D heterogeneous anisotropic media are transformed into a first-order hyperbolic system, and then we use a discontinuous Galerkin (DG) solver based on numerical-flux formulations for spatial discretization. The time discretization is based on an implicit diagonal Runge-Kutta (RK) method and an explicit iterative technique, which avoids solving a large-scale system of linear equations. In the iterative process, we introduce a weighting factor. We investigate the numerical stability criteria of the 3D method in detail for linear and quadratic spatial basis functions. We also present a 3D analysis of numerical dispersion for the full discrete approximation of acoustic equation, which demonstrates that the WRKDG method can efficiently suppress numerical dispersion on coarse grids. Numerical results for several different 3D models including homogeneous and heterogeneous media with isotropic and anisotropic cases show that the 3D WRKDG method can effectively suppress numerical dispersion and provide accurate wave-field information on coarse mesh.  相似文献   

7.
In this paper, we focus on the numerical simulation of the two-layer shallow water equations over variable bottom topography. Although the existing numerical schemes for the single-layer shallow water equations can be extended to two-layer shallow water equations, it is not a trivial work due to the complexity of the equations. To achieve the well-balanced property of the numerical scheme easily, the two-layer shallow water equations are reformulated into a new form by introducing two auxiliary variables. Since the new equations are only conditionally hyperbolic and their eigenstructure cannot be easily obtained, we consider the utilization of the central discontinuous Galerkin method which is free of Riemann solvers. By choosing the values of the auxiliary variables suitably, we can prove that the scheme can exactly preserve the still-water solution, and thus it is a truly well-balanced scheme. To ensure the non-negativity of the water depth, a positivity-preserving limiter and a special approximation to the bottom topography are employed. The accuracy and validity of the numerical method will be illustrated through some numerical tests.  相似文献   

8.
The radiative transfer equation is a fundamental equation in transport theory and applications, which is a 5-dimensional PDE in the stationary one-velocity case, leading to great difficulties in numerical simulation. To tackle this bottleneck, we first use the discrete ordinate technique to discretize the scattering term, an integral with respect to the angular variables, resulting in a semi-discrete hyperbolic system. Then, we make the spatial discretization by means of the discontinuous Galerkin (DG) method combined with the sparse grid method. The final linear system is solved by the block Gauss-Seidal iteration method. The computational complexity and error analysis are developed in detail, which show the new method is more efficient than the original discrete ordinate DG method. A series of numerical results are performed to validate the convergence behavior and effectiveness of the proposed method.  相似文献   

9.
Discontinuous Galerkin (DG) and matrix-free finite element methods with a novel projective pressure estimation are combined to enable the numerical modeling of magma dynamics in 2D and 3D using the library deal.II. The physical model is an advection-reaction type system consisting of two hyperbolic equations to evolve porosity and soluble mineral abundance at local chemical equilibrium and one elliptic equation to recover global pressure. A combination of a discontinuous Galerkin method for the advection equations and a finite element method for the elliptic equation provide a robust and efficient solution to the channel regime problems of the physical system in 3D. A projective and adaptively applied pressure estimation is employed to significantly reduce the computational wall time without impacting the overall physical reliability in the modeling of important features of melt segregation, such as melt channel bifurcation in 2D and 3D time dependent simulations.  相似文献   

10.
In this paper, we present an adaptive, analysis of variance (ANOVA)-based data-driven stochastic method (ANOVA-DSM) to study the stochastic partial differential equations (SPDEs) in the multi-query setting. Our new method integrates the advantages of both the adaptive ANOVA decomposition technique and the data-driven stochastic method. To handle high-dimensional stochastic problems, we investigate the use of adaptive ANOVA decomposition in the stochastic space as an effective dimension-reduction technique. To improve the slow convergence of the generalized polynomial chaos (gPC) method or stochastic collocation (SC) method, we adopt the data-driven stochastic method (DSM) for speed up. An essential ingredient of the DSM is to construct a set of stochastic basis under which the stochastic solutions enjoy a compact representation for a broad range of forcing functions and/or boundary conditions.Our ANOVA-DSM consists of offline and online stages. In the offline stage, the original high-dimensional stochastic problem is decomposed into a series of low-dimensional stochastic subproblems, according to the ANOVA decomposition technique. Then, for each subproblem, a data-driven stochastic basis is computed using the Karhunen-Loève expansion (KLE) and a two-level preconditioning optimization approach. Multiple trial functions are used to enrich the stochastic basis and improve the accuracy. In the online stage, we solve each stochastic subproblem for any given forcing function by projecting the stochastic solution into the data-driven stochastic basis constructed offline. In our ANOVA-DSM framework, solving the original high-dimensional stochastic problem is reduced to solving a series of ANOVA-decomposed stochastic subproblems using the DSM. An adaptive ANOVA strategy is also provided to further reduce the number of the stochastic subproblems and speed up our method. To demonstrate the accuracy and efficiency of our method, numerical examples are presented for one- and two-dimensional elliptic PDEs with random coefficients.  相似文献   

11.
A high-order discretization consisting of a tensor product of the Fourier collocation and discontinuous Galerkin methods is presented for numerical modeling of magma dynamics. The physical model is an advection-reaction type system consisting of two hyperbolic equations and one elliptic equation. The high-order solution basis allows for accurate and efficient representation of compaction-dissolution waves that are predicted from linear theory. The discontinuous Galerkin method provides a robust and efficient solution to the eigenvalue problem formed by linear stability analysis of the physical system. New insights into the processes of melt generation and segregation, such as melt channel bifurcation, are revealed from two-dimensional time-dependent simulations.  相似文献   

12.
This paper presents a new Lagrangian type scheme for solving the Euler equations of compressible gas dynamics. In this new scheme the system of equations is discretized by Runge-Kutta Discontinuous Galerkin (RKDG) method, and the mesh moves with the fluid flow. The scheme is conservative for the mass, momentum and total energy and maintains second-order accuracy. The scheme avoids solving the geometrical part and has free parameters. Results of some numerical tests are presented to demonstrate the accuracy and the non-oscillatory property of the scheme.  相似文献   

13.
We propose a framework tailored to robust optimal control (OC) problems subject to parametric model uncertainty of system dynamics. First, we identify a generic class of robust objective kernels that are based on the class of deterministic quadratic objectives. It is demonstrated how such kernels can be expressed as a function of the stochastic moments of the state and how the objective terms relate to the robustness and performance of the optimal solution. Second, we engage the generalized polynomial chaos (gPC) framework to propagate uncertainty along the state trajectory. Integrating both frameworks makes way to reformulate the problem as a deterministic OC problem in function of the gPC expansion coefficients that can be solved using existing methods. We apply the framework to solve the problem of robust optimal startup behavior of a nonlinear mechanical drivetrain that is subject to a bifurcation in its dynamics.  相似文献   

14.
A fully discrete discontinuous Galerkin method is introduced for solving time-dependent Maxwell's equations. Distinguished from the Runge-Kutta discontinuous Galerkin method (RKDG) and the finite element time domain method (FETD), in our scheme, discontinuous Galerkin methods are used to discretize not only the spatial domain but also the temporal domain. The proposed numerical scheme is proved to be unconditionally stable, and a convergent rate $\mathcal{O}((∆t)^{r+1}+h^{k+1/2})$ is established under the $L^2$ -norm when polynomials of degree at most $r$ and $k$ are used for temporal and spatial approximation, respectively. Numerical results in both 2-D and 3-D are provided to validate the theoretical prediction. An ultra-convergence of order $(∆t)^{2r+1}$ in time step is observed numerically for the numerical fluxes w.r.t. temporal variable at the grid points.  相似文献   

15.
We discuss the development, verification, and performance of a GPU accelerated discontinuous Galerkin method for the solutions of two dimensional nonlinear shallow water equations. The shallow water equations are hyperbolic partial differential equations and are widely used in the simulation of tsunami wave propagations. Our algorithms are tailored to take advantage of the single instruction multiple data (SIMD) architecture of graphic processing units. The time integration is accelerated by local time stepping based on a multi-rate Adams-Bashforth scheme. A total variational bounded limiter is adopted for nonlinear stability of the numerical scheme. This limiter is coupled with a mass and momentum conserving positivity preserving limiter for the special treatment of a dry or partially wet element in the triangulation. Accuracy, robustness and performance are demonstrated with the aid of test cases. Furthermore, we developed a unified multi-threading model OCCA. The kernels expressed in OCCA model can be cross-compiled with multi-threading models OpenCL, CUDA, and OpenMP. We compare the performance of the OCCA kernels when cross-compiled with these models.  相似文献   

16.
In this paper, a new sharp-interface approach to simulate compressible multiphase flows is proposed. The new scheme consists of a high order WENO finite volume scheme for solving the Euler equations coupled with a high order path-conservative discontinuous Galerkin finite element scheme to evolve an indicator function that tracks the material interface. At the interface our method applies ghost cells to compute the numerical flux, as the ghost fluid method. However, unlike the original ghost fluid scheme of Fedkiw et al. [15], the state of the ghost fluid is derived from an approximate-state Riemann solver, similar to the approach proposed in [25], but based on a much simpler formulation. Our formulation leads only to one single scalar nonlinear algebraic equation that has to be solved at the interface, instead of the system used in [25]. Away from the interface, we use the new general Osher-type flux recently proposed by Dumbser and Toro [13], which is a simple but complete Riemann solver, applicable to general hyperbolic conservation laws. The time integration is performed using a fully-discrete one-step scheme, based on the approaches recently proposed in [5, 7]. This allows us to evolve the system also with time-accurate local time stepping. Due to the sub-cell resolution and the subsequent more restrictive time-step constraint of the DG scheme, a local evolution for the indicator function is applied, which is matched with the finite volume scheme for the solution of the Euler equations that runs with a larger time step. The use of a locally optimal time step avoids the introduction of excessive numerical diffusion in the finite volume scheme. Two different fluids have been used, namely an ideal gas and a weakly compressible fluid modeled by the Tait equation. Several tests have been computed to assess the accuracy and the performance of the new high order scheme. A verification of our algorithm has been carefully carried out using exact solutions as well as a comparison with other numerical reference solutions. The material interface is resolved sharply and accurately without spurious oscillations in the pressure field.  相似文献   

17.
We present a parallel Schwarz type domain decomposition preconditioned recycling Krylov subspace method for the numerical solution of stochastic indefinite elliptic equations with two random coefficients. Karhunen-Loève expansions are used to represent the stochastic variables and the stochastic Galerkin method with double orthogonal polynomials is used to derive a sequence of uncoupled deterministic equations. We show numerically that the Schwarz preconditioned recycling GMRES method is an effective technique for solving the entire family of linear systems and, in particular, the use of recycled Krylov subspaces is the key element of this successful approach.  相似文献   

18.
A discontinuous Galerkin method for the ideal 5 moment two-fluid plasma system is presented. The method uses a second or third order discontinuous Galerkin spatial discretization and a third order TVD Runge-Kutta time stepping scheme. The method is benchmarked against an analytic solution of a dispersive electron acoustic square pulse as well as the two-fluid electromagnetic shock [1] and existing numerical solutions to the GEM challenge magnetic reconnection problem [2]. The algorithm can be generalized to arbitrary geometries and three dimensions. An approach to maintaining small gauge errors based on error propagation is suggested.  相似文献   

19.
In this paper, we propose a local discontinuous Galerkin (LDG) method for the multi-dimensional stochastic Cahn-Hilliard type equation in a general form, which involves second-order derivative $∆u$ in the multiplicative noise. The stability of our scheme is proved for arbitrary polygonal domain with triangular meshes. We get the sub-optimal error estimate $\mathbb{O}(h^k)$ if the Cartesian meshes with $Q^k$ elements are used. Numerical examples are given to display the performance of the LDG method.  相似文献   

20.
We propose a new high order accurate nodal discontinuous Galerkin (DG) method for the solution of nonlinear hyperbolic systems of partial differential equations (PDE) on unstructured polygonal Voronoi meshes. Rather than using classical polynomials of degree $N$ inside each element, in our new approach the discrete solution is represented by piecewise continuous polynomials of degree $N$ within each Voronoi element, using a continuous finite element basis defined on a subgrid inside each polygon. We call the resulting subgrid basis an agglomerated finite element (AFE) basis for the DG method on general polygons, since it is obtained by the agglomeration of the finite element basis functions associated with the subgrid triangles. The basis functions on each sub-triangle are defined, as usual, on a universal reference element, hence allowing to compute universal mass, flux and stiffness matrices for the subgrid triangles once and for all in a pre-processing stage for the reference element only. Consequently, the construction of an efficient quadrature-free algorithm is possible, despite the unstructured nature of the computational grid. High order of accuracy in time is achieved thanks to the ADER approach, making use of an element-local space-time Galerkin finite element predictor.The novel schemes are carefully validated against a set of typical benchmark problems for the compressible Euler and Navier-Stokes equations. The numerical results have been checked with reference solutions available in literature and also systematically compared, in terms of computational efficiency and accuracy, with those obtained by the corresponding modal DG version of the scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号