首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Asthma often worsens at night. To determine if the endogenous circadian system contributes to the nocturnal worsening of asthma, independent of sleep and other behavioral and environmental day/night cycles, we studied patients with asthma (without steroid use) over 3 wk in an ambulatory setting (with combined circadian, environmental, and behavioral effects) and across the circadian cycle in two complementary laboratory protocols performed in dim light, which separated circadian from environmental and behavioral effects: 1) a 38-h “constant routine,” with continuous wakefulness, constant posture, 2-hourly isocaloric snacks, and 2) a 196-h “forced desynchrony” incorporating seven identical recurring 28-h sleep/wake cycles with all behaviors evenly scheduled across the circadian cycle. Indices of pulmonary function varied across the day in the ambulatory setting, and both laboratory protocols revealed significant circadian rhythms, with lowest function during the biological night, around 4:00 AM, uncovering a nocturnal exacerbation of asthma usually unnoticed or hidden by the presence of sleep. We also discovered a circadian rhythm in symptom-based rescue bronchodilator use (β2-adrenergic agonist inhaler) whereby inhaler use was four times more likely during the circadian night than day. There were additive influences on asthma from the circadian system plus sleep and other behavioral or environmental effects. Individuals with the lowest average pulmonary function tended to have the largest daily circadian variations and the largest behavioral cycle effects on asthma. When sleep was modeled to occur at night, the summed circadian, behavioral/environmental cycle effects almost perfectly matched the ambulatory data. Thus, the circadian system contributes to the common nocturnal worsening of asthma, implying that internal biological time should be considered for optimal therapy.

Asthma is characterized by bronchial hyperreactivity leading to airway inflammation, bronchoconstriction, and symptoms of “chest tightness.” It has been recognized for hundreds of years that asthma severity generally increases at night, producing what had historically been termed “nocturnal asthma.” For instance, in 1698, the physician Sir John Floyer recognized from his own experience that “at first waking, about one or two of the Clock in the Night, the Fit of the Asthma more evidently begins” (1). Nocturnal worsening of asthma occurs in as many as 75% of patients with asthma, equating to 20 million people in the United States alone (26). The variation across the day and night in peak expiratory flow (PEF) can be as much as 50% (7, 8). Also, the highest rate of asthma exacerbations leading to respiratory failure or death occurs across the night (3, 9, 10). Therefore, understanding the mechanisms underlying the daily variability in asthma severity could have major diagnostic and therapeutic implications.Behavioral and environmental factors are known to affect asthma severity, including exercise, air temperature, pollution, the sleep/wake cycle (11), changes in posture (12), and the sleeping environment (13). However, it is also possible that the endogenous circadian timing system contributes to nocturnal worsening of asthma (14). The circadian system—composed of the central circadian pacemaker in the suprachiasmatic nucleus of the hypothalamus and circadian oscillators in most organs and tissues of the body—orchestrates ∼24-h rhythms in physiology and behavior (15). This endogenous timing system may influence the pulmonary and inflammatory system via the autonomic nervous system (16), humoral factors (17), and/or local molecular clocks (18, 19).We tested the hypothesis that the circadian system, independent of sleep and other behavioral and environmental factors, contributes to the nocturnal worsening of asthma in humans.  相似文献   

3.
Sleep and wakefulness are not simple, homogenous all-or-none states but represent a spectrum of substates, distinguished by behavior, levels of arousal, and brain activity at the local and global levels. Until now, the role of the hypothalamic circuitry in sleep–wake control was studied primarily with respect to its contribution to rapid state transitions. In contrast, whether the hypothalamus modulates within-state dynamics (state “quality”) and the functional significance thereof remains unexplored. Here, we show that photoactivation of inhibitory neurons in the lateral preoptic area (LPO) of the hypothalamus of adult male and female laboratory mice does not merely trigger awakening from sleep, but the resulting awake state is also characterized by an activated electroencephalogram (EEG) pattern, suggesting increased levels of arousal. This was associated with a faster build-up of sleep pressure, as reflected in higher EEG slow-wave activity (SWA) during subsequent sleep. In contrast, photoinhibition of inhibitory LPO neurons did not result in changes in vigilance states but was associated with persistently increased EEG SWA during spontaneous sleep. These findings suggest a role of the LPO in regulating arousal levels, which we propose as a key variable shaping the daily architecture of sleep–wake states.

Interspecies variation in the daily amount of sleep is strongly influenced by genetic factors (1). However, individuals also possess a striking ability to adapt the timing and duration of wakefulness and sleep in response to a variety of intrinsic and extrinsic factors (2). Among the key regulators of “adaptive sleep architecture” are 1) homeostatic sleep need, 2) the endogenous circadian clock, and 3) the necessity to satisfy other physiological and behavioral needs such as feeding or the avoidance of danger (35). It is unknown how and in what form these numerous signals are integrated within the neural circuitry that generates the rapid and stable transitions between sleep and wake states.Brain state switching has been the main focus of circuit-oriented sleep research for decades. Early studies identified the preoptic hypothalamus as a primary candidate for a hypothesized “key sleep center” (68), and subsequent studies have confirmed the existence of sleep-active neurons in the ventrolateral and median preoptic areas (VLPO and MPO) of the hypothalamus (911). Combined with the findings that orexin/hypocretin neurons are necessary to maintain wakefulness (12, 13), a model was proposed in which the sleep/wake-promoting circuitries function as a flip-flop switch (14). This model was able to account for rapid and complete transitions between sleep and wakefulness and preventing state instability (15) or the occurrence of mixed hybrid states of vigilance (16). Over the last decade, our knowledge of subcortical brain nuclei that control sleep has expanded steadily, leading to the identification of functional specialization within the sleep–wake controlling network and, in parallel, highlighting a previously underappreciated complexity (1735).A key question to emerge is how signals regulating sleep–wake architecture are represented and integrated in hypothalamic state-switching circuitries to ultimately maximize ecological fitness (36). Although sleep homeostasis has been considered an important factor influencing sleep/wake transitions (3740), relatively few studies have addressed whether and how sleep–wake controlling brain areas overlap with those involved in homeostatic sleep regulation (26) or the underlying neurophysiological mechanisms (4144). One recent study pointed to an important role of galanin neurons in the lateral preoptic hypothalamus, as was demonstrated through their selective ablation, which abolished the rebound of electroencephalogram (EEG) slow-wave activity (SWA; EEG power density between 0.5 to 4 Hz) after sleep deprivation (26). Other studies suggest that while homeostatic sleep pressure, reflected in SWA, builds up as a function of global wake duration, it is also locally regulated by specific activities during wakefulness (45, 46). The property of sleep and wake as brain states with flexible intensities on a global and local level suggests an additional complexity, which is difficult to reconcile with the existence of a single center solely responsible for complete sleep–wake switching (47). For example, there is evidence to suggest that wake “intensity” contributes to the build-up of global homeostatic sleep need (4851), and the balance between intrinsic and extrinsic arousal-promoting and sleep-promoting signals ultimately determines the probability and degree of state switching (3, 52).Here, we investigate the role of the hypothalamus in the bidirectional interactions between sleep–wake switching, arousal, and sleep homeostasis. Firstly, we applied optogenetic stimulation of glutamate decarboxylase 2 (GAD2) neurons in the lateral preoptic area (LPO) of mice (17) and found that photoactivation of the LPO during sleep led to rapid wake induction, but this effect was also observed when structures surrounding the LPO were stimulated. Unexpectedly, GAD2LPO neuronal stimulation did not merely trigger wakefulness, but the awake state produced by this stimulation was characterized by increased EEG theta activity—the established measure of arousal (53, 54). In turn, subsequent sleep was associated with increased levels of EEG SWA, indicative of higher homeostatic sleep pressure (45). In contrast, unilateral inhibition of GAD2LPO neurons decreased the drive for arousal, as was reflected in a persistent increase in nonrapid eye movement (NREM) EEG SWA across the day. In summary, our experiments demonstrate an important role of GAD2LPO neurons not only in the control of state transitions but also in linking arousal to sleep homeostasis. We find that the kinetics of the response to photoactivation and photoinhibition were different, and so they may arise from distinct mechanisms while converging on the dynamic modulation of arousal levels, ultimately shaping the daily architecture of sleep–wake states.  相似文献   

4.
5.
OBJECTIVES: To determine whether fragmented sleep in nursing home patients would improve with increased exposure to bright light. DESIGN: Randomized controlled trial. SETTING: Two San Diego-area nursing homes. PARTICIPANTS: Seventy-seven (58 women, 19 men) nursing home residents participated. Mean age +/- standard deviation was 85.7 +/- 7.3 (range 60-100) and mean Mini-Mental State Examination was 12.8 +/- 8.8 (range 0-30). INTERVENTIONS: Participants were assigned to one of four treatments: evening bright light, morning bright light, daytime sleep restriction, or evening dim red light. MEASUREMENTS: Improvement in nighttime sleep quality, daytime alertness, and circadian activity rhythm parameters. RESULTS: There were no improvements in nighttime sleep or daytime alertness in any of the treatment groups. Morning bright light delayed the peak of the activity rhythm (acrophase) and increased the mean activity level (mesor). In addition, subjects in the morning bright light group had improved activity rhythmicity during the 10 days of treatment. CONCLUSION: Increasing exposure to morning bright light delayed the acrophase of the activity rhythm and made the circadian rhythm more robust. These changes have the potential to be clinically beneficial because it may be easier to provide nursing care to patients whose circadian activity patterns are more socially acceptable.  相似文献   

6.
Circadian rhythms with an endogenous period close to or equal to the natural light–dark cycle are considered evolutionarily adaptive (“circadian resonance hypothesis”). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.Circadian clocks are a ubiquitous feature of life on earth, and serve to maintain synchrony of internal physiology with the external 24-h environment. Colin Pittendrigh, one of the founders of chronobiology, hypothesized that natural selection should favor circadian systems to operate in resonance with the external cycle (1, 2). A prediction from this hypothesis is that individuals exhibiting circadian rhythms with frequencies that are not in close resonance with the 24-h cycle should be selected against in nature. The hypothesis was initially supported by laboratory experiments in fly species that lived longer in a 24-h light–dark (LD) cycle than in non-24-h LD cycles (24). Stronger support emerged from dyadic competition experiments in batch cultures of cyanobacteria carrying single gene mutations affecting their circadian period (τ). Strains (either wild type or mutant) with a τ similar to the external LD cycle outcompeted strains with a τ different from the Zeitgeber (5, 6). Whether periods out of resonance with the external cycle entail a real fitness deficit in a natural setting has not been tested in any of these systems.The Ck1εtau (hereafter defined as the tau mutation) is a gain-of-function mutation (7) that accelerates the cellular dynamics of the circadian PERIOD protein (8, 9) and affects circadian behavior and physiology (10). It was first detected in Syrian hamsters (Mesocricetus auratus), where it causes τ to shorten with ∼2 h for each copy of the mutant allele (11). In mice, the same mutation shortens the circadian cycle to an almost identical extent (10). As a consequence of the accelerated circadian clockwork, both homozygote tau mice and hamsters are unable to entrain to 24-h LD cycles in the laboratory. Because its frequency deviates considerably from the natural 24-h cycle, the tau mutation provides an excellent model to study effects of deviant circadian periods on fitness in a natural setting. Here we report the consequences of deviant circadian rhythms in six replicate outdoor populations of mice. These populations were established with the release of mice, all born to two heterozygote parents, in identical enclosures, with ∼49% mutant tau alleles in a near Mendelian ratio in each pen. We used s.c. transponders to record each individual’s visits to feeders in each enclosure, which allowed us to quantify the rhythm of feeding activity and to keep track of each individual’s presence—and, hence, monitor lifespan, mortality, and the tau allele frequency in each population.  相似文献   

7.
Epidemiological data reveal parallel trends of decreasing sleep duration and increases in metabolic disorders such as obesity, diabetes and hypertension. There is growing evidence that these trends are mechanistically related. The seasonal expression of the thrifty genotype provides a conceptual framework to connect circadian and circannual rhythms, sleep and metabolism. Experimental studies have shown sleep deprivation to decrease leptin, increase ghrelin, increase appetite, compromise insulin sensitivity and raise blood pressure. Habitually short sleep durations could lead to insulin resistance by increasing sympathetic nervous system activity, raising evening cortisol levels and decreasing cerebral glucose utilization that over time could compromise β-cell function and lead to diabetes. Prolonged short sleep durations could lead to hypertension through raised 24-h blood pressure and increased salt retention resulting in structural adaptations and the entrainment of the cardiovascular system to operate at an elevated pressure equilibrium. Cross-sectional and longitudinal epidemiological studies have shown associations between short sleep duration and obesity, diabetes and hypertension. If metabolic changes resulting from sleep restriction function to increase body weight, insulin resistance and blood pressure then interventions designed to increase the amount and improve the quality of sleep could serve as treatments and as primary preventative measures for metabolic disorders.  相似文献   

8.
9.
Melatonin and sleep in humans   总被引:9,自引:0,他引:9  
Abstract: Early studies on the physiological effects of melatonin typically reported hypnotic 'side-effects'. Later studies, specifically addressing this action, failed to reliably replicate hypnotic effects using standard polysomnography. This difference may be related to differences in the basic physiological action of melatonin compared with more conventional hypnotics. It is suggested that melatonin exerts a hypnotic effect through thermoregulatory mechanisms. By lowering core body temperature, melatonin reduces arousal and increases sleep-propensity. Thus, in humans, one role of melatonin is to transduce the light-dark cycle and define a window-of-opportunity in which sleep-propensity is enhanced. As such, melatonin is likely to be an effective hypnotic agent for sleep disruption associated with elevated temperature due to low circulating melatonin levels. The combined circadian and hypnotic effects of melatonin suggest a synergistic action in the treatment of sleep disorders related to the inappropriate timing of sleep and wakefulness. Adjuvant melatonin may also improve sleep disruption caused by drugs known to alter normal melatonin production (e.g., β-blockers and benzodiazepines). If melatonin is to be developed as a successful clinical treatment, differences between the pharmacological profile following exogenous administration and the normal endogenous rhythm should be minimized. Continued development as a useful clinical tool requires control of both the amplitude and duration of the exogenous melatonin pulse. There is a need to develop novel drug delivery systems that can reliably produce a square-wave pulse of melatonin at physiological levels for 8–10 hr duration.  相似文献   

10.
11.
12.
Circadian oscillations are generated by the purified cyanobacterial clock proteins, KaiA, KaiB, and KaiC, through rhythmic interactions that depend on multisite phosphorylation of KaiC. However, the mechanisms that allow these phosphorylation reactions to robustly control the timing of oscillations over a range of protein stoichiometries are not clear. We show that when KaiC hexamers consist of a mixture of differentially phosphorylated subunits, the two phosphorylation sites have opposing effects on the ability of each hexamer to bind to the negative regulator KaiB. We likewise show that the ability of the positive regulator KaiA to act on KaiC depends on the phosphorylation state of the hexamer and that KaiA and KaiB recognize alternative allosteric states of the KaiC ring. Using mathematical models with kinetic parameters taken from experimental data, we find that antagonism of the two KaiC phosphorylation sites generates an ultrasensitive switch in negative feedback strength necessary for stable circadian oscillations over a range of component concentrations. Similar strategies based on opposing modifications may be used to support robustness in other timing systems and in cellular signaling more generally.Circadian clocks are biological timing systems that allow organisms to anticipate and prepare for daily changes in the environment. A hallmark of a circadian oscillator is its ability to drive self-sustained rhythms in gene expression and behavior with a period close to 24 h, even in the absence of environmental cues (1). A general challenge for the biochemical machinery that generates rhythms is to precisely define the duration of the day in the face of perturbations, including fluctuations in the cellular abundance of the molecular components. The importance of maintaining precise circadian timing is underscored by experiments showing that mismatch between the clock period and the rhythms in the external environment results in health problems and fitness defects (2, 3).Although circadian clocks are found across all kingdoms of life, the Kai oscillator from cyanobacteria presents a uniquely powerful model system to study the design principles inherent in the molecular interactions that generate rhythms. A mixture of the purified proteins KaiA, KaiB, and KaiC results in stable oscillations in the phosphorylation state of KaiC in vitro that persist for many days and share many of the properties of circadian clocks in vivo (46). In particular, the oscillator can successfully generate near–24-h rhythms over a range of concentrations of the clock proteins both in vivo and in vitro (79), so fine-tuning of gene expression is not needed to support a functional clock. Much has been learned about the behavior of the isolated Kai proteins, including the determination of high-resolution crystal structures of all three components (1012). A critical challenge that remains is to understand how the properties of the Kai proteins are integrated together in the full system to generate precisely timed rhythms.KaiC appears to be the central hub of timing information in the oscillator. Each KaiC molecule consists of two AAA+ family ATPase domains that consume the free energy of ATP hydrolysis to drive oscillations. Like many other members of this family, KaiC forms hexamers, and the enzymatic active sites are formed at the subunit interfaces where nucleotides are bound. The C-terminal, or CII, domain of KaiC has additional phosphotransferase activities that are unusual for the AAA+ family: it can phosphorylate and dephosphorylate two residues near the subunit interface, Ser431 and Thr432 (13). KaiC autokinase and autophosphatase activities occur at the same active site (14, 15). In isolation, KaiC has high phosphatase activity, but the enzyme is pushed toward kinase activity by the activator protein KaiA, which interacts directly with the KaiC C-terminal tail (16, 17). Roughly speaking, kinase activity predominates during the day, and phosphatase activity predominates during the night (18). Thus, understanding the feedback mechanisms that generate a precise time delay between these modes is crucial to understanding timing in the oscillator (19).Inactivation of KaiA and a transition from kinase to phosphatase mode occur when KaiB•KaiC complexes form, closing a negative feedback loop by sequestering KaiA in a ternary complex and leaving it unable to act on other KaiC molecules (20, 21). By temporarily removing KaiA molecules from their activating role, this molecular titration mechanism may act to synchronize the activity of all KaiC hexamers in the reaction (20, 22, 23). Phosphorylation and dephosphorylation proceed in a strongly ordered fashion so that in response to a change in KaiA activity, Thr432 is (de)phosphorylated first, followed later by Ser431 (18, 20, 21). It is known that phosphorylated Ser431 is important for allowing the formation of KaiB•KaiC complexes. However, recent work has made it clear that the binding of KaiB involves both KaiC domains—in particular, the slow ATPase activity of the N-terminal CI domain, which is not phosphorylated, is required for KaiB interaction (24, 25).Because of the importance of precisely timing negative feedback via KaiB•KaiC complex formation for generating appropriate rhythms (22), we wanted to understand the role of phosphorylation of the KaiC hexamer in controlling this process. The involvement of both KaiC domains suggests that information about phosphorylation in CII is communicated allosterically through changes in hexamer structure to the CI domain, potentially through ring–ring stacking interactions (24, 26). We therefore hypothesized that the KaiC phosphorylation sites on each subunit might act as allosteric regulators in the context of a hexameric ring so that phosphorylation of one subunit would alter the ability of all other subunits in the ring to engage with KaiA and KaiB, providing a cooperative mechanism to control the timing of these interactions.We conducted a series of biochemical experiments and perturbations to study the effect of altering the status of each phosphorylation site on the KaiC hexamer. To interpret these results, we then developed a mathematical model analogous to classical models of allosteric transitions in multimeric proteins. We constrain the kinetic parameters in this model using experimental measurements of rate constants, allowing us to compare the predictions of the model directly with data. We conclude that maintenance of circadian timing over a range of protein concentrations requires an effectively ultrasensitive switch in each KaiC hexamer from an exclusively KaiA-binding state to a state that can bind to KaiB as phosphorylation proceeds. This effect requires that KaiC hexamers consist of mixtures of differentially phosphorylated subunits, as would be produced by stochastic autophosphorylation of a hexamer. Ultrasensitivity results from opposing effects of phosphorylation on Thr432 and Ser431 in controlling a concerted transition within a given KaiC hexamer. Including this mechanism in the model is necessary to explain the experimentally observed tolerance of the system to altered protein concentrations.  相似文献   

13.
Circadian clock function in Arabidopsis thaliana relies on a complex network of reciprocal regulations among oscillator components. Here, we demonstrate that chromatin remodeling is a prevalent regulatory mechanism at the core of the clock. The peak-to-trough circadian oscillation is paralleled by the sequential accumulation of H3 acetylation (H3K56ac, K9ac), H3K4 trimethylation (H3K4me3), and H3K4me2. Inhibition of acetylation and H3K4me3 abolishes oscillator gene expression, indicating that both marks are essential for gene activation. Mechanistically, blocking H3K4me3 leads to increased clock-repressor binding, suggesting that H3K4me3 functions as a transition mark modulating the progression from activation to repression. The histone methyltransferase SET DOMAIN GROUP 2/ARABIDOPSIS TRITHORAX RELATED 3 (SDG2/ATXR3) might contribute directly or indirectly to this regulation because oscillator gene expression, H3K4me3 accumulation, and repressor binding are altered in plants misexpressing SDG2/ATXR3. Despite divergences in oscillator components, a chromatin-dependent mechanism of clock gene activation appears to be common to both plant and mammal circadian systems.  相似文献   

14.
15.
16.
In humans, the connection between sleep and mood has long been recognized, although direct molecular evidence is lacking. We identified two rare variants in the circadian clock gene PERIOD3 (PER3-P415A/H417R) in humans with familial advanced sleep phase accompanied by higher Beck Depression Inventory and seasonality scores. hPER3-P415A/H417R transgenic mice showed an altered circadian period under constant light and exhibited phase shifts of the sleep-wake cycle in a short light period (photoperiod) paradigm. Molecular characterization revealed that the rare variants destabilized PER3 and failed to stabilize PERIOD1/2 proteins, which play critical roles in circadian timing. Although hPER3-P415A/H417R-Tg mice showed a mild depression-like phenotype, Per3 knockout mice demonstrated consistent depression-like behavior, particularly when studied under a short photoperiod, supporting a possible role for PER3 in mood regulation. These findings suggest that PER3 may be a nexus for sleep and mood regulation while fine-tuning these processes to adapt to seasonal changes.In human populations, alterations in circadian timing can result in mood-related problems (1). An example of this is seasonal affective disorder, also known as “winter depression,” which is among the most common mood disorders, with a reported prevalence of 1.5–9%, depending on latitude (2). In addition, shift work has been suggested as a risk factor for major depressive disorder (3), and depression severity correlates with the degree of circadian misalignment (4, 5). A number of genetic variants in core clock genes have been reported as statistically associated with mood disorders, including seasonal affective disorder and major depressive disorder (614), but to date none has been causally related with an understanding of specific molecular links.Familial advanced sleep phase (FASP) is a human behavioral phenotype defined by early sleep time and early morning awakening (15). We previously identified mutations in core clock genes that cause FASP by linkage analysis/positional cloning (16) and candidate gene sequencing (17, 18). Here we identify two rare missense variants in PER3 (PER3-P415A/H417R) that cause FASP and are associated with elevated Beck Depression Inventory (BDI) and seasonality scores. Transgenic mice carrying human PER3-P415A/H417R exhibit delayed phase in a short photoperiod and a lengthened period of wheel-running rhythms in constant light. At a molecular level, the rare variants lead to decreased PER3 protein levels, likely due to decreased protein stability. Moreover, we found that PER3-P415A/H417R can exert effects on the clock (at least in part) by reducing its stabilizing effect on PER1 and PER2. Although hPER3-P415A/H417R transgenic mice display mild measures of depression-like phenotype, Per3−/− mice exhibit consistent depression-like behaviors in multiple tests. The differences are particularly evident in short photoperiods, implying a role for PER3 in mood regulation. Taken together, these results support a role for PER3 in modulating circadian clock and mood that may be especially critical under conditions of short photoperiod (e.g., during the winter season).  相似文献   

17.
Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal time scales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to act as an evening-specific repressor of light signals to the clock, thus serving a zeitnehmer function. Circadian rhythms were examined in completely dark-grown, or etiolated, null elf3-1 seedlings, with the clock entrained by thermocycles, to evaluate whether the elf3 mutant phenotype was light-dependent. Circadian rhythms were absent from etiolated elf3-1 seedlings after exposure to temperature cycles, and this mutant failed to exhibit classic indicators of entrainment by temperature cues, consistent with global clock dysfunction or strong perturbation of temperature signaling in this background. Warm temperature pulses failed to elicit acute induction of temperature-responsive genes in elf3-1. In fact, warm temperature-responsive genes remained in a constitutively “ON” state because of clock dysfunction and, therefore, were insensitive to temperature signals in the normal time of day-specific manner. These results show ELF3 is broadly required for circadian clock function regardless of light conditions, where ELF3 activity is needed by the core oscillator to allow progression from day to night during either light or temperature entrainment. Furthermore, robust circadian rhythms appear to be a prerequisite for etiolated seedlings to respond correctly to temperature signals.  相似文献   

18.
Physiological significance of a peripheral tissue circadian clock   总被引:1,自引:0,他引:1  
Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest–activity and fasting–feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting–feeding cycle.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号