首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
The AT1-R has been implicated in many cellular and physiological actions of angiotensin II (AII) in the brain. A retrovirus vector (LNSV) containing an AT1B-R antisense sequence (AT1B-AS) (termed LNSV-AT1B-AS) was constructed and used to determine the feasibility of using viral-mediated gene transfer to control AT1-Rs and AII actions in astroglial and neuronal cells in primary cultures from rat brain. Briefly, a 1.26-kb antisense sequence corresponding to nt -132 to +1128 of AT1-R cDNA was cloned into the LNSV vector, the vector was transfected into PA317 cells, and transfected cells were selected in G418. Incubation of brain cells with culture medium containing LNSV-AT1B-AS viral particles showed that AT1B-AS was integrated into the genome and transcribed in brain cells. This was associated with a significant decrease in AT1-Rs and in the AII-stimulated increase of c-fos mRNA, a measure of AT1-R function. These observations show that the AT1B-AS gene can be transferred into astroglial cells in culture by LNSV and that such a transfer inhibits AT1-Rs and the AII stimulation of cellular activities. In addition, the usefulness of this approach to study AII-dependent pathophysiology in primary neuronal cultures from brain, in particular, is established.  相似文献   

3.
Our previous studies have shown that neonatal delivery of angiotensin type 1 receptor antisense (AT(1)R-AS) in a retroviral vector prevents spontaneously hypertensive rats from developing hypertension for life but has no effect on blood pressure (BP) in normotensive animals. Based on these results, we hypothesized that AT(1)R-AS transduction in normotensive rats would protect them from developing experimental hypertension. The present study was designed to evaluate this hypothesis. A single intracardiac administration of AT(1)R-AS by a retroviral-mediated delivery system (LNSV-AT(1)R-AS) in 5-day-old normotensive Sprague-Dawley rats resulted in long-term expression of the AT(1)R-AS without an effect on basal BP. However, angiotensin II (Ang II)-induced BP, dipsogenic responses, and renovascular contractility were significantly attenuated in the LNSV-AT(1)R-AS-treated rats. Chronic infusion of low-dose Ang II (55 ng. kg(-)(1). min(-)(1)) in LNSV-alone-treated rats caused a modest increase in BP, profound increase in cardiac hypertrophy, and increased vascular contractility. In contrast, the LNSV-AT(1)R-AS-treated rats were protected from developing these changes after Ang II infusion. These data establish that LNSV-AT(1)R-AS pretreatment protects healthy rats from developing Ang II-dependent hypertension.  相似文献   

4.
Our previous studies have demonstrated that the introduction of angiotensin II type I receptor antisense (AT(1)R-AS) cDNA by a retrovirally mediated delivery system prevents the development of hypertension in the spontaneously hypertensive rat (SHR), an animal model for primary hypertension in humans. These results have led us to propose the hypothesis that an interruption of the renin-angiotensin system (RAS) activity at a genetic level would prevent hypertension on a permanent basis. F(1) and F(2) generations of offspring from a retroviral vector, LNSV- and LNSV-AT(1)R-AS-treated SHR, were generated, and various physiological parameters indicative of hypertension were studied and compared with those of their parents to investigate this hypothesis. Both F(1) and F(2) generations of LNSV-AT(1)R-AS-treated SHR expressed a persistently lower blood pressure, decreased cardiac hypertrophy and fibrosis, decreased medial thickness, and normalization of renal artery excitation-contraction coupling, Ca(2+) current, and [Ca(2+)](i) when compared with offspring derived from the LNSV-treated SHR. In fact, the magnitude of the prevention of these pathophysiological alterations was similar to that observed in the LNSV-AT(1)R-AS-treated SHR parent. The prevention of cardiovascular pathophysiology and expression of normotensive phenotypes are, at least in part, a result of integration and subsequent transmission of AT(1)R-AS from the SHR parents to offspring. These data demonstrate that a single intracardiac injection of LNSV-AT(1)R-AS causes a permanent cardiovascular protection against hypertension as a result of a genomic integration and germ line transmission of the AT(1)R-AS in the SHR offspring.  相似文献   

5.
Both neurons and astrocytes contain specific receptors for angiotensin II (AII). We used selective ligands for the AT1 and AT2 types of AII receptors to investigate the expression of functional receptor subtypes in astrocyte cultures and neuron cultures from 1-day-old (neonatal) rat brain. In astrocyte cultures, competition of 125I-labeled AII (125I-AII) specific binding with AT1 (DuP753) or AT2 (PD123177, CGP42112A, [Phe(p-NH2)6]AII) selective receptor ligands revealed a potency series of AII greater than DuP753 much greater than CGP42112A greater than [Phe(p-NH2)6]AII greater than PD123177. These results suggest a predominance of the AT1 receptor subtype in neonatal astrocytes. Also, in astrocyte cultures, AII stimulated increases in inositolphospholipid hydrolysis that were significantly reduced by the AT1 receptor antagonist DuP753 but not altered by the AT2 receptor antagonist PD123177. In neonatal neuron cultures, competition of 125I-AII specific binding with the above ligands revealed a potency series of CGP42112A = AII greater than [Phe(p- NH2)6]AII greater than PD123177 much greater than DuP753. 125I-AII specific binding to neonate neuronal cultures was reduced 73-84% by 1 microM PD123177, and the residual 125I-AII specific binding was eliminated by DuP753. Also, in neuron cultures, AII induced decreases in basal cGMP that were completely blocked by PD123177 or CGP42112A but not by DuP753. Our results suggest that astrocyte cultures from neonatal rat brains contain predominantly AT1 receptors that are coupled to a stimulation of inositophospholipid hydrolysis. In contrast, neuron cultures from neonatal rat brain contain mostly AT2 receptors that are coupled to a reduction in basal cGMP levels, but a smaller population of AT1 receptors is also present in these neurons.  相似文献   

6.
Previous studies have used new angiotensin II (AII) receptor subtype selective compounds to localize AII receptor subtypes within discrete rat brain nuclei. The purpose of this autoradiographic study was to extend these preliminary findings and provide a comprehensive analysis of AII binding sites in 22 rat brain nuclei and the anterior pituitary, to include estimates of the binding affinity for 125I sar1 ile8 AII (125I SIAII) at each nucleus, and determine the fractional distribution of each subtype at each nucleus. Estimates of KD in separate experiments revealed that AT1 nuclei had a consistently higher affinity for 125I SIAII than AT2 nuclei (0.66 vs. 2.55 nM). Displacement of subsaturating concentrations of 125I SIAII by 10(-8)-10(-4) M DuP753 (selective for the AT1 subtype) or PD123177 (selective for the AT2 subtype) indicated that approximately half of the brain regions surveyed contained predominantly AT1 sites and half contained predominantly AT2 sites. Binding was partially displaced by both compounds in several regions and two site analyses were performed to estimate the distribution of subtypes within each nucleus. The data were then corrected for differential occupancy by 125I SIAII. Brain nuclei associated with cardiovascular or dipsogenic actions of AII, e.g., subfornical organ, organum vasculosum of the lamina terminalis, median preoptic nucleus, nucleus of the solitary tract and area postrema, contained pure, or almost pure, populations of AT1 receptors. The functions of AII in brain regions containing predominantly AT2 binding sites, e.g., thalamus, colliculi, inferior olive and locus ceruleus, remain undefined. Thus, AII binding sites in the rat brain have been differentiated into two subtypes with similar characteristics to those reported in peripheral tissues. However, the unexpected finding that they can be differentiated on the basis of their affinity for 125I SIAII raises questions concerning their coidentity with peripheral receptor subtypes.  相似文献   

7.
It is well established that the central cardiovascular effects of angiotensin II (Ang II) involve superoxide production. However, the intracellular mechanism by which reactive oxygen species (ROS) signaling regulates neuronal Ang II actions remains to be elucidated. In the present study, we have used neuronal cells in primary cultures from the hypothalamus and brain stem areas to study the role of ROS on the cellular actions of Ang II. Ang II increases neuronal firing rate, an effect mediated by the AT(1) receptor subtype and involving inhibition of the delayed rectifier potassium current (I(Kv)). This increase in neuronal activity was associated with increases in NADPH oxidase activity and ROS levels within neurons, the latter evidenced by an increase in ethidium fluorescence. The increases in NADPH oxidase activity and ethidium fluorescence were blocked by either the AT(1) receptor antagonist losartan or by the selective NAD(P)H oxidase inhibitor gp91ds-tat. Extracellular application of the ROS scavenger, Tempol, attenuated the Ang II-induced increase in neuronal firing rate by 70%. In addition, gp91ds-tat treatment resulted in a 50% inhibition of Ang II-induced increase in firing rate. In contrast, the ROS generator Xanthine-Xanthine oxidase significantly increased neuronal firing rate. Finally, Ang II inhibited neuronal I(Kv,) and this inhibition was abolished by gp91ds-tat treatment. These observations demonstrate, for the first time, that Ang II regulates neuronal activity via a series of events that includes ROS generation and inhibition of I(Kv). This signaling seems to be a critical cellular event in central Ang II regulation of cardiovascular function.  相似文献   

8.
In recently published studies, we show that angiotensin II (AII) generated from an engineered rat angiotensinogen cDNA, and maintained intracellularly, is growth stimulatory for a rat hepatoma cell line. In the present study, we report that co-expression of AII fused to cyan fluorescent protein (ECFP/AII) and angiotensin type I receptor fused to yellow fluorescent protein (AT1R/EYFP) enhances proliferation of COS-7 and CHO-K1 cells by 59% and 64%, respectively, compared to cells expressing the corresponding independent proteins (P < 0.001 for both). This effect is inhibited by losartan, suggesting (as in our previous published studies) that losartan is internalized by the cells, via receptor-mediated endocytosis, and thus inhibits intracellular receptor-ligand interaction. The growth effect is independent of anti-AII antibodies suggesting that it does not reflect AII secretion into the culture media; AII is also undetectable in the media. Expression of AT1R/EYFP with ECFP/AIIC (control scrambled sequence AII fused to ECFP) has no effect upon cell proliferation. ECFP/AII also alters the cellular localization of AT1R/EYFP. ECFP/AII is concentrated in the nucleus, but shows diffuse cytoplasmic fluorescence as well. AT1R/EYFP, expressed independently, is visible in the endoplasmic reticulum and Golgi apparatus of COS-7 and CHO-K1 cells as early as 24-h post-transfection. At 72 h, it is visibly associated with the plasma membrane. By 144 h, 85% of the cells show detectable circumferential fluorescence. In contrast, in cells that express AT1R/EYFP and ECFP/AII, both proteins accumulate in the nucleus and only 13% of the cells show visible plasma membrane-associated yellow fluorescence at 144 h (P < 0.001). Furthermore, co-expression of ECFP/AII with AT1R/EYFP stimulates cAMP response element-binding protein (CREB) activity in CHO-K1 and COS-7 cells. Exogenous AII similarly significantly increases CREB activation in AT1R/EYFP-stably transfected CHO-K1 and COS-7 cells.  相似文献   

9.
We previously reported that immunoreactive angiotensin II (AII) containing nerve fibers and cell bodies were increased in the brain and brainstem of the spontaneously hypertensive (SH) rat compared with its normotensive control, the Wistar Kyoto (WKY) rat. Since earlier studies from other laboratories described the distribution of AII in normotensive Sprague Dawley rat brain, it was the intent of this investigation to examine the localization of AII in only DOCA-salt hypertensive rat. We unilaterally nephrectomized Sprague Dawley rats and administered multiple subcutaneous injections of 30 mg/kg body weight of DOCA with saline substituted for drinking water to significantly increase blood pressure. Using the peroxidase anti-peroxidase method for immunocytochemical localization of a tissue antigen, we characterized AII distribution and density in the brain and brainstem of DOCA-salt hypertensive rat. Positively stained cell bodies and fiber profiles were found in discrete anatomical subdivisions, including the limbic system, hypothalamus, basal ganglia, circumventricular organs, reticular formation and ependymal tissue immediately adjacent to the ventricles. These findings support the hypothesis that AII is widely distributed indiscrete regions of the DOCA-salt hypertensive ratbrain and brainstem, and that the distribution of A11 is consistent with a potential functional significance in the regulation of cardiovascular activity and neuroendocrine function.  相似文献   

10.
Hypertension produces pathophysiological changes that are often responsible for the mortality associated with the disease. However, it is unclear whether normalizing blood pressure (BP) with conventional therapy is effective in reversing the pathophysiological damage. The duration and initiation of treatment, site of administration, and agent used all appear to influence the reversal of the pathophysiological alterations associated with hypertension. We have previously established that retrovirally mediated delivery of angiotensin II type 1 receptor antisense (AT1R-AS) attenuates the development of high BP in the spontaneously hypertensive (SH) rat model of human essential hypertension. Our objective was to determine whether this attenuation of high BP is associated with prevention of other pathophysiological changes induced by the hypertensive state. Intracardiac delivery of AT1R-AS in neonates prevented the development of hypertension in SH rats for at least 120 days. Contractile experiments demonstrated an impaired endothelium-dependent vascular relaxation (acetylcholine) and an enhanced contractile response to vasoactive agents (phenylephrine and KCl) in the SH rat renal vasculature. In addition, the voltage-dependent K+ current density, which is believed to contribute to smooth muscle resting membrane potential and basal tone, was decreased in renal resistance artery cells of the SH rat. AT1R-AS treatment prevented each of these renal vascular alterations. Finally, AT1R-AS delivery prevented the pathological alterations observed in the SH rat myocardium, including left ventricular hypertrophy, multifocal fibrosis, and perivascular fibrosis. These observations demonstrate that viral-mediated delivery of AT1R-AS attenuates the development of hypertension on a long term basis, and this is associated with prevention of pathophysiological changes in SH rats.  相似文献   

11.
12.
Both stimulatory and suppressive responses of the sympathetic nervous system to angiotensin II (AII) have been reported in intact animals. To elucidate possible cellular mechanisms, we studied AII-induced changes in cytosolic Ca2+ ([Ca2+]i) in primary cultures of rat stellate ganglion neurons. Two different patterns of [Ca2+]i responses to AII were observed: dose-dependent increases in [Ca2+]i in cells with intrinsically low baseline [Ca2+]i (n=64) and dose-dependent suppression of [Ca2+]i in neurons with intrinsically higher baseline [Ca2+]i (n=46). Individual neurons could express both response patterns to AII. In neurons with low basal [Ca2+]i, superfusion with Ca2+ ionophore (ionomycin) increased [Ca2+]i and reversed the initial AII-induced stimulatory pattern. L-type Ca2+ channel antagonism (nifedipine) in neurons with high baseline [Ca2+]i lowered [Ca2+]i and reversed the initial AII-induced suppressive response. Both stimulatory and suppressive responses were abolished by AT1 receptor antagonism (losartan). AII-induced stimulatory responses were blocked by IP3 receptor antagonism (2-APB) and by thapsigargin. AII-induced suppression of neuronal [Ca2+]i was blunted when Na-Ca exchange was impaired. We conclude that [Ca2+]i acts as a switch for AII-mediated stimulatory and suppressive responses in individual sympathetic neurons. AT1 receptor-mediated neuronal stimulation and suppression may allow local homeostatic adaptation to meet complex systemic needs.  相似文献   

13.
Angiotensin II (AII) receptor subtypes were analyzed in the brains of adult and 2-week-old rats by in vitro autoradiography with 125I-labeled [Sar1,Ile8]AII and competition studies with three AII antagonists: the nonpeptide antagonist, DuP 753, which is specific for AT1 receptors that mediate the calcium-inositol phospholipid signaling actions of AII; and nonpeptide (PD 123177) and peptide (CGP 42112A) antagonists that are selective for AT2 receptors of yet unknown function. In the adult rat brain, DuP 753 inhibited radioligand binding to the circumventricular organs and paraventricular nucleus but not to the lateral septum, subthalamic nucleus, and inferior olive. However, binding of 125I-labeled [Sar1,Ile8]AII in the latter regions was inhibited by the AT2 receptor antagonists PD 123177 and CGP 42112A. These areas showed similar displacement by the AT2 receptor subtype-specific antagonists in 2-week-old rats. In addition, radioligand binding at multiple sites of transient expression of AII receptors in 2-week-old rats, including several thalamic nuclei, the nuclei of the 3rd and 12th cranial nerves, geniculate bodies, cerebellum, and cingulate cortex, was displaced by the AT2 antagonists but not by DuP 753. These studies have demonstrated the presence of two AII receptor subtypes in the brain, one (AT1) in areas related to regulation of blood pressure, water intake, and pituitary hormone secretion, and one (AT2) whose function is not yet defined. The abundance and location of brain AT2 receptors in young animals, and the age-related changes in relative expression of the receptor subtypes, suggest that AII exerts specific actions according to the developmental stage of the central nervous system.  相似文献   

14.
Crosstalk between insulin and angiotensin II signalling systems.   总被引:3,自引:0,他引:3  
Insulin resistance and hypertension commonly occur together. Pharmacological inhibition of the renin-angiotensin system has been found to reduce not only hypertension, but also insulin resistance. This raises the possibility that the renin-angiotensin system may interact with insulin signalling. We have investigated the relationship between insulin and angiotensin II (AII) intracellular signalling in vivo using an intact rat heart model, and in vitro using rat aorta smooth muscle cells (RASMC). Results generated in the in vivo studies indicate that, like insulin, AII stimulates tyrosine phosphorylation of the insulin receptor substrates IRS-1 and IRS-2. This leads to binding of IRS-1 and IRS-2 to PI3-kinase. However, in contrast to the effect of insulin. IRS-1- and IRS-2-associated PI3-kinase activity is inhibited by AII in a dose-dependent manner. Moreover, AII inhibits insulin-stimulated IRS-1/IRS-2-associated PI3-kinase activity. The in vivo effects of AII are mediated via the AT1 receptor. The results of the in vitro studies indicate that AII inhibits insulin-stimulated, IRS-1-associated PI3-kinase activity by interfering with the docking of IRS-1 with the p85 regulatory subunit of PI3-kinase. It appears that AII achieves this effect by stimulating serine phosphorylation of the insulin receptor beta-subunit IRS-1, and the p85 regulatory subunit of PI3-kinase. These actions result in the inhibition of normal interactions between the insulin signalling pathway components. Thus, we believe that AII negatively modulates insulin signalling by stimulating multiple serine phosphorylation events in the early components of the insulin signalling cascade. Overactivity of the renin-angiotensin system is likely to impair insulin signalling and contribute to insulin resistance observed in essential hypertension.  相似文献   

15.
OBJECTIVE: There have been very few studies to examine how angiotensin II (AII) affects lipid metabolism. We examined the roles of AII type 1 and type 2 receptors (AT1R and AT2R) in cholesterol metabolism in rats fed either normal chow or high-fructose diets. METHODS AND RESULTS: AII (100 ng/kg per min) or vehicle (saline) was continuously infused through an osmotic mini-pump to normal chow-fed or 60% fructose-fed rats for 2 weeks. AII infusion markedly elevated both the systolic and diastolic blood pressure in the two animal groups. AII did not affect the plasma total cholesterol (TC) in the chow-fed rats. In the AII-infused rats treated with olmesartan medoxomil, an AT1R blocker, we were interested to observe significant decreases in plasma TC and non-high-density lipoprotein (HDL)-cholesterol (C) (TC minus HDL-C), and liver cholesterol content were also decreased. Simultaneous infusion of AII and PD123319, an AT2R blocker, markedly increased non-HDL-C and hepatic cholesterol. The infusion of CGP42112A, an AT2R agonist, decreased non-HDL-C by 30% in normal rats. The AII infusion led to significant elevations in TC and non-HDL-C in the fructose-fed rats, and olmesartan treatment completely rectified this AII-induced hypercholesterolemia. CONCLUSIONS: These results suggest that the AII receptors exert opposing effects on the plasma cholesterol level; that is, AT1R increases plasma cholesterol while AT2R decreases it. Fructose feeding may selectively augment the action of AT1R and thereby enhance the increase in plasma cholesterol levels in response to AII infusion.  相似文献   

16.
17.
18.
Gene profiling data coupled with adducin polymorphism studies led us to hypothesize that decreased expression of this cytosolic protein in the brain could be a key event in the central control of hypertension. Thus, our objectives in the present study were to (1) determine which adducin subunit gene demonstrates altered expression in the hypothalamus and brainstem (two cardioregulatory-relevant brain areas) in two genetic strains of hypertensive rats and (2) analyze the role of adducins in neurotransmission at the cellular level. All three adducin subunits (alpha, beta, and gamma) were present in the hypothalamus and brainstem of Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. However, only the gamma-adducin subunit expression was 40% to 60% lower in the SH rat compared with WKY rat. A similar decrease in gamma-adducin expression was observed in the hypothalamus and brainstem of the renin transgenic rat compared with its normotensive control. Losartan treatment of the SH rat failed to normalize gamma-adducin gene expression. A hypertension-linked decrease of gamma-adducin was confirmed by demonstrating a decrease in gamma-adducin expression in hypothalamic/brainstem neuronal cultures from prehypertensive SH rats. Neuronal firing rate was evaluated to analyze the role of this protein in neurotransmission. Perfusion of a gamma-adducin-specific antibody caused a 2-fold increase in the neuronal firing rate, an effect similar to that observed with angiotensin II. Finally, we observed that preincubation of neuronal cultures for 8 hours with 100 nmol/L angiotensin II caused a 60% decrease in endogenous gamma-adducin and was associated with a 2-fold increase in basal firing rate. These observations support our hypothesis that a decrease in gamma-adducin expression in cardioregulatory-relevant brain areas is linked to hypertension possibly by regulating the release of neurotransmitters.  相似文献   

19.
The morphological localization of [125I]angiotensin II (AII) in the rat adrenal medulla (AM) was studied by light- and electron-microscopic radioautography in vivo. With light microscopy the presence of binding sites for AII in both norepinephrine-containing (NE) and epinephrine-containing (E) cells was confirmed. With electron microscopy, it was found that AII binds to the cell surface of NE cells, is progressively internalized, and is associated with lysosomes and Golgi complex within 20 min, whereas in E cells AII seems to be internalized earlier and recycled back to the cell surface within 5 min without any appreciable association with intracellular organelles. These results suggest different intracellular pathways for AII in NE and E cells of the rat AM.  相似文献   

20.
Angiotensin II (AII) is a major determinant of arterial pressure and volume homeostasis, mainly because of its vascular action via the AII type 1 receptor (AT1R). AII has also been implicated in the development of cardiac hypertrophy because angiotensin I-converting enzyme inhibitors and AT1R antagonists prevent or regress ventricular hypertrophy in animal models and in human. However, because these treatments impede the action of AII at cardiac as well as vascular levels, and reduce blood pressure, it has been difficult to determine whether AII action on the heart is direct or a consequence of pressure-overload. To determine whether AII can induce cardiac hypertrophy directly via myocardial AT1R in the absence of vascular changes, transgenic mice overexpressing the human AT1R under the control of the mouse alpha-myosin heavy chain promoter were generated. Cardiomyocyte-specific overexpression of AT1R induced, in basal conditions, morphologic changes of myocytes and nonmyocytes that mimic those observed during the development of cardiac hypertrophy in human and in other mammals. These mice displayed significant cardiac hypertrophy and remodeling with increased expression of ventricular atrial natriuretic factor and interstitial collagen deposition and died prematurely of heart failure. Neither the systolic blood pressure nor the heart rate were changed. The data demonstrate a direct myocardial role for AII in the development of cardiac hypertrophy and failure and provide a useful model to elucidate the mechanisms of action of AII in the pathogenesis of cardiac diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号