首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Inhalation toxicology》2013,25(14):995-1008
Multi-walled carbon nanotubes (MWCNT) have been reported to cause lung pathologies in multiple studies. However, the mechanism responsible for the bioactivity has not been determined. This study used nine different well-characterized MWCNT and examined the outcomes in vitro and in vivo. MWCNT, from a variety of sources that differed primarily in overall purity and metal contaminants, were examined for their effects in vitro (toxicity and NLRP3 inflammasome activation using primary alveolar macrophages isolated from C57Bl/6 mice). In addition, in vivo exposures were conducted to determine the inflammatory and pathogenic potency. The particles produced a differential magnitude of responses, both in vivo and in vitro, that was associated most strongly with nickel contamination on the particle. Furthermore, the mechanism of action for the Ni-contaminated particles was in their ability to disrupt macrophage phagolysosomes, which resulted in NLRP3 activation and subsequent cytokine release associated with prolonged inflammation and lung pathology.  相似文献   

2.
The activation of the inflammasome plays an important role in the central nervous system. However, only a few studies have investigated the effects of inflammasome activation in the peripheral nerve, especially in the sciatic nerve, and the mechanism of this activation remains elusive. Moreover, how interleukin-1 beta (IL-1β) is produced after sciatic nerve injury is also unknown. In our study, we aimed to investigate whether the nucleotide-binding oligomerization domain-like pyrin domain containing protein 3 (NLRP3) inflammasome is activated after sciatic nerve injury and to explore its role in sciatic nerve injury. The results of immunoblotting and immunofluorescence microscopy indicate that the NLRP3 inflammasome was activated after sciatic nerve injury in wild-type (WT) mice, as demonstrated by upregulated inflammasome-related components, e.g., NLRP3, procaspase-1 and ASC. Furthermore, upregulated inflammasome-related components cis-cleavage precursor IL-1β (proIL-1β) and precursor interleukin-18 (proIL-18) to IL-1β and IL-18, contributing to the inflammatory response. Consequently, the inflammatory response after sciatic nerve injury in NLRP3 knockout (NLRP3-KO) mice was less severe than that in WT mice. Moreover, NLRP3-KO mice exhibited an increased sciatic functional index (SFI), which was determined by footprint analysis, suggesting that NLRP3 deficiency is beneficial to sciatic nerve recovery after injury. Therefore, our results indicate that NLRP3 is involved in the recovery from sciatic nerve injury and mediates the production of inflammatory factors, such as IL-1β, after sciatic nerve injury.  相似文献   

3.
Helicobacter pylori causes chronic gastritis through cag pathogenicity island (cagPAI), vacuolating cytotoxin A (VacA), lipopolysaccharides (LPS), and flagellin as pathogen-related molecular patterns (PAMPs), which, in combination with the pattern recognition receptors (PRRs) of host cells promotes the expression and secretion of inflammation-causing cytokines and activates innate immune responses such as inflammasomes. To identify useful compounds against H. pylori-associated gastric disorders, the effect of chalcone derivatives to activate the nucleotide-binding oligomerization domain (NOD)-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome was examined in an H. pylori-infected human monocytic THP-1 cell line in this study. Among the five synthetic structurally-related chalcone derivatives examined, 2’-hydroxy-4’,6’-dimethoxychalcone (8) and 2’-hydroxy-3,4,5-trimethoxychalcone (12) strongly blocked the NLRP3 inflammasome in H. pylori-infected THP-1 cells. At 10 μM, these compounds inhibited the production of active IL-1β, IL-18, and caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, but did not affect the expression levels of NLRP3, ASC, and pro-caspase-1. The interruption of NLRP3 inflammasome activation by these compounds was found to be mediated via the inhibition of the interleukin-1 receptor-associated kinase 4 (IRAK4)/IκBα/NF-κB signaling pathway. These compounds also inhibited caspase-4 production associated with non-canonical NLRP3 inflammasome activation. These results show for the first time that certain chalcones could interrupt the activation of the NLRP3 inflammasome in H. pylori-infected THP-1 cells. Therefore, these chalcones may be helpful in alleviating H. pylori-related inflammatory disorders including chronic gastritis.  相似文献   

4.
Growing evidences indicate that inflammation induced by PM2.5 exposure has been considered as a major driving force for the development of cardiovascular diseases. However, the mechanisms underlying PM2.5‐induced cardiac injury remain unclear. This study aims to investigate the role of NLRP3 inflammasome in PM2.5‐induced cardiac functional and pathological injury in mice. In this study, BALB/c mice were intratracheally instilled with PM2.5 suspension (4.0 mg/kg BW) for 5 days to set up a cardiac injury model, which was evaluated by electrocardiogram monitoring, HE and Masson staining. Then, the effects of PM2.5 on the expression of α‐SMA, NLRP3, IL‐1β, and IL‐18 proteins and the activation of caspase‐1 and IL‐1β were investigated. The results showed that PM2.5 exposure induced characteristic abnormal ECG changes such as the abnormality of heart rhythm, tachycardia, and T‐wave reduction. Inflammatory cell infiltration and fibrosis were observed in the heart tissues of PM2.5‐exposed mice. Meanwhile, PM2.5 exposure increased the expression of α‐SMA. And, NLRP3 activation‐associated proteins of NLRP3, IL‐1β, IL‐18, Cleaved caspase‐1 p10, and Cleaved IL‐1β were upregulated in heart tissue of PM2.5‐induced mice. In summary, PM2.5 exposure could induce cardiac functional and pathological injury, which may be associated with the activation of NLRP3 inflammasome.  相似文献   

5.
Apolipoprotein E (ApoE) has been reported as a steroid unresponsive gene and functions as a negative regulator of airway hyperreactivity (AHR) and goblet cell hyperplasia in house dust mite (HDM)-challenged mice. However, the role of ApoE in Ovalbumin (OVA)-induced allergic airway inflammation disease and the underlying mechanism are still unknown. In the present study, murine allergic airway inflammation was induced by inhaled OVA for consecutive 7 days in wild type (WT) and ApoE−/− mice. In the OVA-induced model, the ApoE level in the bronchoalveolar lavage fluid (BALF) and lung tissues was significantly higher than that of control mice. And ApoE deficiency aggravated airway inflammation including leukocytes infiltration, goblet cell hyperplasia and IgE production as compared to those of WT mice after OVA- challenged, suggesting ApoE servers as an endogenous negative regulator of airway inflammation. Furthermore, OVA challenge elevated the activation of NLRP3 inflammasome with higher protein expression of NLRP3, caspase1 and IL-1β, enhanced oxidative stress with higher expression of 8-OHdG, nitrotyrosine and SOD2, increased the expression of mitochondrial fusion/fission markers including Optic Atrophy 1 (OPA1), Mitofusion 2 (Mfn2), dynamin-related protein 1 (DRP1) and Fission 1 (Fis1). However, these OVA-induced changes were augmented in ApoE−/− mice. Collectively, our results demonstrated that the OVA-induced airway inflammation was aggravated in ApoE−/− mice, and suggested that the underlying mechanism may be associated with the augmented activation of NLRP3 inflammasome and oxidative stress in ApoE−/− mice, therefore targeting ApoE pathway might be a novel therapy approach for allergic airway diseases such as asthma.  相似文献   

6.
吴小寒  刘长乐 《天津医药》2019,47(3):329-332
心房颤动(AF)是临床最常见的快速性心律失常,其发生机制尚未完全阐明,而炎症反应增强常与AF的发生发展相关。核苷酸结合寡聚化结构域受体蛋白3(NLRP3)作为近年研究最为广泛最具特征性的炎症小体,参与诸多非感染性炎性反应。有证据显示其与心房重构、心肌纤维化密切相关,以此入手可为阐明AF的上游机制提供新的理论基础和研究靶点。本文简述了NLRP3的特性及信号传导途径,从基础和临床研究两方面总结了NLRP3与AF的相关性,并对未来NLRP3拮抗剂的应用作出了展望。  相似文献   

7.
Aberrant activation of Nod-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome is implicated in a variety of inflammatory diseases. Targeting NLRP3 inflammasome represents a promising therapy to cure such diseases. We and others recently demonstrated that acetylation of NLRP3 promotes the inflammasome activity and also suggested lysine acetyltransferases inhibitors could be a kind of promising agents for treating NLRP3 associated disorders. In this study, by searching for kinds of lysine acetyltransferases inhibitors, we showed that SI-2 hydrochloride (SI-2), a specific inhibitor of lysine acetyltransferase KAT13B (lysine acetyltransferases 13B), specifically blocks NLRP3 inflammasome activation both in mice in vivo and in human cells ex vivo. Intriguingly, SI-2 does not affect the acetylation of NLRP3. Instead, it disrupts the interaction between NLRP3 and adaptor apoptosis-associated speck-like protein containing CARD (ASC), then blocks the formation of ASC speck. Thus, our study identified a specific inhibitor for NLRP3 inflammasome and suggested SI-2 as a potential inhibitory agent for the therapy of NLRP3-driven diseases.  相似文献   

8.
ABSTRACT

Introduction: Chronic inflammatory diseases, including retinal diseases that are a major cause of vision loss, are associated with activation of the nucleotide-binding domain and leucine-rich repeat containing (NLR) protein-3 (NLRP3) inflammasome pathway. In chronic disease, the inflammasome becomes self-perpetuating, indicating a common pathway in such diseases irrespective of underlying etiology, and implying a shared solution is feasible. Connexin43 hemichannels correlate directly with NLRP3 inflammasome complex assembly (shown here in models of retinal disease). Connexin43 hemichannel-mediated ATP release is proposed to be the principal activator signal for inflammasome complex assembly in primary signal-sensitized cells. Connexin hemichannel block on its own is sufficient to inhibit the inflammasome pathway.

Areas covered: We introduce chronic retinal disease, discuss available preclinical models and examine findings from these models regarding the targeting of connexin43 hemichannels and its effects on the inflammasome.

Expert opinion: In over 25 animal disease models, connexin hemichannel regulation has shown therapeutic benefit, and one oral connexin hemichannel blocker, tonabersat (Xiflam), is Phase II ready with safety evidence in over 1000 patients. Regulating the connexin hemichannel provides a means to move quickly into clinical trials designed to ameliorate the progression of devastating chronic diseases of the eye, but also elsewhere in the body.  相似文献   

9.
糖尿病心肌病(DCM)是糖尿病特异性心脏并发症,可独立于冠状动脉疾病、高血压或瓣膜性心脏病发生。目前公认的发病机制包括高血糖、蛋白非酶糖基化、氧化应激、钙离子转运异常等,其中炎症是导致左心室舒张功能障碍的独立因素。NLRP3是最常见的炎性小体,可诱导分泌IL-1β、IL-18等促炎细胞因子以及介导细胞焦亡。DCM发生时NLRP3表达上调,加剧胰岛β细胞功能受损、心肌损伤、心肌纤维化进程。已有研究证实,中药可通过抑制NLRP3炎性小体的启动和活化,以及其下游基因的表达,改善DCM心脏功能。本文就NLRP3炎性小体参与DCM发生及中药干预作用进行综述。  相似文献   

10.
Salidroside (Sal), a natural phenolic compound isolated from Rhodiola sachalinensis, has been utilized as anti-inflammatory and antioxidant for centuries, however, its effects against liver injury and the underlying mechanisms are unclear. This study was designed to evaluate the protective effects and underlying mechanisms of Sal on carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in mice. C57BL/6 mice were pretreated with Sal before CCl4 injection, the serum and liver tissue were collected to evaluate liver damage and molecular indices. The results showed that Sal pretreatment dose-dependently attenuated CCl4-induced acute liver injury, as indicated by lowering the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and inhibiting hepatic pathological damage and apoptosis. In addition, Sal alleviated CCl4-primed oxidative stress and inflammatory response by restoring hepatic glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and inhibiting cytokines. Finally, Sal also down-regulated the expression of cytochrome P4502E1 (CYP2E1), and Nod-like receptor protein 3 (NLRP3) inflammasome activation in the liver of mice by CCl4. Our study demonstrates that Sal exerts its hepatoprotective effects on ALI through its antioxidant and anti-inflammatory effects, which might be mediated by down-regulating CYP2E1 expression and inhibiting NLRP3 inflammasome activation.  相似文献   

11.
炎症反应是机体常见的生理、病理活动,炎症小体在该反应中发挥重要调控作用。核苷酸结合寡聚化结构域样受体蛋白3(NOD-like receptor protein 3,NLRP3)是炎症小体中关键的调控蛋白之一。研究发现激活NLRP3的刺激因子及其相关分子调控信号通路与多种疾病的发生、发展密切相关,并越来越受到广泛关注,是临床药物研究开发的前沿热点方向。总结NLRP3炎症小体的生物结构、调控功能、信号通路和作用机制等研究进展,并梳理与其相关靶点抑制剂的研究结果,对开展炎症相关疾病的新靶标药物发现及其临床应用研究具有重要的参考价值。  相似文献   

12.
目的 评价雷公藤红素对高脂饮食诱导的代谢相关脂肪性肝病(MAFLD)大鼠的保护作用,并探讨其可能的作用机制。方法 60只健康雄性Wistar大鼠,随机分为6组:对照组、模型组、水飞蓟素胶囊组(阳性对照,100 mg·kg−1)和雷公藤红素低、中、高剂量(125、250、500 μg·kg−1)组,每组10只。对照组给予普通饲料喂养,其余5组给予高脂饲料喂养建立MAFLD模型,造模4周后,从第5周开始给药,ig给予相应剂量的药物至第8周。记录大鼠体质量和肝脏湿质量,计算肝脏系数;腹主动脉取血,检测大鼠血清中丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、三酰甘油(TG)、总胆固醇(TC)、低密度脂蛋白-胆固醇(LDL-C)、高密度脂蛋白-胆固醇(HDL-C)、肿瘤坏死因子-α(TNF-α)和白细胞介素-1β(IL-1β)水平;HE染色观察肝脏病理变化;Western blotting法检测肝脏中NOD样受体热蛋白结构域相关蛋白3(NLRP3)和半胱氨酸蛋白酶-1(Caspase-1)蛋白表达水平。结果 与模型组比较,雷公藤红素各剂量组的肝脏病理学表现均有所改善,肝脏系数均显著降低(P<0.05、0.01);中、高剂量组大鼠血清中TC、TG、LDL-C、AST、ALT、TNF和IL-1β水平均显著降低(P<0.05、0.01);肝脏中NLRP3和Caspase-1的蛋白表达显著减少(P<0.05、0.01)。结论 雷公藤红素可明显减轻MAFLD大鼠的肝脏病理学损伤,改善血脂水平,其机制可能与调控NLRP3通路密切相关。  相似文献   

13.

Aim:

Proteinuria is not only a common marker of renal disease, but also involved in renal tubulointerstitial inflammation and fibrosis. The aim of this study was to investigate the mechanisms underlying the protective effects of enalapril, an ACEI, against nephropathy in rats.

Methods:

Wistar rats underwent unilateral right nephrectomy, and then were treated with BSA (5 g·kg−1·d−1, ip), or BSA plus enalapril (0.5 g·kg−1·d−1, po) for 9 weeks. The renal lesions were evaluated using histology and immunohistochemistry. The expression of NLRP3, caspase-1, IL-1β and IL-18 was analyzed using immunohistochemistry, RT-PCR and Western blot.

Results:

BSA-overload resulted in severe proteinuria, which peaked at week 7, and interstitial inflammation with prominent infiltration of CD68+ cells (macrophages) and CD3+ cells (T lymphocytes), particularly of CD20+ cells (B lymphocytes). BSA-overload markedly increased the expression of NLRP3, caspase-1, IL-1β and IL-18 in the proximal tubular epithelial cells, and in inflammatory cells as well. Furthermore, the expression of IL-1β or IL-18 was significantly correlated with proteinuria (IL-1β: r=0.757; IL-18: r=0.834). These abnormalities in BSA-overload rats were significantly attenuated by concurrent administration of enalapril.

Conclusion:

Enalapril exerts protective effects against BSA-overload nephropathy in rats via suppressing NLRP3 inflammasome expression and tubulointerstitial inflammation.  相似文献   

14.
Polysaccharides have been proven to be involved in the immune response in both anti-inflammation and pro-inflammation due to their distinct pharmacological properties. Recent studies showed that polysaccharides from Grateloupia livida (Harv.) Yamada possessed several biological activities, including anti-oxidant, anti-angiogenic, anti-cancer and antiviral. Our previous work has elucidated the structural features of the polysaccharides (named WGW) by combining ESI-MS with NMR and infrared (IR) spectroscopic analyses. The polysaccharides were mainly composed of galactose linked with sulfate ester, concluding to be μ-carrageenan and κ-carrageenan. The purpose of this study was to investigate the immunoregulation effects of WGW on macrophage RAW 264.7 cell. The cells were treated with WGW for different times, then Griess reagent was applied to detect the production of NO. The results presented that WGW induced the release of NO in large quantities (ranging from 2 µg/mL to 256 µg/mL) and improved the phagocytosis of macrophage RAW264.7 cells. Furthermore, WGW have a predominant role in the improvement of proinflammatory mediators, such TNF-α, IL-1β, iNOS, MMP-9 and COX2. Moreover, WGW activated NLRP3 inflammasome, in which MAPK/NF-κB signaling pathway played an important role. These results indicated WGW might be a potential immuno-stimulation drug to promote inflammation.  相似文献   

15.
Dexamethasone (DEX) is the mainstay treatment for asthma, which is a common chronic airway inflammation disease. However, the mechanism of DEX resolute symptoms of asthma is not completely clear. Here, we aimed to analyze the effect of DEX on airway inflammation in OVA-induced mice and whether this effect is related to the inhibition of the activation of NLRP3 inflammasome. Female (C57BL/6) mice were used to establish the allergic airway inflammation model by inhalation OVA. The number of inflammatory cells in the bronchi alveolar lavage fluid (BALF) was counted by Swiss-Giemsa staining, and the contents of IL-1β, IL-18, IL-5 and IL-17 were detected by ELISA. The degree of inflammatory cells infiltration and mucous cells proliferation in lung tissue were separately observed by H&E and PAS staining. The proteins expression of NLRP3, pro-caspase-1, caspase-1, IL-1β, IL-6 and IL-17 in lung tissue were detected by Western blotting. We found that DEX significantly inhibited OVA-induced inflammatory cells infiltration, airway mucus secretion and goblet cell proliferation in mice. The total and classified numbers of inflammatory cells and the levels of IL-1β, IL-18, IL-5 and IL-17 in the BALF of the experimental group were significantly lower than those of the model group after DEX treatment. DEX also significantly inhibited the activity of NLRP3 inflammasome and reduced the protein contents of Pro-Caspase-1, Caspase-1, Capase-1/Pro-Caspase-1, IL-1β, IL-6 and IL-17 in lung tissues. Our study suggested that DEX alleviates allergic airway inflammation by inhibiting the activity of NLRP3 inflammasome and the levels of IL-1β and IL-18.  相似文献   

16.
17.
Free fatty acids (FFAs) are metabolic intermediates that may be obtained through the diet or synthesized endogenously. In addition to serving as an important source of energy, they produce a variety of both beneficial and detrimental effects. They play essential roles as structural components of all cell membranes and as signaling molecules regulating metabolic pathways through binding to nuclear or membrane receptors. However, under conditions of FFAs overload, they become toxic, inducing ROS production, ER stress, apoptosis and inflammation. SFAs (saturated fatty acids), unlike UFAs (unsaturated fatty acids), have recently been proposed as triggers of the NLRP3 inflammasome, a molecular platform mediating the processing of IL-1β in response to infection and stress conditions. Interestingly, UFAs, especially ω-3 FAs, inhibit NLRP3 inflammasome activation in various settings. We focus on emerging models of NLRP3 inflammasome activation with a special emphasis on the molecular mechanisms by which FFAs modulate the activation of this complex. Taking into consideration the current literature and FFA properties, we discuss the putative involvement of mitochondria and the role of cardiolipin, a mitochondrial phospholipid, proposed to be sensed by NLRP3 after release, exposure and/or oxidation. Finally, we review how this SFA-mediated NLRP3 inflammasome activation contributes to the development of both insulin resistance and deficiency associated with obesity/type 2 diabetes. In this context, we highlight the potential clinical use of ω-3 FAs as anti-inflammatory compounds.  相似文献   

18.
目的 研究荔枝核总黄酮(total flavones from Lychee seed, TFL)对二甲基亚硝胺(dimethylnitrosamine, DMN)所诱发的肝脏纤维化大鼠肝脏中核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)表达的影响。方法 研究将Wistar雄性大鼠随机分为正常组、模型组、扶正化瘀组和荔枝核总黄酮高、中、低剂量组。ELISA法测定血清中羟脯氨酸、透明质酸、Ⅳ型胶原、Ⅲ型前胶原和层粘连蛋白的水平;HE染色和Masson染色观察大鼠肝脏组织的病理变化;RT-qPCR测定肝脏组织中硫氧还蛋白结合蛋白(thioredoxin-interacting protein, TXNIP)、核苷酸结合寡聚化结构域样受体蛋白3、半胱氨酸天冬氨酸蛋白酶-1(cysteine-aspartic proteases-1,caspase-1)、白细胞介素-1β(interleulin-1β,IL-1β)的mRNA表达水平。结果 荔枝核总黄酮减轻大鼠肝...  相似文献   

19.
脓毒症(sepsis)是目前最普遍的感染性疾病之一,炎性反应是脓毒症由轻度转化为脓毒症休克的重要机制。NOD样受体蛋白3(NOD-like receptor protein 3,NLRP3)炎性小体是人体内的一种蛋白复合物,受多种因素调控,可触发机体的免疫反应与细胞焦亡。当体内NLRP3炎性小体调控机制失衡,过度的炎性...  相似文献   

20.
《药学学报(英文版)》2023,13(2):678-693
The NLRP3 inflammasome’s core and most specific protein, NLRP3, has a variety of functions in inflammation-driven diseases. Costunolide (COS) is the major active ingredient of the traditional Chinese medicinal herb Saussurea lappa and has anti-inflammatory activity, but the principal mechanism and molecular target of COS remain unclear. Here, we show that COS covalently binds to cysteine 598 in NACHT domain of NLRP3, altering the ATPase activity and assembly of NLRP3 inflammasome. We declare COS’s great anti-inflammasome efficacy in macrophages and disease models of gouty arthritis and ulcerative colitis via inhibiting NLRP3 inflammasome activation. We also reveal that the α-methylene-γ-butyrolactone motif in sesquiterpene lactone is the certain active group in inhibiting NLRP3 activation. Taken together, NLRP3 is identified as a direct target of COS for its anti-inflammasome activity. COS, especially the α-methylene-γ-butyrolactone motif in COS structure, might be used to design and produce novel NLRP3 inhibitors as a lead compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号