首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tail sensory neurons in the pleural ganglion that mediate the afferent portion of the tail withdrawal reflex in Aplysia californica undergo heterosynaptic facilitation of transmitter release during sensitization. As in the siphon sensory neurons, the transmitter serotonin produces facilitation and also elicits a slow, decreased conductance excitatory postsynaptic potential (EPSP) in these neurons. Using voltage clamp and biochemical analyses, we have found that the slow EPSP in the pleural sensory neurons is due to a decrease in a potassium conductance identical to the S potassium current characterized in siphon sensory neurons. Like the S current, the current modulated by serotonin in the pleural sensory neurons is a non-inactivating potassium current, and it contributes to both the resting and action potentials. The current reverses in 120 mM external K+ at -20 mV, close to the predicted Nernst equilibrium potential. Intracellular cesium blocks the serotonin response, but the current is not blocked by equimolar substitution of barium for calcium, nor by 50 mM tetraethylammonium chloride. The effect of serotonin is cAMP dependent, since serotonin elevates cAMP and both cAMP injection and forskolin mimic the serotonin response. These results indicate that the mechanism associated with sensitization of the siphon-gill withdrawal reflex, a slow decreased potassium conductance, is also a component of the neuronal circuitry underlying modulation of another reflex, the tail withdrawal reflex. Therefore, two distinct populations of neurons subserving similar behavioral functions have related biophysical and biochemical properties.  相似文献   

2.
A variety of evidence suggests that 5-HT participates in presynaptic facilitation of the siphon sensory cells contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia. Most recently, Glanzman et al. (1989) have shown that the 5-HT neurotoxin 5,7-DHT markedly reduces both the synaptic facilitation and behavioral dishabituation produced by tail shock. To provide more direct evidence for a role of 5-HT, I have used histological techniques to try to locate individual serotonergic facilitator neurons. I first used a modification of the glyoxylic acid histofluorescence technique to map serotonergic and dopaminergic neurons in the CNS of Aplysia. Intracellular fluorescent labeling combined with histofluorescence indicates that the previously identified L29 facilitator neurons are not serotonergic. Nerve transection experiments suggest that most of the perisomatic 5-HT histofluorescence in the abdominal ganglion (the location of the siphon sensory cells) comes from neurons whose cell bodies are located in the pedal or cerebral ganglia. As there are at least 500 serotonergic neurons in those ganglia, I combined retrograde fluorescent labeling with histofluorescence to identify a small subset of those neurons which send processes to the abdominal ganglion and are therefore potential serotonergic facilitators. In the following paper, Mackey et al. (1989) show that stimulation of 2 of those neurons in the cerebral ganglia (the CB1 cells) produces presynaptic facilitation of the siphon sensory cells contributing to dishabituation and sensitization of the withdrawal reflex.  相似文献   

3.
The defensive withdrawal reflex of the mantle organs of Aplysia californica has 2 major components, siphon withdrawal and gill withdrawal. In the previous paper of this series (Rankin and Carew, 1987), the development of 2 forms of nonassociative learning, habituation and dishabituation, was examined in the siphon withdrawal component of the reflex. In the present study we examined these same forms of learning in the gill withdrawal component of the reflex. The purpose of these experiments was 2-fold: to examine the development of learning in the other major component of the reflex; and to establish preparations in which it is possible to carry out a cellular analysis of the development of learning in the CNS. We first established that the gill withdrawal reflex in intact animals exhibited significant habituation in response to repeated tactile stimulation of the siphon and significant dishabituation in response to tail shock. We next determined the contribution of the CNS to the gill withdrawal reflex by surgically removing the abdominal ganglion from intact animals. Using the same stimulus intensity (4 mg) that produced habituation in the previous experiments, we found that the CNS accounted for approximately 95% of the reflex. Finally, we developed 2 preparations that allowed us to relate behavioral observations of learning directly to neural plasticity exhibited in the CNS. In a semi-intact preparation gill withdrawal was behaviorally measured as in the intact animal, but tactile stimulation of the siphon (to produce habituation) and shock to the tail (to produce dishabituation) were replaced by electrical stimulation of the siphon nerve and left connective, respectively. Stimulation parameters were matched to produce behavioral responses comparable with those in the intact animal. In an isolated CNS preparation the same nerve stimuli were used as in the semi-intact preparation, but the response measure used was the evoked neural discharge recorded in an efferent nerve innervating the gill. Both preparations exhibited response decrement and facilitation that was quantitatively as well as qualitatively similar to that observed in intact animals, indicating that 2 simple forms of learning exhibited by the gill withdrawal reflex in juvenile Aplysia can be localized to neural circuits within the abdominal ganglion.  相似文献   

4.
Synapses between the sensory and motor cells of Aplysia can be enhanced by heterosynaptic or homosynaptic stimulation. We have used the isolated sensorimotor synapse of Aplysia in cell culture to explore short- and long-term heterosynaptic facilitation produced by 2 facilitatory transmitters and compared these to homosynaptic facilitation produced by posttetanic potentiation. We found that brief application of 5-HT or small cardioactive peptide (SCP) evokes comparable short-lasting enhancement of nondepressed sensorimotor synapses. The effect evoked by SCP diverges from that of 5-HT when the sensorimotor synapse is first depressed by low-frequency homosynaptic stimulation. Whereas 5-HT facilitates sensorimotor synapses whether or not they are depressed, SCP has little or no effect on synapses that have been depressed by more than 75%. The 2 transmitters also differ in producing long-term facilitation. Whereas repeated applications of 5-HT evoke long-term facilitation of the synapses, SCP applications do not. To determine whether these failures to facilitate could be overcome by increasing levels of cAMP, we applied SCP in the presence of phosphodiesterase inhibitors, which resulted in SCP evoking both short- and long-term changes comparable to that of 5-HT. Homosynaptic facilitation by post-tetanic potentiation differed from heterosynaptic facilitation in that tetanic stimulation failed to evoke long-lasting changes in the synapse. These results support recent findings that 5-HT is a critical neuromodulator in behavioral sensitization and dishabituation and suggest that critical levels of cAMP may be required for long- and short-term facilitation of depressed synapses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Monoamines (NE, DA) were studied for their effect on heterosynaptic facilitation of n-cholinergic synaptic transmission in identified giant neurons of the cerebral ganglion of Planorbis corneus. It was shown that NE and DA blocked n-cholinergic EPSP and facilitated acetylcholine potential evoked by ionophoretic acetylcholine application. The monoamines blocked heterosynaptic facilitation as well. Washing of the monoamines after blocking heterosynaptic facilitation evoked recovery and long maintenance of the synaptic facilitation. It is concluded that DA and NE release may be the mechanism for conducting the intensity and duration of the heterosynaptic facilitation in the natural activity of the central nervous system of molluscs.  相似文献   

6.
Sensitization of the gill and siphon withdrawal reflex in the marine mollusc, Aplysia california, is a simple form of learning Underlying this behavioral changes is a cascade of biochemical events. The first step in this cascade is postulated to be an increase in cAMP within the sensory neurons of the abdominal ganglion. We have developed a labeling protocol with 32Pi which permits us to measure the synthesis of cAMP within a single sensory neurons. Application of serotonin for 5 min was found to triple the content of [32P]cAMP in sensory neurons. The response is specific to serotonin: dopamine, a transmitter that does not produce sensitization, did not increase cAMP. Physiological stimulation of facilitator neurons also resulted in a 3.5-fold increase of cAMP in sensory neurons but not in other cells of the ganglion. We studied the time course of the increase of cAMP in sensory cells stimulated with serotonin and found that it parallels closely the time course of the short term form of presynaptic facilitation. We also have determined the effects of transmitters on the synthesis of cAMP in other identified neurons of the ganglion. The bag cells responded specifically to serotonin. R15, which has been shown to be hyperpolarized both the serotonin and by dopamine, responded to both transmitters by increased synthesis synthesis of cAMP. Thus, the dopamine- and serotonin-sensitive cyclase can be localized to both the same and different cells. Other cells did not respond to serotonin or to dopamine, indicating that a transmitter-sensitive adenylate cyclase is a specific property and is not present in all neurons.  相似文献   

7.
The gill withdrawal reflex of the marine mollusk, Aplysia californica, shows habituation and sensitization, two simple forms of learning. In order to extend the cellular studies on synaptic plasticity underlying the changes in the reflex behavior, and to explore further the development of synaptic plasticity during synapse formation, we have sought to establish the neural circuit of the gill withdrawal reflex in vitro. We report here the reconstruction of the elementary gill withdrawal circuit in cell culture and find that the cells show short-term homosynaptic depression and heterosynaptic facilitation, the cellular mechanisms of habituation and sensitization, respectively.  相似文献   

8.
Sensitization of the gill withdrawal reflex in Aplysia californica is an elementary form of learning, in part resulting from presynaptic facilitation of the LE mechanoreceptor neurons of the abdominal ganglion. It has previously been established that either application of serotonin or direct stimulation of a group of facilitatory neurons, the L29 cells of the abdominal ganglion, can simulate the effect of physiological stimulation in producing presynaptic facilitation. Because the evidence that serotonin serves as a facilitatory transmitter was indirect, we examined the distribution of serotonin-immunoreactive fibers and cell bodies in the abdominal ganglion in order to answer two questions: (1) do the sensory neurons receive serotonergic innervation and (2) are the L29 cells serotonergic? We observed two distinctive patterns of serotonergic innervation within the ganglion, sparse and dense. The sparse pattern is correlated with a serotonin-stimulated increase in cAMP in identified target cells, while the dense innervation is not. We found a sparse distribution of serotonin-immunoreactive fibers with varicosities close to both cell bodies and processes of identified LE sensory cells. It therefore is likely that the sensory neurons do receive serotonergic innervation. We also mapped the population of serotonergic neuronal cell bodies in the ganglion, and found five clusters of neurons. Cells in one of these clusters, the identified RB neurons, had previously been shown to synthesize serotonin from tryptophan and to contain the neurotransmitter in high concentration. Identified L29 facilitator cells marked by injection with Lucifer Yellow do not contain serotonin immunoreactivity and therefore evidently are not a source of serotonergic input onto sensory cells.  相似文献   

9.
Tail shock-induced modulation of the siphon withdrawal reflex of Aplysia has recently been shown to have a transient inhibitory component, as well as a facilitatory component. This transient behavioral inhibition is also seen in a reduced preparation in which a cellular reflection of the inhibitory process, tail shock-induced inhibition of complex EPSPs in siphon motor neurons, is observed. The biogenic amine serotonin (5-HT) is known to play a role in the facilitatory aspects of sensitization in Aplysia. The aim of this article was to examine whether 5-HT might also contribute to the inhibitory effects of tail shock in the siphon withdrawal reflex. To examine this question, we carried out two kinds of experiments. First, in the isolated abdominal ganglion, we recorded intracellularly from siphon motor neurons and examined the effects of 5-HT on (1) complex (polysynaptic) EPSPs, produced by siphon nerve stimulation, and, simultaneously, (2) monosynaptic EPSPs from siphon sensory neurons. We found that, paralleling the effects of tail shock in the reduced preparation, 5-HT produced transient inhibition of the complex EPSP; the monosynaptic EPSP was facilitated by 5-HT. Second, we examined the behavioral effects of 5-HT on siphon withdrawal in a reduced preparation. We found that 5-HT again paralleled tail shock by producing transient inhibition of the siphon withdrawal reflex. Our results suggest that, in addition to its well-established facilitatory role in reflex modulation in Aplysia, 5-HT might play an important inhibitory role, as well.  相似文献   

10.
It is shown that heterosynaptic facilitation of the synaptic transmission in the giant neurons of the cerebral ganglion in Planorbis corneus develops due to the diffuse neurohumoral effects on the pre- and postsynaptic structures but not as a result of the local synaptic influences on the presynaptic mechanisms. Using the new biological object it has been confirmed that serotonin from the perfuse solution was a source of the facilitatory action on the n-cholinergic synaptic transmission. It was established that conditioning stimulations facilitated not only the n-cholinergic synaptic transmission but also the ionophoretic acetylcholine potentials. Amplitudes of EPSPs and acetylcholinic potentials increased 4-6 times, while the postsynaptic membrane impedance increased only by 20%. Based on such data it is summarized that sensitization of n-cholinergic receptors of the postsynaptic membrane contributed much to the heterosynaptic facilitation. The possible role of n-cholinergic receptors of the postsynapcit membrane in the processes of the heterosynaptic facilitation and of the conditional training is discussed.  相似文献   

11.
To examine the relationship between synaptic plasticity and learning and memory as directly as possible, we have developed a new simplified preparation for studying the siphon-withdrawal reflex of Aplysia in which it is relatively easy to record synaptic connections between individual identified neurons during simple forms of learning. We estimated that monosynaptic EPSPs from LE siphon sensory neurons to LFS siphon motor neurons mediate approximately one-third of the reflex response measured in this preparation, which corresponds to siphon flaring in the intact animal. To investigate cellular mechanisms contributing to dishabituation and sensitization, we recorded evoked firing of LFS neurons, the siphon withdrawal produced by stimulation of an LFS neuron, the complex PSP in an LFS neuron, and the monosynaptic PSP from an "on-field" or "off-field" LE neuron to an LFS neuron during behavioral training. Unlike the simplified gill-withdrawal preparation (Cohen et al., 1997; Frost et al., 1997), in the siphon-withdrawal preparation we found no qualitative differences between the major cellular mechanisms contributing to dishabituation and sensitization, suggesting that dissociations that have been observed previously may be attributable to transient inhibition that does not occur for this component of the reflex. Furthermore, in the siphon-withdrawal preparation, all of the various cellular measures, including monosynaptic PSPs from either on-field or off-field LE neurons, changed approximately in parallel with changes in the behavior. These results provide the most direct evidence so far available that both dishabituation and sensitization involve multiple mechanisms, including heterosynaptic facilitation of sensory neuron-motor neuron PSPs.  相似文献   

12.
Noxious stimuli, such as electrical shocks to the animal's tail, enhance Aplysia's gill- and siphon-withdrawal reflex. Previous experimental work has indicated that this behavioral enhancement, known as dishabituation (if the reflex has been habituated) or sensitization (if it has not been habituated), might be mediated, at least in part, by the endogenous monoaminergic transmitter serotonin (5-HT). To assess 5-HT's role in dishabituation and sensitization of Aplysia withdrawal reflex, we treated Aplysia with the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). We found that 5,7-DHT treatment significantly reduced the dishabituation of the withdrawal reflex produced by tail shock. Treatment with the neurotoxin also blocked the heterosynaptic facilitation of monosynaptic connections between siphon sensory neurons and their follower cells, which contributes to the behavioral enhancement. Analysis by high-performance liquid chromatography indicated that 5,7-DHT treatment significantly reduced 5-HT levels in the Aplysia CNS. Moreover, the neurotoxic effects of 5,7-DHT appeared to be relatively specific for serotonergic pathways. Thus, 5,7-DHT treatment did not disrupt the ability of nonserotonergic facilitatory interneurons, the L29 cells, to facilitate the connections of siphon sensory neurons. Also, 5,7-DHT reduced 5-HT-dependent, but not dopamine-dependent, histofluorescence in Aplysia central ganglia. Finally, 5,7-DHT does not reduce the levels of the facilitatory peptides SCPA and SCPB within the Aplysia CNS. Our results, together with those of Mackey et al. (1989), indicate that 5-HT plays a major role in mediating dishabituation and sensitization of Aplysia's withdrawal reflex.  相似文献   

13.
Several lines of evidence suggest that 5-HT plays a significant role in presynaptic facilitation of the siphon sensory cells contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia. Most recently, Glanzman et al. (1989) found that treatment with the 5-HT neurotoxin, 5,7-DHT markedly reduced both synaptic facilitation and behavioral dishabituation. To provide more direct evidence for a role of 5-HT, we have attempted to identify individual serotonergic facilitator neurons. Hawkins (1989) used histological techniques to locate several serotonergic neurons in the ring ganglia that send axons to the abdominal ganglion and are therefore possible serotonergic facilitators. These include one neuron in the B cluster of each cerebral ganglion, which we have identified electrophysiologically and named the CB1 cells. Both glyoxylic acid histofluorescence and 5-HT immunofluorescence indicate that the CB1 neurons are serotonergic. In a semiintact preparation, the CB1 neurons respond to cutaneous stimulation which produces dishabituation and sensitization (such as tail shock) with an increase in firing, which may outlast the stimulation by 15 min. Intracellular stimulation of a CB1 neuron in a manner similar to its response to tail shock produces facilitation of the EPSPs from siphon sensory neurons to motor neurons, as well as broadening of the action potential in the sensory neurons in tetraethylammonium solution. These results strongly suggest that the identified serotonergic CB1 neurons participate in mediating presynaptic facilitation contributing to dishabituation and sensitization of the gill- and siphon-withdrawal reflex in Aplysia.  相似文献   

14.
Recent behavioral experiments examining the siphon withdrawal reflex of Aplysia have revealed inhibitory effects of strong tail shock, a stimulus commonly used as an unconditioned stimulus in studies of associative and nonassociative learning in Aplysia. We utilized a reduced preparation to perform a cellular analysis of tail shock-induced inhibition in the siphon withdrawal reflex. First, we carried out behavioral studies that showed that the reduced preparation exhibits a siphon withdrawal reflex to water jet stimuli, and that tail shock produces inhibitory behavioral effects comparable to those in the intact animal: (1) strong shock produces transient inhibition of nonhabituated responses, and (2) a habituated response is facilitated by weak shock, but not by strong shock, suggesting that increasing tail shock intensity recruits the inhibitory process that competes with facilitation of habituated reflexes. Next, we carried out cellular studies that showed that the amplitude of the complex EPSP in siphon motor neurons elicited by water jet stimuli to the siphon also exhibits the inhibitory patterns produced by tail shock: (1) the nondecremented complex EPSP (a neural correlate of a nonhabituated siphon withdrawal reflex) is significantly inhibited 90 sec after strong tail shock and recovers to preshock levels 10 min later, and (2) the decremented complex EPSP (a neural correlate of a habituated reflex) is significantly facilitated by weak shock, but is not facilitated by strong shock. In addition to the complex EPSP, we simultaneously examined the monosynaptic connection between siphon sensory neurons and siphon motor neurons. The monosynaptic EPSP does not show the pattern of inhibitory modulation by tail shock exhibited by the siphon withdrawal reflex and the complex EPSP: (1) the nondecremented monosynaptic EPSP is not inhibited 90 sec after strong shock, but tends to be above preshock levels; and (2) the decremented monosynaptic EPSP is facilitated by weak as well as strong tail shock. Our results suggest that an important component of the inhibitory process triggered by strong tail shock is mediated by neural elements presynaptic to the siphon motor neurons. Because modulation of the monosynaptic connection between identified siphon sensory and siphon motor neurons does not parallel the tail shock-induced inhibitory patterns observed in the siphon withdrawal reflex and in the complex EPSP, other synaptic connections are likely to play an important role in mediating tail shock-induced inhibition in the siphon withdrawal reflex.  相似文献   

15.
We have made reasonably comprehensive measurements of action potential activity in the Aplysia californica abdominal ganglion to determine the amount of feedback the central nervous system (CNS) receives from a movement which it initiates. Voltage-sensitive dye measurements of action potential activity of cells in the ganglion were made during the gill-withdrawal reflex elicited by siphon stimulation. We compared recordings in two situations which differed dramatically in the amount the gill moved. In the control sea water, the gill withdrawal was normal; in low-Ca2+, high-Mg2+ sea water, the gill movement was blocked. Both the timing and the number of spikes of the individual neurons were similar in the two situations. Histograms of the summed spike activity versus time and histograms of the number of active neurons versus time in the two conditions were also similar. Finally, two numerical measures of trial-to-trial differences, a paired t -test and a measure we named fractional similarity, did not indicate larger differences between two trials in the different sea waters than two trials in the same sea water. Feedback from sensory neurons activated by the gill movement itself does not make a large contribution to the spike activity in the abdominal ganglion. Apparently the Aplysia CNS issues the command for the withdrawal and does not make adjustments for the magnitude of the actual withdrawal. It may not even receive the information necessary for such adjustments to be made. A second motivation for these experiments was to test whether removing the feedback might simplify the neuronal activity that occurs during the gill-withdrawal reflex. This did not occur.  相似文献   

16.
The development of several forms of nonassociative learning (habituation, dishabituation, and sensitization) has previously been examined in the gill and siphon withdrawal reflex of Aplysia. In the present study we analyzed the development of one of these forms of learning, sensitization, in a different response system in Aplysia, escape locomotion. A broad range of juvenile stages was examined: stages 10, 11, early 12, late 12, and 13 (early adult). We found that sensitization was completely absent in early developmental stages, not appearing until late stage 12. This stage of development is particularly interesting because it is at this same point that (1) sensitization first appears in the gill and siphon withdrawal reflex (Rankin and Carew, 1987), and (2) the cellular analog of sensitization first emerges in the CNS (the abdominal ganglion) of juvenile Aplysia (Nolen and Carew, 1987). The fact that sensitization emerges synchronously in the escape locomotion system and the gill withdrawal system is striking because the 2 response systems differ markedly in their intrinsic developmental timetables, response topography, and underlying neural circuitry. Thus, the emergence of sensitization in both systems at the same late stage of juvenile development suggests the possibility that a single, unified process during development may be responsible for the simultaneous expression of sensitization.  相似文献   

17.
The monosynaptic and unitary excitatory postsynpatic potential (EPSP) observed in cell R15 of the abdominal ganglion of Aplysia californica upon minimal stimulation of the right visceropleural connective exhibits several presynaptic plasticities (synaptic depression, frequency facilitation, post-tetanic potentiation). We studiied effects of branchial nerve stimulation (heterosynaptic stimulation) on these plasticities of the homosynaptic (right connective) path. A burst of heterosynaptic stimulation (20 pulses at 4/sec) decreased the amplitude of an isolated homosynaptic EPSP. The rate of recovery from heterosynaptic inhibition (HSI) was a function of the rate of stimulation of the homosynaptic path so that at a stimulus frequency of 1 pulse/sec to the right connective (RC) the HSI lasted less than 20 sec while at a RC stimulus frequency of 1/10 sec the HSI persisted for more than 60 sec. While the frequency facilitated EPSP (during homosynaptic stimulation at 1/sec) was only transiently affected by heterosynaptic stimulation the effect on the subsequent post-tetanic potentiation was much more pronounced and longer lasting (more than 30 min). This suggests a specific effect of HSI on the rate constant of decay of elevated fractional release, as observed upon bath applications of biogenic amines. Heterosynaptic stimulation also reduces synaptic depression but the reduction in the depression is more than would be caused by comparable reduction of the first EPSP of a pair of high Mg2+, low Ca2+ or the addition of carbachol to the perfusion medium. The duration of the effect on synaptic depression was the same as the effect on EPSP1.  相似文献   

18.
In the nervous system of the leech Hirudo medicinalis it has been possible to study short-term plastic changes. Depression and facilitation have been demonstrated in the fast conducting system (FCS) activity; this pathway consists of a chain of electrically linked neurons present in each ganglion. In semi-intact animals or in preparation of nerve cord and segments of body wall, both electrical stimulation of peripheral roots and tactile stimulation of the skin induced, after repetitive stimulation (0.1/s) a prolonged decrement of FCS response. Strong nociceptive stimulation applied onto the head or the body wall produced a sustained facilitation of the waned response. The same potentiation has been observed by perfusing the isolated ganglion with serotonin (5 x 10(-5) M). Such a potentiation is abolished by preincubation with methysergide, an antagonist of serotonin, and with imidazole, a cAMP-phosphodiesterase activator. Such an effect is mimicked by an analog of cAMP, db-cAMP. Simultaneous recordings of both T neurons (intracellularly) and FCS firing discharge showed that, during FCS response decrement, the T cell activity remained unchanged and no modification of conductance occurred, excluding therefore a detectable involvement of sensory neurons in the depression. These results suggest that short-term plastic changes of the FCS of the leech are due to a prolonged potentiation of synaptic transmission as a result of serotonin-mediated increase in cAMP.  相似文献   

19.
Tactile or electrical stimulation of the skin can be used to produce dishabituation, sensitization, and classical conditioning of the gill- and siphon-withdrawal reflex in Aplysia. These behavioral effects are thought to involve presynaptic facilitation at the synapses from siphon sensory neurons to gill and siphon motor neurons. Facilitation of PSPs onto the motor neurons can also be produced by intracellular stimulation of single identified neurons in the abdominal ganglion, including L29 and L28. In this paper, we further characterize L29 and L28. First, we show that they are excited by cutaneous stimuli similar to those used to produce dishabituation, sensitization, and classical conditioning and may therefore participate in mediating those behavioral effects. The results are also consistent with a possible role of L29 and L28 in higher-order features of conditioning. Second, we show that 5-HT does not mimic some of the PSPs of L29, in agreement with previous evidence that L29 is not serotonergic. Third, we present 2 types of evidence that L29 acts directly to produce facilitation of the sensory cells: (1) L29 comes into close contact with sensory cells in fluorescent double-labeling experiments, and (2) L29 produces facilitation of sensory cells in dissociated cell culture. Together with the results of the preceding paper (Mackey et al., 1989), these results indicate that facilitation of sensory cell synapses contributing to behavioral enhancement of the reflex can be produced by identified neurons that use 2 different transmitters: 5-HT (the transmitter of CB1) and the unknown transmitter of L29.  相似文献   

20.
(1) A buccal muscle motor neuron which synthesizes the neuromodulatory small cardioactive peptides (SCPs) was identified in the buccal ganglion of Aplysia by using a combination of electrophysiological and single cell biochemical experiments. This neuron was designated B38. (2) Exogenous SCPb enhanced B38-induced contractions when perfused over the target muscle, the rostral portion of the buccal I3 muscle. SCPB potentiation of muscle contraction was associated with an increase in the excitatory junction potential (EJP) amplitude recorded from the muscle fibers, increased muscle cyclic AMP (cAMP) content, hyperpolarization of the muscle fibers, and an increase in the muscle fiber membrane conductance. Exogenous SCPB also depolarized the cell body of B38 and increased electrical coupling between the symmetrically paired B38 neurons. (3) These results suggest that the SCPs may be co-released from B38 along with an unidentified conventional neurotransmitter to homosynaptically facilitate B38 synaptic transmission by modulating presynaptic and postsynaptic components. (4) Stimulation of the identified serotonergic metacerebral neuron or perfusion of exogenous serotonin (5-HT) over the 13 muscle also potentiated B38-induced muscle contractions and EJP amplitude. Thus the B38 neuromuscular synapse represents a peripheral site of serotonergic heterosynaptic facilitation in Aplysia. (5) Presynaptic and postsynaptic serotonergic effects were qualitatively similar to those of SCPB. Serotonergic effects on muscle fiber hyperpolarization and increase in muscle fiber membrane conductance were similar in magnitude to those of SCPB but 5-HT induced a much larger increase in the EJP amplitude which was additive with that of SCPB. (6) The effect of 5-HT on the EJP amplitude was associated with inhibition of a slowly decaying component of synaptic facilitation. Concentrations of SCPB that increased the EJP were much less effective at inhibiting the slow component of facilitation. These observations indicate that 5-HT also exerted a presynaptic effect on B38 transmitter release. (7) Both 5-HT and SCPB increased muscle cAMP levels and application of forskolin mimicked many of their effects. suggesting that at least some of the postsynaptic effects were mediated by increased cAMP levels in the 13 muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号