首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new multi-resolution weighted essentially non-oscillatory (MR-WENO) limiter for high-order local discontinuous Galerkin (LDG) method is designed for solving Navier-Stokes equations on triangular meshes. This MR-WENO limiter is a new extension of the finite volume MR-WENO schemes. Such new limiter uses information of the LDG solution essentially only within the troubled cell itself, to build a sequence of hierarchical $L^2$ projection polynomials from zeroth degree to the highest degree of the LDG method. As an example, a third-order LDG method with associated same order MR-WENO limiter has been developed in this paper, which could maintain the original order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near strong shocks or contact discontinuities. The linear weights of such new MR-WENO limiter can be any positive numbers on condition that their summation is one. This is the first time that a series of different degree polynomials within the troubled cell are applied in a WENO-type fashion to modify the freedom of degrees of the LDG solutions in the troubled cell. This MR-WENO limiter is very simple to construct, and can be easily implemented to arbitrary high-order accuracy and in higher dimensions on unstructured meshes. Such spatial reconstruction methodology improves the robustness in the numerical simulation on the same compact spatial stencil of the original LDG methods on triangular meshes. Some classicalviscous examples are given to show the good performance of this third-order LDG method with associated MR-WENO limiter.  相似文献   

2.
In this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [29]. Both limiters use information of the DG solutions only from the target cell and its immediate neighboring cells, thus maintaining the original compactness of the DG scheme. The goal of both limiters is to obtain high order accuracy and non-oscillatory properties simultaneously. The main novelty of the new HWENO limiter in this paper is to reconstruct the polynomial on the target cell in a least square fashion [8] while the simple WENO limiter [29] is to use the entire polynomial of the original DG solutions in the neighboring cells with an addition of a constant for conservation. The modification in this paper improves the robustness in the computation of problems with strong shocks or contact discontinuities, without changing the compact stencil of the DG scheme. Numerical results for both one and two dimensional equations including Euler equations of compressible gas dynamics are provided to illustrate the viability of this modified limiter.  相似文献   

3.
This paper further considers weighted essentially non-oscillatory (WENO) and Hermite weighted essentially non-oscillatory (HWENO) finite volume methods as limiters for Runge-Kutta discontinuous Galerkin (RKDG) methods to solve problems involving nonlinear hyperbolic conservation laws. The application discussed here is the solution of 3-D problems on unstructured meshes. Our numerical tests again demonstrate this is a robust and high order limiting procedure, which simultaneously achieves high order accuracy and sharp non-oscillatory shock transitions.  相似文献   

4.
In this paper, a new type of third-order and fourth-order weighted essentially non-oscillatory (WENO) schemes is designed for simulating the Hamilton-Jacobi equations on triangular meshes. We design such schemes with the use of the nodal information defined on five unequal-sized spatial stencils, the application of monotone Hamiltonians as a building block, the artificial set of positive linear weights to make up high-order approximations in smooth regions simultaneously avoiding spurious oscillations nearby discontinuities of the derivatives of the solutions. The spatial reconstructions are convex combinations of the derivatives of a modified cubic/quartic polynomial defined on a big spatial stencil and four quadratic polynomials defined on small spatial stencils, and a third-order TVD Runge-Kutta method is used for the time discretization. The main advantages of these WENO schemes are their efficiency, simplicity, and can be easily implemented to higher dimensional unstructured meshes. Extensive numerical tests are performed to illustrate the good performance of such new WENO schemes.  相似文献   

5.
Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order well-balanced finite volume weighted essentially non-oscillatory (WENO) schemes and RungeKutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly, if a small modification on either the initial condition or the flux is provided. The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method. The same idea can be applied to the finite volume WENO schemes. We will first describe the algorithms and prove the well balanced property for the shallow water equations, and then show that the result can be generalized to a class of other balance laws. We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions.  相似文献   

6.
We present a new conservative semi-Lagrangian finite difference weighted essentially non-oscillatory scheme with adaptive order. This is an extension of the conservative semi-Lagrangian (SL) finite difference WENO scheme in [Qiu and Shu, JCP, 230 (4) (2011), pp. 863-889], in which linear weights in SL WENO framework were shown not to exist for variable coefficient problems. Hence, the order of accuracy is not optimal from reconstruction stencils. In this paper, we incorporate a recent WENO adaptive order (AO) technique [Balsara et al., JCP, 326 (2016), pp. 780-804] to the SL WENO framework. The new scheme can achieve an optimal high order of accuracy, while maintaining the properties of mass conservation and non-oscillatory capture of solutions from the original SL WENO. The positivity-preserving limiter is further applied to ensure the positivity of solutions. Finally, the scheme is applied to high dimensional problems by a fourth-order dimensional splitting. We demonstrate the effectiveness of the new scheme by extensive numerical tests on linear advection equations, the Vlasov-Poisson system, the guiding center Vlasov model as well as the incompressible Euler equations.  相似文献   

7.
This paper presents a new and better suited formulation to implement the limiting projection to high-order schemes that make use of high-order local reconstructions for hyperbolic conservation laws. The scheme, so-called MCV-WENO4 (multi-moment Constrained finite Volume with WENO limiter of 4th order) method, is an extension of the MCV method of Ii & Xiao (2009) by adding the 1st order derivative (gradient or slope) at the cell center as an additional constraint for the cell-wise local reconstruction. The gradient is computed from a limiting projection using the WENO (weighted essentially non-oscillatory) reconstruction that is built from the nodal values at 5 solution points within 3 neighboring cells. Different from other existing methods where only the cell-average value is used in the WENO reconstruction, the present method takes account of the solution structure within each mesh cell, and thus minimizes the stencil for reconstruction. The resulting scheme has 4th-order accuracy and is of significant advantage in algorithmic simplicity and computational efficiency. Numerical results of one and two dimensional benchmark tests for scalar and Euler conservation laws are shown to verify the accuracy and oscillation-less property of the scheme.  相似文献   

8.
In this paper, we introduce a new type of troubled-cell indicator to improve hybrid weighted essentially non-oscillatory (WENO) schemes for solving the hyperbolic conservation laws. The hybrid WENO schemes selectively adopt the high-order linear upwind scheme or the WENO scheme to avoid the local characteristic decompositions and calculations of the nonlinear weights in smooth regions. Therefore, they can reduce computational cost while maintaining non-oscillatory properties in non-smooth regions. Reliable troubled-cell indicators are essential for efficient hybrid WENO methods. Most of troubled-cell indicators require proper parameters to detect discontinuities precisely, but it is very difficult to determine the parameters automatically. We develop a new troubled-cell indicator derived from the mean value theorem that does not require any variable parameters. Additionally, we investigate the characteristics of indicator variable; one of the conserved properties or the entropy is considered as indicator variable. Detailed numerical tests for 1D and 2D Euler equations are conducted to demonstrate the performance of the proposed indicator. The results with the proposed troubled-cell indicator are in good agreement with pure WENO schemes. Also the new indicator has advantages in the computational cost compared with the other indicators.  相似文献   

9.
This paper develops three high-order accurate discontinuous Galerkin (DG) methods for the one-dimensional (1D) and two-dimensional (2D) nonlinear Dirac (NLD) equations with a general scalar self-interaction. They are the Runge-Kutta DG (RKDG) method and the DG methods with the one-stage fourth-order Lax-Wendroff type time discretization (LWDG) and the two-stage fourth-order accurate time discretization (TSDG). The RKDG method uses the spatial DG approximation to discretize the NLD equations and then utilize the explicit multistage high-order Runge-Kutta time discretization for the first-order time derivatives, while the LWDG and TSDG methods, on the contrary, first give the one-stage fourth-order Lax-Wendroff type and the two-stage fourth-order time discretizations of the NLD equations, respectively, and then discretize the first- and higher-order spatial derivatives by using the spatial DG approximation. The $L^2$ stability of the 2D semi-discrete DG approximation is proved in the RKDG methods for a general triangulation, and the computational complexities of three 1D DG methods are estimated. Numerical experiments are conducted to validate the accuracy and the conservation properties of the proposed methods. The interactions of the solitary waves, the standing and travelling waves are investigated numerically and the 2D breathing pattern is observed.  相似文献   

10.
A priori subcell limiting approach is developed for high-order flux reconstruction/correction procedure via reconstruction (FR/CPR) methods on two-dimensional unstructured quadrilateral meshes. Firstly, a modified indicator based on modal energy coefficients is proposed to detect troubled cells, where discontinuities exist. Then, troubled cells are decomposed into nonuniform subcells and each subcell has one solution point. A second-order finite difference shock-capturing scheme based on nonuniform nonlinear weighted (NNW) interpolation is constructed to perform the calculation on troubled cells while smooth cells are calculated by the CPR method. Numerical investigations show that the proposed subcell limiting strategy on unstructured quadrilateral meshes is robust in shock-capturing.  相似文献   

11.
In this paper, a high-order moment-based multi-resolution Hermite weighted essentially non-oscillatory (HWENO) scheme is designed for hyperbolic conservation laws. The main idea of this scheme is derived from our previous work [J. Comput. Phys., 446 (2021) 110653], in which the integral averages of the function and its first order derivative are used to reconstruct both the function and its first order derivative values at the boundaries. However, in this paper, only the function values at the Gauss-Lobatto points in the one or two dimensional case need to be reconstructed by using the information of the zeroth and first order moments. In addition, an extra modification procedure is used to modify those first order moments in the troubled-cells, which leads to an improvement of stability and an enhancement of resolution near discontinuities. To obtain the same order of accuracy, the size of the stencil required by this moment-based multi-resolution HWENO scheme is still the same as the general HWENO scheme and is more compact than the general WENO scheme. Moreover, the linear weights are not unique and are independent of the node position, and the CFL number can still be 0.6 whether for the one or two dimensional case, which has to be 0.2 in the two dimensional case for other HWENO schemes. Extensive numerical examples are given to demonstrate the stability and resolution of such moment-based multi-resolution HWENO scheme.  相似文献   

12.
In [SIAM J. Sci. Comput., 35(2)(2013), A1049–A1072], a class of multi-domain hybrid DG and WENO methods for conservation laws was introduced. Recent applications of this method showed that numerical instability may encounter if the DG flux with Lagrangian interpolation is applied as the interface flux during the moment of conservative coupling. In this continuation paper, we present a more robust approach in the construction of DG flux at the coupling interface by using WENO procedures of reconstruction. Based on this approach, such numerical instability is overcome very well. In addition, the procedure of coupling a DG method with a WENO-FD scheme on hybrid meshes is disclosed in detail. Typical testing cases are employed to demonstrate the accuracy of this approach and the stability under the flexibility of using either WENO-FD flux or DG flux at the moment of requiring conservative coupling.  相似文献   

13.
In this paper we demonstrate the accuracy and robustness of combining the advection upwind splitting method (AUSM), specifically AUSM+-UP [9], with high-order upwind-biased interpolation procedures, the weighted essentially non-oscillatory (WENO-JS) scheme [8] and its variations [2, 7], and the monotonicity preserving (MP) scheme [16], for solving the Euler equations. MP is found to be more effective than the three WENO variations studied. AUSM+-UP is also shown to be free of the so-called "carbuncle" phenomenon with the high-order interpolation. The characteristic variables are preferred for interpolation after comparing the results using primitive and conservative variables, even though they require additional matrix-vector operations. Results using the Roe flux with an entropy fix and the Lax-Friedrichs approximate Riemann solvers are also included for comparison. In addition, four reflective boundary condition implementations are compared for their effects on residual convergence and solution accuracy. Finally, a measure for quantifying the efficiency of obtaining high order solutions is proposed; the measure reveals that a maximum return is reached after which no improvement in accuracy is possible for a given grid size.  相似文献   

14.
In this paper, we develop two finite difference weighted essentially non-oscillatory (WENO) schemes with unequal-sized sub-stencils for solving the Degasperis-Procesi (DP) and $\mu$-Degasperis-Procesi ($\mu$DP) equations, which contain nonlinear high order derivatives, and possibly peakon solutions or shock waves. By introducing auxiliary variable(s), we rewrite the DP equation as a hyperbolic-elliptic system, and the $\mu$DP equation as a first order system. Then we choose a linear finite difference scheme with suitable order of accuracy for the auxiliary variable(s), and two finite difference WENO schemes with unequal-sized sub-stencils for the primal variable. One WENO scheme uses one large stencil and several smaller stencils, and the other WENO scheme is based on the multi-resolution framework which uses a series of unequal-sized hierarchical central stencils. Comparing with the classical WENO scheme which uses several small stencils of the same size to make up a big stencil, both WENO schemes with unequal-sized sub-stencils are simple in the choice of the stencil and enjoy the freedom of arbitrary positive linear weights. Another advantage is that the final reconstructed polynomial on the target cell is a polynomial of the same degree as the polynomial over the big stencil, while the classical finite difference WENO reconstruction can only be obtained for specific points inside the target interval. Numerical tests are provided to demonstrate the high order accuracy and non-oscillatory properties of the proposed schemes.  相似文献   

15.
High-order discretization techniques offer the potential to significantly reduce the computational costs necessary to obtain accurate predictions when compared to lower-order methods. However, efficient and universally-applicable high-order discretizations remain somewhat illusive, especially for more arbitrary unstructured meshes and for incompressible/low-speed flows. A novel, high-order, central essentially non-oscillatory (CENO), cell-centered, finite-volume scheme is proposed for the solution of the conservation equations of viscous, incompressible flows on three-dimensional unstructured meshes. Similar to finite element methods, coordinate transformations are used to maintain the scheme's order of accuracy even when dealing with arbitrarily-shaped cells having non-planar faces. The proposed scheme is applied to the pseudo-compressibility formulation of the steady and unsteady Navier-Stokes equations and the resulting discretized equations are solved with a parallel implicit Newton-Krylov algorithm. For unsteady flows, a dual-time stepping approach is adopted and the resulting temporal derivatives are discretized using the family of high-order backward difference formulas (BDF). The proposed finite-volume scheme for fully unstructured mesh is demonstrated to provide both fast and accurate solutions for steady and unsteady viscous flows.  相似文献   

16.
In the finite difference WENO (weighted essentially non-oscillatory) method, the final scheme on the whole stencil was constructed by linear combinations of highest order accurate schemes on sub-stencils, all of which share the same total count of grid points. The linear combination method which the original WENO applied was generalized to arbitrary positive-integer-order derivative on an arbitrary (uniform or non-uniform) mesh, still applying finite difference method. The possibility of expressing the final scheme on the whole stencil as a linear combination of highest order accurate schemes on WENO-like sub-stencils was investigated. The main results include: (a) the highest order of accuracy a finite difference scheme can achieve and (b) a sufficient and necessary condition that the linear combination exists. This is a sufficient and necessary condition for all finite difference schemes in a set (rather than a specific finite difference scheme) to have WENO-like linear combinations. After the proofs of the results, some remarks on the WENO schemes and TENO (targeted essentially non-oscillatory) schemes were given.  相似文献   

17.
We propose a universal discontinuity detector using convolution neural network (CNN) and apply it in conjunction of solving nonlinear conservation laws in both 1D and 2D. The CNN detector is trained offline with synthetic data. The training data are generated using randomly constructed piecewise functions, which are then processed using randomized linear advection solver to count for the cases of numerical errors in practice. The detector is then paired with high-order numerical solvers. In particular, we combined high-order WENO in troubled cells with high-order central difference in smooth region. Extensive numerical examples are presented. We observe that the proposed method produces notably sharper and cleaner signals near the discontinuities, when compared to other well known troubled cell detector methods.  相似文献   

18.
In this paper we consider two commonly used classes of finite volume weighted essentially non-oscillatory (WENO) schemes in two dimensional Cartesian meshes. We compare them in terms of accuracy, performance for smooth and shocked solutions, and efficiency in CPU timing. For linear systems both schemes are high order accurate, however for nonlinear systems, analysis and numerical simulation results verify that one of them (Class A) is only second order accurate, while the other (Class B) is high order accurate. The WENO scheme in Class A is easier to implement and costs less than that in Class B. Numerical experiments indicate that the resolution for shocked problems is often comparable for schemes in both classes for the same building blocks and meshes, despite of the difference in their formal order of accuracy. The results in this paper may give some guidance in the application of high order finite volume schemes for simulating shocked flows.  相似文献   

19.
Based on the high order essentially non-oscillatory (ENO) Lagrangian type scheme on quadrilateral meshes presented in our earlier work [3], in this paper we develop a third order conservative Lagrangian type scheme on curvilinear meshes for solving the Euler equations of compressible gas dynamics. The main purpose of this work is to demonstrate our claim in [3] that the accuracy degeneracy phenomenon observed for the high order Lagrangian type scheme is due to the error from the quadrilateral mesh with straight-line edges, which restricts the accuracy of the resulting scheme to at most second order. The accuracy test given in this paper shows that the third order Lagrangian type scheme can actually obtain uniformly third order accuracy even on distorted meshes by using curvilinear meshes. Numerical examples are also presented to verify the performance of the third order scheme on curvilinear meshes in terms of resolution for discontinuities and non-oscillatory properties.  相似文献   

20.
In this paper, we propose a high-order accurate discontinuous Galerkin (DG) method for the compressible Euler equations under gravitational fields on unstructured meshes. The scheme preserves a general hydrostatic equilibrium state and provably guarantees the positivity of density and pressure at the same time. Comparing with the work on the well-balanced scheme for Euler equations with gravitation on rectangular meshes, the extension to triangular meshes is conceptually plausible but highly nontrivial. We first introduce a special way to recover the equilibrium state and then design a group of novel variables at the interface of two adjacent cells, which plays an important role in the well-balanced and positivity-preserving properties. One main challenge is that the well-balanced schemes may not have the weak positivity property. In order to achieve the well-balanced and positivity-preserving properties simultaneously while maintaining high-order accuracy, we carefully design DG spatial discretization with well-balanced numerical fluxes and suitable source term approximation. For the ideal gas, we prove that the resulting well-balanced scheme, coupled with strong stability preserving time discretizations, satisfies a weak positivity property. A simple existing limiter can be applied to enforce the positivity-preserving property, without losing high-order accuracy and conservation. Extensive one- and two-dimensional numerical examples demonstrate the desired properties of the proposed scheme, as well as its high resolution and robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号