首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Saudi Pharmaceutical Journal》2021,29(11):1289-1302
BackgroundGlioblastoma is one of the most aggressive and deadliest malignant tumors. Acquired resistance decreases the effectiveness of bevacizumab in glioblastoma treatment and thus increases the mortality rate in patients with glioblastoma. In this study, the potential targets of pentagamavunone-1 (PGV-1), a curcumin analog, were explored as a complementary treatment to bevacizumab in glioblastoma therapy.MethodsTarget prediction, data collection, and analysis were conducted using the similarity ensemble approach (SEA), SwissTargetPrediction, STRING DB, and Gene Expression Omnibus (GEO) datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted using Webgestalt and DAVID, respectively. Hub genes were selected based on the highest degree scores using the CytoHubba. Analysis of genetic alterations and gene expression as well as Kaplan–Meier survival analysis of selected genes were conducted with cBioportal and GEPIA. Immune infiltration correlations between selected genes and immune cells were analyzed with database TIMER 2.0.ResultsWe found 374 targets of PGV-1, 1139 differentially expressed genes (DEGs) from bevacizumab-resistant-glioblastoma cells. A Venn diagram analysis using these two sets of data resulted in 21 genes that were identified as potential targets of PGV-1 against bevacizumab resistance (PBR). PBR regulated the metabolism of xenobiotics by cytochrome P450. Seven potential therapeutic PBR, namely GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110 were found to have genetic alterations in 1.2%–30% of patients with glioblastoma. Analysis using the GEPIA database showed that the mRNA expression of ADAM10, AKR1B1, and HSD17B10 was significantly upregulated in glioblastoma patients. Kaplan–Meier survival analysis showed that only patients with low mRNA expression of AKR1B1 had significantly better overall survival than the patients in the high mRNA group. We also found a correlation between PBR and immune cells and thus revealed the potential of PGV-1 as an immunotherapeutic agent via targeting of PBR.ConclusionThis study highlighted seven PBR, namely, GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110. This study also emphasized the potential of PBR as a target for immunotherapy with PGV-1. Further validation of the results of this study is required for the development of PGV-1 as an adjunct to immunotherapy for glioblastoma to counteract bevacizumab resistance.  相似文献   

2.
AimBicC family RNA-binding protein 1 (BICC1) codes an RNA-binding protein that regulates gene expression and modulates cell proliferation and apoptosis. We aim at investigating the role of BICC1 in gastric carcinogenesis.MethodsBICC1 mRNA expression in gastric cancer (GC) was examined using the Tumor Immune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Correlations between BICC1 expression and clinicopathological parameters were analyzed. The Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan–Meier plotter databases were used to examine the clinical prognostic significance of BICC1 in GC. Signaling pathways related to BICC1 expression were identified by gene set enrichment analysis (GSEA).TIMER and CIBERSORT were used to analyze the correlations among BICC1, BICC1-coexpressed genes and tumor-infiltrating immune cells.ResultsBICC1 was highly expressed in GC and significantly correlated with grade (P = 0.002), TNM stage (P = 0.033), invasion depth (P = 0.001) and vital status (P = 0.009) of GC patients. High BICC1 expression correlated with poor overall survival. The GSEA results showed that cell adhesion-, tumor- and immune- related pathways were significantly enriched in samples with high BICC1 expression. BICC1 and its coexpressed genes were positively related to tumor-infiltrating immune cells and were strongly correlated with tumor-infiltrating macrophages (all r ≥ 0.582, P < 0.0001). The CIBERSORT database revealed that BICC1 correlated with M2 macrophages (P < 0.0001), regulatory T cells (P < 0.0001), resting mast cells (P < 0.0001), activated memory CD4+ T cells (P = 0.002), resting NK cells (P = 0.002), activated dendritic cells (P = 0.002), and follicular helper T cells (P = 0.016). The results from TIMER database confirmed that BICC1 is closely associated with the markers of M2 macrophages and tumor-associated macrophages (all r ≥ 0.5, P < 0.0001).ConclusionBICC1 may be a potential prognostic biomarker in GC and correlates with immune infiltrates.  相似文献   

3.
ObjectivesThe anti-PD-1/PD-L1 therapy has been demonstrated safe and effective for cancer patients. However, our previous data showed that it had no obvious effects on gastric cardia adenocarcinoma (GCA). Thus, we investigated how the expression level of the PD-L1 was affected by the anti-PD-1 therapy, because it has been demonstrated that the PD-L1 level affects the therapeutic efficient of the anti-PD-1 therapy.Materials and methodsThe mRNA and protein levels of PD-L1 in the GCA tissues and corresponding normal tissues were determined by qPCR and ELISA. Promoter methylation was analyzed by bisulfite sequencing. Finally the methylation of PD-L1 promoter was confirmed in the mice.ResultsThe level of PD-L1 was up-regulated in the GCA tissues when compared to the adjacent non-tumor tissues. The anti-PD1 therapy could reduce the PD-L1 levels in patients with cancer recurrence. The promoter of PD-L1 was more hypermethylated in the secondary GCA after the anti-PD-1 therapy when compared with the adjacent non-tumor tissues or the primary GCA without the anti-PD-1 therapy. Furthermore, the promoter methylation of PD-L1 could be induced by the anti-PD-1 therapy in the mice model. Finally, the anti-PD-1 plus DNA hypomethylating agent azacytidine could significantly suppressed the tumor growth better than the anti-PD-1 therapy.ConclusionsHere we demonstrated that the unresponsiveness of GCA to the anti-PD-1 therapy might result from the promoter methylation and down-regulation of PD-L1. The anti-PD-1 plus azacytidine might be a more promising approach to treat GCA.  相似文献   

4.
《药学学报(英文版)》2021,11(10):2983-2994
Genomic instability remains an enabling feature of cancer and promotes malignant transformation. Alterations of DNA damage response (DDR) pathways allow genomic instability, generate neoantigens, upregulate the expression of programmed death ligand 1 (PD-L1) and interact with signaling such as cyclic GMP–AMP synthase-stimulator of interferon genes (cGAS–STING) signaling. Here, we review the basic knowledge of DDR pathways, mechanisms of genomic instability induced by DDR alterations, impacts of DDR alterations on immune system, and the potential applications of DDR alterations as biomarkers and therapeutic targets in cancer immunotherapy.  相似文献   

5.
6.
Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells’ sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein–protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.  相似文献   

7.
BackgroundsTriptolide (TP) exhibits effective activity against colon cancer in multiple preclinical models, but the mechanisms underlying the observed effects are not fully understood. Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in the regulation of colon cancer progression. The aim of this study was to investigate the effect of TP on the sphingosine kinase (SPHK)-S1P signaling pathway in colitis-associated colon cancer.MethodsAn azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model and the THP-1 cell line were used to evaluate the therapeutic effects and mechanisms of TP in colitis-associated colon cancer (CACC). Various molecular cell biology experiments, including Western blotting, real-time PCR and immunofluorescence, were used to obtain relevant experimental data. A liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was also established to detect the levels of S1P in tissue and plasma.ResultsIn the AOM/DSS mouse model, TP treatment induced a dose-dependent decrease in tumor incidence and inhibited macrophage recruitment and M2 polarization in the tumors. TP also efficiently decreased the S1P levels and SPHK1/S1PR1/S1PR2 expression and significantly inhibited activation of the S1P-mediated phosphorylation of ERK protein in macrophages.ConclusionsThe results indicated that TP might influence the recruitment and polarization of tumor-associated macrophages by suppressing the SPHK-S1P signaling pathway.  相似文献   

8.
Breast cancer arises as a result of multiple interactions between environmental and genetic factors. Conventionally, breast cancer is treated based on histopathological and clinical features. DNA technologies like the human genome microarray are now partially integrated into clinical practice and are used for developing new “personalized medicines” and “pharmacogenetics” for improving the efficiency and safety of cancer medications. We investigated the effects of four established therapies—for ER+ ductal breast cancer—on the differential gene expression. The therapies included single agent tamoxifen, two-agent docetaxel and capecitabine, or combined three-agents CAF (cyclophosphamide, doxorubicin, and fluorouracil) and CMF (cyclophosphamide, methotrexate, and fluorouracil). Genevestigator 8.1.0 was used to compare five datasets from patients with infiltrating ductal carcinoma, untreated or treated with selected drugs, to those from the healthy control. We identified 74 differentially expressed genes involved in three pathways, i.e., apoptosis (extrinsic and intrinsic), oxidative signaling, and PI3K/Akt signaling. The treatments affected the expression of apoptotic genes (TNFRSF10B [TRAIL], FAS, CASP3/6/7/8, PMAIP1 [NOXA], BNIP3L, BNIP3, BCL2A1, and BCL2), the oxidative stress-related genes (NOX4, XDH, MAOA, GSR, GPX3, and SOD3), and the PI3K/Akt pathway gene (ERBB2 [HER2]). Breast cancer treatments are complex with varying drug responses and efficacy among patients. This necessitates identifying novel biomarkers for predicting the drug response, using available data and new technologies. GSR, NOX4, CASP3, and ERBB2 are potential biomarkers for predicting the treatment response in primary ER+ ductal breast carcinoma.  相似文献   

9.
10.
ObjectiveThe present work aimed to investigate the effects of AdipoRon against acute hepatitis and liver fibrosis induced by carbon tetrachloride (CCl4) in mice.MethodsC57BL/6 mice were randomly divided into five groups: control, model, AdipoRon groups (three different dosages), CCl4 was administered to induce acute hepatitis or liver fibrosis except for control group. The liver function, inflammatory and fibrotic profiles were evaluated by histology, immunohistochemistry and expression analysis, respectively.ResultsAdipoRon pretreatment effectively attenuated oxidative stress and hepatocellular damage in acute CCl4 intoxication, demonstrated by marked reduction in peroxidation indexes [hepatic malonaldehyde (MDA), total nitric oxide synthase (tNOS), inducible nitric oxide synthase (iNOS)] and serum transaminases [alanine aminotransferase (ALT), aspartate transaminase (AST)]. Moreover, AdipoRon attenuated the severity of fibrosis induced by sustaining CCl4 challenge, with the alleviation of fibrous deposit and architecture distortion. The levels of canonical fibrosis markers (aminotransferases, hydroxyproline, hyaluronic acid, laminin) were also dose-dependently modulated by AdipoRon. Immunochemistry and expression analysis showed AdipoRon restrained the proinflammatory and profibrotic cytokines (TNF-α, TGF-β1, α-SMA, COL1A1), which somehow, ascribed the anti-fibrotic action to inhibiting hepatic stellate cells (HSCs) activation and quenching specific inflammation-fibrogenesis pathways.ConclusionsAdipoRon demonstrates a remedial capacity against hepatitis and fibrosis induced by CCl4, potentially by inflammation restraint and HSC deactivation, which might pave the way for its therapeutical application in hepatic fibrosis.  相似文献   

11.
12.
BackgroundPyroptosis is identified as a novel form of inflammatory programmed cell death and has been recently found to be closely related to atherosclerosis (AS). We found that IFN regulatory factor-1(IRF-1) effectively promotes macrophage pyroptosis in patients with acute coronary syndrome (ACS). Subsequent studies have demonstrated that circRNAs are implicated in AS. However, the underlying mechanisms of circRNAs in macrophage pyroptosis remain elusive.MethodsWe detected the RNA expression of hsa_circ_0002984, hsa_circ_0010283 and hsa_circ_0029589 in human PBMC-derived macrophages from patients with coronary artery disease (CAD). The lentiviral recombinant vector for hsa_circ_0029589 overexpression (pLC5-GFP-circ_0029589) and small interference RNAs targeting hsa_circ_0029589 and METTL3 were constructed. Then, macrophages were transfected with pLC5-GFP-circ_0029589, si-circ_0029589 or si-METTL3 after IRF-1 was overexpressed and to explore the potential mechanism of hsa_circ_0029589 involved in IRF-1 induced macrophage pyroptosis.ResultsThe relative RNA expression level of hsa_circ_0029589 in macrophages was decreased, whereas the N6-methyladenosine (m6A) level of hsa_circ_0029589 and the expression of m6A methyltransferase METTL3 were validated to be significantly elevated in macrophages in patients with ACS. Furthermore, overexpression of IRF-1 suppressed the expression of hsa_circ_0029589, but induced its m6A level along with the expression of METTL3 in macrophages. Additionally, either overexpression of hsa_circ_0029589 or inhibition of METTL3 significantly increased the expression of hsa_circ_0029589 and attenuated macrophage pyroptosis.ConclusionOur observations suggest a novel mechanism by which IRF-1 facilitates macrophage pyroptosis and inflammation in ACS and AS by inhibiting circ_0029589 through promoting its m6A modification.  相似文献   

13.
14.
Tarchonanthus Camphoratus L. is traditionally known for its various medicinal purposes. In this study, the T. camphoratus essential oil (TCEO) was isolated via steam distillation, and its chemical constituents were determined using GC–MS. The in vitro antiproliferative effects of TCEO on A549, HepG2, MCF-7 cancer cells, and HUVEC non-tumor cells was investigated using an MTT assay. Flow cytometry analysis was conducted to evaluate cell cycle distribution using propidium iodide staining, and cell death mode using Annexin V-FITC/PI assays. The expression of some apoptosis related genes was investigated using qRT-PCR. Major constituents of TCEO included fenchol, borneol, 3-cyclohexene-1-methanol and 3-ethyl-3-methyl. Cell viability test showed that TCEO is highly effective against MCF-7 cells with IC50 12.5 µg/mL. Cell cycle arrest at the G1/S phase, and apoptosis mediation were evident in the presence of TCEO. Gene expression analysis of several pro-apoptotic and anti-apoptotic genes revealed the initiation of apoptosis in TCEO-MCF-7 cells. In conclusion, our study confirms the antiproliferative activity of the T. camphoratus essential oil.  相似文献   

15.
16.
BackgroundAutologous hematopoietic stem cell transplantation is an effective therapeutic strategy for lymphoma patients. However, some patients have to give up receiving transplantation because of failing to obtain sufficient CD34+ cells yields. Therefore, we ex vivo expanded HSCs of lymphoma patients using UM171 to solve the problem of HSCs deficiency.MethodsMobilized peripheral blood-derived CD34+ cells from lymphoma patients were cultured for 10 days with or without UM171. The fold of cell expansion and the immunophenotype of expanded cells were assessed by flow cytometry. RNA-seq experiment was performed to identify the mechanism by which UM171 promoted HSCs expansion.ResultsUM171 treatment increased the proportion of CD34+ (68.97 ± 6.91%), CD34+ CD38 cells (44.10 ± 9.20%) and CD34+CD38CD45RACD90+ LT-HSCs (3.05 ± 2.08%) compared to vehicle treatment (36.08 ± 11.14%, 18.30 ± 9.49% and 0.56 ± 0.45%, respectively). UM171 treatment led to an 85.08-fold increase in LT-HSC numbers relative to initial cells. Importantly, UM171 promoted expansion of LT-HSCs achieved 138.57-fold in patients with poor mobilization. RNA-seq data showed that UM171 upregulated expression of HSC-, mast cell-specific genes and non-canonical Wnt signaling related genes, and inhibited genes expression of erythroid, megakaryocyte and inflammatory mediated chemokine.ConclusionsOur study shows that UM171 can efficiently promote ex vivo expansion of HSCs from lymphoma patients, especially for poorly mobilizing patients. In terms of mechanism, UM171 upregulate HSC-specific genes expression and suppress erythroid and megakaryocytic differentiation, as well as activate non-classical Wnt signaling.  相似文献   

17.
《药学学报(英文版)》2020,10(4):603-614
Pancreatic cancer is one of the most aggressive cancers with poor prognosis and a low 5-year survival rate. The family of P21-activated kinases (PAKs) appears to modulate many signaling pathways that contribute to pancreatic carcinogenesis. In this work, we demonstrated that PAK1 is a critical regulator in pancreatic cancer cell growth. PAK1-targeted inhibition is therefore a new potential therapeutic strategy for pancreatic cancer. Our small molecule screening identified a relatively specific PAK1-targeted inhibitor, CP734. Pharmacological and biochemical studies indicated that CP734 targets residue V342 of PAK1 to inhibit its ATPase activity. Further in vitro and in vivo studies elucidated that CP734 suppresses pancreatic tumor growth through depleting PAK1 kinase activity and its downstream signaling pathways. Little toxicity of CP734 was observed in murine models. Combined with gemcitabine or 5-fluorouracil, CP734 also showed synergistic effects on the anti-proliferation of pancreatic cancer cells. All these favorable results indicated that CP734 is a new potential therapeutic candidate for pancreatic cancer.  相似文献   

18.
BackgroundProgrammed death-ligand-1 (PD-L1) is a well-known predictive biomarker in non-small cell lung cancer (NSCLC) patients, however, its accuracy remains controversial. Here, we investigated the correlation between PD-L1 expression level and efficacy of its inhibitors, and hence assessed the predictive effect of PD-L1 expression.MethodsStudies that evaluated the efficacy of programmed death-1 (PD-1)/ PD-L1 inhibitors in advanced NSCLC patients according to tumor PD-L1 expression levels were searched for on Medline, Cochrane Library, and Embase. The pooled risk ratio (RR) and 95% confidence intervals (95% CIs) were calculated for the objective response rate (ORR) with overall survival (OS) and progression-free survival (PFS) were measured in terms of hazard ratio (HR) and the corresponding 95% CIs.Results1432 NSCLC patients from six randomized controlled trials (RCTs) were included and three PD-1/PD-L1 inhibitors (atezolizumab, nivolumab, and pembrolizumab) were used to treat the patients. A significantly higher ORR was observed in the high PD-L1 expression group compared to the low expression group (0.35 [95% CI, 0.30–0.40] vs 0.11 [95% CI, 0.09–0.14]). The results of the subgroup analysis, grouped by the type of drugs and antibodies which assess immune checkpoint inhibitors were identical with the pooled result. However, our study showed that PD-L1 expression was neither prognostic nor predictive of overall survival (OS) or progression-free survival (PFS) in patients treated with PD-1/PD-L1 inhibitors compared to chemotherapy.ConclusionsPD-L1 can be a predictive biomarker for ORR. Nevertheless, PD-L1 expression is not a good predictive tool for OS and PFS.  相似文献   

19.
Breast cancer is the most common cancer that majorly affects female. The present study is focused on exploring the potential anticancer activity of 2-((1, 2, 3, 4-Tetrahydroquinolin-1-yl) (4 methoxyphenyl) methyl) phenol (THMPP), against human breast cancer. The mechanism of action, activation of specific signaling pathways, structural activity relationship and drug-likeness properties of THMPP remains elusive. Cell proliferation and viability assay, caspase enzyme activity, DNA fragmentation and FITC/Annexin V, AO/EtBr staining, RT-PCR, QSAR and ADME analysis were executed to understand the mode of action of the drug. The effect of THMPP on multiple breast cancer cell lines (MCF-7 and SkBr3), and non-tumorigenic cell line (H9C2) was assessed by MTT assay. THMPP at IC50 concentration of 83.23 μM and 113.94 μM, induced cell death in MCF-7 and SkBr3 cells, respectively. Increased level of caspase-3 and -9, fragmentation of DNA, translocation of phosphatidylserine membrane and morphological changes in the cells confirmed the effect of THMPP in inducing the apoptosis. Gene expression analysis has shown that THMPP was able to downregulate the expression of PI3K/S6K1 genes, possibly via EGFR signaling pathway in both the cell lines, MCF-7 and SkBr3. Further, molecular docking also confirms the potential binding of THMPP with EGFR. QSAR and ADME analysis proved THMPP as an effective anti-breast cancer drug, exhibiting important pharmacological properties. Overall, the results suggest that THMPP induced cell death might be regulated by EGFR signaling pathway which augments THMPP being developed as a potential candidate for treating breast cancer.  相似文献   

20.
BackgroundIt has been reported diabetic gastroparesis is related to diabetic autonomic neuropathy of the gastrointestinal tract, and berberine (BBR) could ameliorate diabetic central and peripheral neuropathy. However, the influence of BBR on the function and motility of the gastric fundus nerve is unclear.MethodsA diabetic rat model was constructed, and HE staining was used to observe the morphological changes in the gastric fundus. The changes in cholinergic and nitrogen-related neurochemical indexes and the effects of BBR on them were measured using Elisa. The effects of BBR on the neural function and motility of gastric fundus were investigated by electric field stimulation (EFS) induced neurogenic response in vitro.ResultsIn the early stage of STZ-induced diabetic rats, the contractile response of gastric fundus induced by EFS was disorder, disturbance of contraction amplitude, and the cell bodies of neurons in the myenteric plexus of gastric fundus presented vacuolar lesions. Administration with BBR could improve the above symptoms. BBR further enhanced the contraction response in the presence of a NOS inhibitor or the case of inhibitory neurotransmitters removal. Interestingly, the activity of ACh could affect NO release directly and the enhancement of BBR on contractile response was canceled by calcium channel blockers completely.ConclusionsIn the early stage of STZ-induced diabetic rats, the neurogenic contractile response disorder of the gastric fundus is mainly related to cholinergic and nitrergic nerve dysfunction. BBR promotes the release of ACh mainly by affecting the calcium channel to improve the neurological dysfunction of the gastric fundus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号