共查询到20条相似文献,搜索用时 15 毫秒
1.
Clozapine, an often-prescribed antipsychotic drug, is implicated in severe adverse drug reactions (ADRs). Formation of reactive intermediates by cytochrome P450s (CYPs) has been proposed as a possible explanation for these ADRs. Moreover, a protective role for human glutathione S-transferases (hGSTs) was recently shown using purified enzymes. We investigated the interplay between CYP bioactivation and GST detoxification in a reconstituted cellular context using recombinant yeast expressing a bacterial CYP BM3 mutant (M11), mimicking the drug-metabolizing potential of human CYPs, combined with hGSTA1-1, M1-1 or P1-1. Clozapine and the N-desmethylclozapine metabolite caused comparable growth inhibition and reactive oxygen species (ROS) formation, whereas the clozapine-N-oxide metabolite was clearly less toxic. Clozapine metabolism by BM3 M11 and the hGSTs in yeast was confirmed by identification of stable clozapine metabolites and hGST isoform-specific glutathione-conjugates. Oxidative metabolism of clozapine by BM3 M11 increased ROS formation and growth inhibition. Co-expression of hGSTP1-1 protected yeast from BM3 M11 induced growth inhibition in presence of clozapine, whereas similar expression levels of hGSTA1-1 and hGSTM1-1 did not. ROS formation was not lowered by hGSTP1-1 co-expression and was unrelated to mitochondrial electron transport chain (mETC) activity. We present a novel cellular model to study the effect of CYP and GST interplay in drug toxicity. 相似文献
2.
目的研究参与双环醇代谢的主要药物代谢酶及代谢动力学参数,分离鉴定双环醇代谢产物。方法双环醇与大鼠和人肝微粒体进行温孵,以高效液相色谱、质谱、核磁共振技术检测并分离鉴定双环醇及其代谢产物。结果双环醇在地塞米松诱导大鼠肝微粒体中的代谢速率显著高于正常大鼠肝微粒体,酮康唑可显著抑制双环醇的代谢。双环醇主要代谢产物为:4-羟基-4′-甲氧基-6-羟甲基-6′-甲氧羰基-2,3,2′,3′-双亚甲二氧基联苯和4-甲氧基-4′-羟基-6-羟甲基-6′-甲氧羰基-2,3,2′,3′-双亚甲二氧基联苯。结论双环醇在大鼠和人肝微粒体的主要代谢产物为4-羟基-4′-甲氧基-6-羟甲基-6′-甲氧羰基-2,3,2′,3′-双亚甲二氧基联苯和4-甲氧基-4′-羟基-6-羟甲基-6′-甲氧羰基-2,3,2′,3′-双亚甲二氧基联苯,细胞色素P450 3A主要参与双环醇代谢。 相似文献
3.
AIMThe most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODSThe metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation ( S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTSThe samples of the two ethnic groups were not significantly different in cytochrome-b 5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity ( P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONSThese data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. 相似文献
4.
目的:为测定人肝细胞微粒体细胞色素P450氧化酶的活性。方法:用差速离心法制备3例人肝细胞微粒体。结果:细胞色素P450的含量为0.523±0.005nmol·mg-1;细胞色素b5为0.285±0.025nmol·mg-1;氨基比林N-脱甲基酶的活力为0.5±0.6nmol·mg-1;乙基吗啡N-脱甲基酶活力为0.98±0.08nmol·mg-1。结论:P450酶活性影响因素较多,个体差异大。临床用药时应考虑患者的个体情况。 相似文献
5.
Cytochrome P450 (CYP) substrates that yield fluorescent metabolites were used for rapid screening of drug metabolism activities of 13 recombinant human cytochromes P450, human liver microsomes and human hepatocytes. Reproducible results were obtained using a fluorescent plate reader (CytoFluor) more expediently than those generated using conventional HPLC methods. Typically, results for 96 samples were obtained with the plate reader in less than 10 min as opposed to 15-35 min/sample required by conventional HPLC. The fluorescent substrates used to measure CYP activities were as follows: 3-cyano-7-ethoxycoumarin (CEC) for CYP1A1, CYP1A2, CYP2C9 and CYP2C19; 7-ethoxyresorufin (7-ER) for CYP1A1, CYP1A2 and CYP1B1; 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin (AMMC) for CYP2D6; dibenzylfluorescein (DBF) for CYP3A4, CYP3A5 and CYP2C8; 7-methoxy-4-trifluoromethylcoumarin (7-MFC) for CYP2E1, CYP2B6 and CYP2C18; and coumarin for CYP2A6. The chemical inhibition and correlation data indicated that the following substrates can be used as specific functional probes for individual cytochrome P450 present in human liver microsomes: coumarin for CYP2A6 (r=0.82), AMMC for CYP2D6 (r=0.83) and DBF for CYP3A4 (r=0.92). The fluorescent plate reader was found to be useful for the rapid assessment of CYP activities (positive control) in both intact cells and subcellular fractions. 相似文献
6.
1. Organ-specific biotransformation was studied in human and rat liver, lung, kidney and small intestine slices and compared on a protein basis, using four model substances. 2. Deethylation of lidocaine was highest in liver slices from both man and rat, followed by the small intestine. 3. Metabolism of testosterone was highest in liver slices, but a different overall metabolic pattern was found between the different organs. 4. Lung, kidney and intestine slices prepared from human and rat organs showed mainly an unknown metabolite of 7-ethoxycoumarin identified as 4-ethoxy-2-hydroxyphenyl propionic acid (EPPA). 5. The maximal metabolism of 7-ethoxycoumarin in slices was equal with in vivo Vmax in the rat. 6. Phase II metabolism of 7-hydroxycoumarin in kidney and intestinal slices was about 60% of the activity in liver slices. 7. In conclusion, organs other than the liver show a surprisingly high drug-metabolizing activity. Thus, the use of precision-cut slices of a combination of drug metabolizing organs in an in vitro test system from both animal and human origin is required for a proper systematic prediction of drug metabolism in man. 相似文献
7.
AIM: To study the in vivo and in vitro metabolism and the effect of para-toluene-sulfonamide (PTS) on cytochrome P450 enzymes (CYP450). METHODS: Total CYP450 and microsome protein content were determined after iv pretreatment of rats with PTS. CYP-specific substrates were incubated with rat liver microsomes. Specific CYP isoform activities were determined by using HPLC. CYP chemical inhibitors added to the incubation mixture were used to investigate the principal CYP isoforms involved in PTS metabolism. The effect of PTS on CYP isoforms was investigated by incubating PTS with specific substrates. RESULTS: The groups treated with 33 and 99 mg/kg per d PTS, respectively, had a total CYP content of 0.66+/-0.17 and 0.60+/-0.12 nmol/mg. The K(m) and V(max) were 92.2 micromol/L and 0.0137 nmol/min per mg protein. CYP2C7, CYP2D1 and CYP3A2 might contribute to PTS metabolism in the rat liver. The inhibitory effects of sulfaphenazole and ketoconazole on PTS metabolism were shown to have a mixed mechanism, whereas PTS metabolism was inhibited noncompetitively by quinidine. PTS had little effect on the activities of the selected CYP isoforms. CONCLUSION: Generally speaking, it is relatively safe for PTS to be co-administered with other drugs. However, care should be taken when administering PTS with CYP inhibitors and the substrates of CYP2C, CYP2D and CYP3A. 相似文献
9.
Primaquine, an 8-aminoquinoline, is the drug of choice for radical cure of relapsing malaria. Use of primaquine is limited due to its hemotoxicity, particularly in populations with glucose-6-phosphate dehydrogenase deficiency [G6PD(−)]. Biotransformation appears to be central to the anti-infective and hematological toxicities of primaquine, but the mechanisms are still not well understood. Metabolic studies with primaquine have been hampered due to the reactive nature of potential hemotoxic metabolites. An in vitro metabolism-linked hemotoxicity assay has been developed. Co-incubation of the drug with normal or G6PD(−) erythrocytes, microsomes or recombinant cytochrome P 450 (CYP) isoforms has allowed in situ generation of potential hemotoxic metabolite(s), which interact with the erythrocytes to generate hemotoxicity. Methemoglobin formation, real-time generation of reactive oxygen intermediates (ROIs) and depletion of reactive thiols were monitored as multiple biochemical end points for hemotoxicity. Primaquine alone did not produce any hemotoxicity, while a robust increase was observed in methemoglobin formation and generation of ROIs by primaquine in the presence of human or mouse liver microsomes. Multiple CYP isoforms (CYP2E1, CYP2B6, CYP1A2, CYP2D6 and CYP3A4) variably contributed to the hemotoxicity of primaquine. This was further confirmed by significant inhibition of primaquine hemotoxicity by the selective CYP inhibitors, namely thiotepa (CYP2B6), fluoxetine (CYP2D6) and troleandomycin (CYP3A4). Primaquine caused similar methemoglobin formation in G6PD(−) and normal human erythrocytes. However, G6PD(−) erythrocytes suffered higher oxidative stress and depletion of thiols than normal erythrocytes due to primaquine toxicity. The results provide significant insights regarding CYP isoforms contributing to hemotoxicity and may be useful in controlling toxicity of primaquine to increase its therapeutic utility. 相似文献
10.
The metabolism of the pyrethroids deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. DLM, CPM and TPM were metabolised by human CYP2B6 and CYP2C19, with the highest apparent intrinsic clearance (CLint) values for pyrethroid metabolism being observed with CYP2C19. Other CYP enzymes contributing to the metabolism of one or more of the three pyrethroids were CYP1A2, CYP2C8, CYP2C9*1, CYP2D6*1, CYP3A4 and CYP3A5. None of the pyrethroids were metabolised by CYP2A6, CYP2E1, CYP3A7 or CYP4A11. DLM, CPM and TPM were metabolised by both human CES1 and CES2 enzymes. Apparent CLint values for pyrethroid metabolism by CYP and CES enzymes were scaled to per gram of adult human liver using abundance values for microsomal CYP enzymes and for CES enzymes in liver microsomes and cytosol. TPM had the highest and CPM the lowest apparent CLint values for total metabolism (CYP and CES enzymes) per gram of adult human liver. Due to their higher abundance, all three pyrethroids were extensively metabolised by CES enzymes in adult human liver, with CYP enzymes only accounting for 2%, 10% and 1% of total metabolism for DLM, CPM and TPM, respectively. 相似文献
11.
Copper toxicity has been associated to the capacity of free copper ions to catalyze the production of superoxide anion and hydroxyl radical, reactive species that modify the structure and/or function of biomolecules. In addition, nonspecific Cu 2+‐binding to thiol enzymes, which modifies their catalytic activities, has been reported. Cytochrome P450 (CYP450) monooxygenase is a thiol protein that binds substrates in the first and limiting step of CYP450 system catalytic cycle, necessary for the metabolism of lipophilic xenobiotics. Therefore, copper ions have the potential to oxidize and bind to cysteinyl residues of this monooxygenase, altering the CYP450 system activity. To test this postulate, we studied the effect of Cu 2+ alone and Cu 2+/ascorbate in rat liver microsomes, to independently evaluate its nonspecific binding and its pro‐oxidant effects, respectively. We assessed these effects on the absorbance spectrum of the monooxygenase, as a measure of structural damage, and p‐nitroanisole O‐demethylating activity of CYP450 system, as a marker of functional impairment. Data obtained indicate that Cu 2+ could both oxidize and bind to some amino acid residues of the CYP450 monooxygenase but not to its heme group. The differences observed between the effects of Cu 2+ and Cu 2+/ascorbate show that both mechanisms are involved in the catalytic activity inhibition of CYP450 system by copper ions. The significance of these findings on the pharmacokinetics and pharmacodynamics of drugs is discussed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
目的:在体外研究西尼地平在人肝微粒体内的代谢及选择性细胞色素P-450(CYP450)酶抑制剂对其代谢的影响。方法:在体外用人肝微粒体研究西尼地平的代谢,并用CYP450酶的选择性抑制剂探讨其对西尼地平代谢的影响及人肝微粒体中参与西尼地平二氢吡啶环脱氢代谢的CYP450酶。结果:西尼地平在人肝微粒体内被迅速代谢物M1,二氢吡啶环侧链脱甲基代谢物M2,二氢吡嘧环脱氢及其侧链脱甲基代谢物M3,酮康唑竞争性地抑制西尼地平二氢吡啶环的脱氢代谢,同时降低西尼地平的代谢速率,而其它抑制剂,奎尼丁,α-Naphthoflavone,diethyldithiocarbamate,sulfaphenazole和tra-nylcypromine对西尼地平二氢吡啶环的脱氢代谢没有明显的影响。结论:西尼地平在人肝微粒体内被迅速代谢,其二氢吡啶环的脱氢代谢是其代谢的关键性的步骤,CYP3A作为主要的CYP酶参与了西尼地平二氢吡啶环的脱氢代谢,CYP3A的抑制剂可能会与西尼地平发生代谢相互作用。 相似文献
13.
Dextromethorphan (DMO), a cough suppressing synthetic analog of codeine, undergoes parallel O-demethylation to dextrorphan (DOP), and N-demethylation to 3-methoxy-morphinan (MEM), in humans. 3-hydroxymorphinan, a didemethylated metabolite, is formed secondarily. O-demethylation activity is well established as an index reaction for CYP2D6. However, this pathway appears to be mediated by at least two different enzymes in vitro. N-demethylation activity has recently been proposed to reflect CYP3A3/4 activity. We investigated both pathways in vitro with microsomal preparations from three human livers to assess the value of DMO as a probe drug for CYP2D6 and CYP3A3/4. DMO O-demethylation displayed a biphasic pattern with a high-affinity site reflecting CYP2D6 activity (mean Ki for quinidine, 0·1 ± 0·13 μM). Kinetic parameters for the two O-demethylation mediating enzymes predict an average relative intrinsic clearance ( Vmax/ Km ratio) of 96% of total O-demethylation mediated via the high-affinity enzyme. Thus, in vitro data confirms the usefulness of DMO O-demethylation as an index reaction to monitor CYP2D6 activity. The Eadie–Hofstee plot of DMO N-demethylation was consistent with single-enzyme Michaelis–Menten kinetics ( Vmax varying from 3·3 to 6·8 nmol mg −1 min −1, Km from 231 to 322 μM). However, ketoconazole, a CYP3A3/4 inhibitor, reduced N-demethylation only by 60% and had a mean Ki an order of magnitude higher (0·37 μM) compared to other pure CYP3A3/4 mediated reactions. Troleandomycin, a mechanism based CYP3A3/4 inhibitor, inhibited MEM formation by an average maximum of 46%, with an IC 50 varying from 1 to 2·6 μM. A polyclonal rat liver CYP3A1 antibody inhibited MEM formation only by approximately 50%. Diethyldithiocarbamate (DDC), a mechanism based CYP2E1 inhibitor, reduced MEM formation at concentrations up to 150 μM between 33 and 43%. Chemical inhibitors of CYP2D6 (quinidine), CYP1A1/2 (α-naphthoflavone), and CYP2C9 (sulfaphenazole), as well as a goat rat liver CYP2C11 polyclonal antibody (inhibitory against human CYP2C9 and CYP2C19), had minimal effect on MEM formation rate, thus excluding an involvement of any of these enzymes. DMO N-demethylation is only partly mediated by CYP3A3/4, and therefore is not a reliable index reaction for CYP3A3/4 activity either in vitro or probably in vivo. © 1997 John Wiley & Sons, Ltd. 相似文献
14.
The clinical use of an immunosuppressive cyclosporine A (CsA) is limited by its serious nephrotoxic effect. Evidences have suggested the role of oxidative stress in its pathogenesis. Shallot (Allium ascalonicum L.) has recently been shown to possess antioxidative and free radical scavenging abilities. The present study was undertaken to investigate the possible beneficial effect of shallot extract on renal injury caused by CsA. Male Wistar rats were treated orally with vehicle, CsA (25 mg/kg), shallot extract (1 g/kg), and CsA plus shallot extract for 21 days. Renal function, histopathology, tissue malondialdehyde (MDA) and glutathione (GSH) levels were evaluated 24 h after the last treatment. CsA-induced nephrotoxicity was evidenced by increased blood urea nitrogen and serum creatinine, but decreased urea and creatinine clearance. The kidney of CsA treated rats exhibited severe vacuolations and tubular necrosis. CsA also induced oxidative stress, as indicated by increased renal MDA and reduced GSH concentrations. Administration of shallot extract along with CsA counteracted the deleterious effects of CsA on renal dysfunction, oxidative stress markers, and morphological changes. These data indicate the protective potential of shallot extract against CsA nephrotoxicity and suggest a significant contribution of its antioxidant property to this beneficial effect. 相似文献
15.
Purpose. RPR 102341 is structurally similar to the fluoroquinolone class of antibiotics. Because some fluoroquinolones have been shown to inhibit theophylline metabolism, concomitant administration may increase plasma levels of theophylline resulting in serious adverse effects. The purpose of this study was to determine if RPR 102341 affects theophylline metabolism in vitro and, thus, predict whether a clinically significant drug interaction is likely to occur. In addition, the effect of RPR 102341 on phenacetin O-deethylase activity was determined to address the enzymatic basis of a potential drug interaction.
Methods. The in vitro theophylline metabolism assay was conducted according to a modification of a published procedure. The phenacetin O-deethylase assay was conducted according to a modification of a published procedure.
Results. The rate of conversion of theophylline to 3-methylxanthine in human liver microsomes in the presence of 100 M and 500 M RPR 102341 was 93.6 and 106 percent of the control reactions, respectively. The formation of 1-methylxanthine was 97.6 and 100 percent of the control, and 1,3-dimethyluric acid formation was 88.9 and 95.2 percent of control at 100 M and 500 M RPR 102341, respectively. In agreement, RPR 102341 caused no inhibition of human liver CYP1A2—catalyzed phenacetin O-deethylase activity. Finally, no inhibition was observed when RPR 102341 was incubated with human liver microsomes and an NADPH regenerating system prior to the addition of theophylline.
Conclusions. Based on these studies, RPR 102341 is not expected to cause significant drug interactions with theophylline. 相似文献
16.
Aim:Tetrandrine, an alkaloid with a remarkable pharmacological profile, induces oxidative stress and mitochondrial dysfunction in hepatocytes; however, mitochondria are not the direct target of tetrandrine, which prompts us to elucidate the role of oxidative stress in tetrandrine-induced mitochondrial dysfunction and the sources of oxidative stress. Methods:Rat primary hepatocytes were isolated by two-step collagenase perfusion. Mitochondrial function was evaluated by analyzing ATP content, mitochondrial membrane potential (MMP) and the mitochondrial permeability transition. The oxidative stress was evaluated by examining changes in the levels of reactive oxygen species (ROS) and glutathione (GSH). Results:ROS scavengers largely attenuated the cytotoxicity induced by tetrandrine in rat hepatocytes, indicating the important role of ROS in the hepatotoxicity of tetrandrine. Of the multiple ROS inhibitors that were tested, only inhibitors of CYP450 (SKF-525A and others) reduced the ROS levels and ameliorated the depletion of GSH. Mitochondrial function assays showed that the mitochondrial permeability transition (MPT) induced by tetrandrine was inhibited by SKF-525A and vitamin C (VC), both of which also rescued the depletion of ATP levels and the mitochondrial membrane potential. Upon inhibiting specific CYP450 isoforms, we observed that the inhibitors of CYP2D, CYP2C, and CYP2E1 attenuated the ATP depletion that occurred following tetrandrine exposure, whereas the inhibitors of CYP2D and CYP2E1 reduced the ROS induced by tetrandrine. Overexpression of CYP2E1 enhanced the tetrandrine-induced cytotoxicity. Conclusion:We demonstrated that CYP450 plays an important role in the mitochondrial dysfunction induced by the administration of tetrandrine. ROS generated by CYP450, especially CYP2E1, may contribute to the mitochondrial dysfunction induced by tetrandrine. 相似文献
17.
AIMS: To identify the human cytochrome P450 (CYP) isoforms mediating the N-dealkylation of the antipsychotic drug perphenazine in vitro and estimate the relative contributions of the CYP isoforms involved. METHODS: cDNA-expressed CYP isoforms were used to identify the isoforms that are able to mediate the N-dealkylation of perphenazine, which is considered a major metabolic pathway for the drug. Using human liver microsomal preparations (HLM), inhibition studies were carried out to establish the relative contributions of the CYP isoforms involved in the N-dealkylation reaction. RESULTS: CYP isoforms 1A2, 3A4, 2C8, 2C9, 2C18, 2C19 and 2D6 were able to mediate the N-dealkylation of perphenazine. Reaction velocities and their relative abundance in HLM suggested that CYP1A2, 3A4, 2C19 and 2D6 were the most important contributors to N-dealkylation. Apparent Km values of CYP1A2 and CYP2D6 were in the range 1-2 microM, and Km values of CYP2C19 and CYP3A4 were 14 microM and 7.9 microM, respectively. Ketoconazole inhibition of N-dealkylation mediated by a mixed HLM indicated that CYP3A4 accounted for about 40% of perphenazine N-dealkylation at therapeutically relevant concentrations.The contribution of the CYP isoforms 1A2, 2C19 and 2D6 amounted to 20-25% each as measured by the percentage inhibition obtained by addition of furafylline, fluvoxamine or quinidine, respectively. HLM-mediated N-dealkylation of perphenazine accounted for 57% of the total amount of substrate consumed during incubation. CONCLUSIONS: The present in vitro study suggests that CYP isoforms 1A2, 3A4, 2C19 and 2CD6 are primarily involved in the N-dealkylation of perphenazine. The relatively modest role of CYP2D6 is at variance with in vivo studies, which indicate a greater contribution of this isoform. Alternative metabolic pathways, corresponding to 43% of the HLM-mediated metabolism of the drug, may depend more strongly on CYP2D6. 相似文献
18.
PURPOSE: This study aims to evaluate a cytochrome P450-based tamoxifen-isoflavone interaction and to determine the mechanisms responsible for inhibitory effects of isoflavones (e.g., genistein) on the formation of alpha-hydroxytamoxifen. METHODS: Metabolism studies were performed in vitro using female rat liver microsomes. The effects of genistein and an isoflavone mixture on tamoxifen metabolism and the inhibition mechanism were determined using standard kinetic analysis, preincubation, and selective chemical inhibitors of P450. RESULTS: Metabolism of tamoxifen was saturable with Km values of 4.9+/-0.6, 14.6+/-2.2, 25+/-5.9 microM and Vmax values of 34.7+/-1.4, 297.5+/-19.2, 1867+/-231 pmol min(-1) mg(-1) for a-hydroxylation, N-desmethylation, and N-oxidation, respectively. Genistein (25 microM) inhibited alpha-hydroxylation at 2.5 microM tamoxifen by 64% (p < 0.001) but did not affect the 4-hydroxylation, N-desmethylation, and N-oxidation. A combination of three (genistein, daidzein, and glycitein) to five isoflavones (plus biochanin A and formononetin) inhibited tamoxifen alpha-hydroxylation to a greater extent but did not decrease the formation of identified metabolites. The inhibition on alpha-hydroxylation by genistein was mixed-typed with a Ki, value of 10.6 microM. Studies using selective chemical inhibitors showed that tamoxifen alpha-hydroxylation was mainly mediated by rat CYP1A2 and CYP3A1/2 and that genistein 3'-hydroxylation was mainly mediated by rat CYP1A2, CYP2C6 and CYP2D1. CONCLUSIONS: Genistein and its isoflavone analogs have the potential to decrease side effects of tamoxifen through metabolic interactions that inhibit the formation of a-hydroxytamoxifen via inhibition of CYP1A2. 相似文献
19.
Leelamine is a diterpene compound found in the bark of pine trees and has garnered considerable interest owing to its potent anticancer properties. The aim of the present study was to investigate the metabolic profile of leelamine in human liver microsomes (HLMs) and mice using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We found that leelamine undergoes only Phase I metabolism, which generates one metabolite that is mono-hydroxylated at the C9 carbon of the octahydrophenanthrene ring (M1) both in vitro and in vivo. The structure and metabolic pathway of M1 were determined from the MSn fragmentation obtained by collision-induced dissociation using LC-MS/MS in HLMs. Cytochrome p450 (CYP) 2D6 was found to be the dominant CYP enzyme involved in the biotransformation of leelamine to its hydroxylated metabolite, whereas CYP2C19, CYP1A1, and CYP3A4 contributed to some extent. Moreover, we identified only one metabolite M1, in the urine, but none in the feces. In conclusion, leelamine was metabolized to a mono-hydroxyl metabolite by CYP2D6 and mainly excreted in the urine. 相似文献
20.
目的 建立甲苯磺丁脲羟化酶 (CYP2C8/ 9)和氯羟苯口恶唑 6 羟化酶 (CYP2E1)比活性的测定方法 ,为深入研究CYP45 0在药物代谢中的作用奠定基础。方法 从成人肝细胞中提取微粒体 ,测定其蛋白含量 ,以甲苯磺丁脲、氯羟苯口恶唑为底物 ,用HPLC以梯度洗脱法测定其代谢产物羟基甲苯磺丁脲及 6 羟基氯羟苯 口恶唑生成量 ,据此计算人肝细胞色素P45 0 (CYP45 0 )同工酶甲苯磺丁脲羟化酶 (CYP2C8/9)和氯羟苯 口恶唑 6 羟化酶 (CYP2E1)比活性。结果 于不同时间反复测定的CYP2C8/ 9、CYP2E1比活性无差异。结论 CYP2C8/ 9、CYP2E1的测定方法较为简单、稳定、重复性好 ,可用于新药筛选、安全性评价及肝脏病理学、毒理学研究。 相似文献
|