首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since September 2020, Germany has experienced the first ever outbreak of African swine fever (ASF). The first known cases occurred exclusively in wild boar in forest areas in Brandenburg and Saxony; in July 2021, infected domestic pigs were also confirmed for the first time. As wild boar are considered the main reservoir for the virus in the European region, an effective interruption of this infection chain is essential. In particular, the removal and safe disposal of infected carcasses and the direct disinfection of contaminated, unpaved ground are priorities in this regard. For the disinfection, highly potent as well as environmentally compatible disinfectants must be used, which are neither influenced in their effectiveness by the soil condition nor by increased organic contamination. Thus, in this study, slaked lime, milk of lime and quicklime (1% to 10% solutions) were selected for efficacy testing against the test virus recommended by the German Veterinary Society (DVG), Modified Vaccinia Ankara virus (MVAV), and ASF virus (ASFV) in conjunction with six different forest soils from Saxony in two different soil layers (top soil and mineral soil) each. In summary, 10% of any tested lime type is able to inactivate both MVAV and ASFV under conditions of high organic load and independent of the water content of the soil. At least a 4 log reduction of the virus titer in all tested forest soil types and layers and by all applied lime types was observed. In conclusion, the high efficacy and suitability of all tested lime products against both viruses and in the presence of high organic load in forest soil can be confirmed and will help to control ASF spread.  相似文献   

2.
3.
African swine fever (ASF) is a severe hemorrhagic disease in swine characterized by massive lymphocyte depletion and cell death, with apoptosis and necrosis in infected lymphoid tissues. However, the molecular mechanism regarding ASFV-induced cell death remains largely unknown. In this study, 94 ASFV-encoded proteins were screened to determine the viral proteins involved in cell death in vitro, and pE199L showed the most significant effect. Ectopic expression of pE199L in porcine cells (CRL-2843) and human cells (HEK293T and HeLa cells) induced cell death remarkably, showing obvious shrinking, blistering, apoptotic bodies, and nuclear DNA fragments. Meanwhile, cell death was markedly alleviated when the expression of pE199L was knocked down during ASFV infection. Additionally, the expression of pE199L caused a loss of mitochondrial membrane potential, release of cytochrome C, and caspase-9 and -3/7 activation, indicating that the mitochondrial apoptotic pathway was involved in pE199L-induced apoptosis. Further investigations showed that pE199L interacted with several anti-apoptotic BCL-2 subfamily members (such as BCL-XL, MCL-1, BCL-W, and BCL-2A1) and competed with BAK for BCL-XL, which promoted BAK and BAX activation. Taken together, ASFV pE199L induces the mitochondrial-dependent apoptosis, which may provide clues for a comprehensive understanding of ASFV pathogenesis.  相似文献   

4.
A179L, a non-structural protein of African swine fever virus (ASFV), is capable of suppressing apoptosis by binding the BH3 domain of the pro-apoptotic Bcl-2 family proteins via a conserved ligand binding groove. Our present study aims to determine if A179L affects necroptosis, the second form of programmed cell death induced by DNA and RNA viruses. Here we report that A179L enhanced TNF-α or TSZ (TNF-α, Smac, and Z-Vad)-induced receptor-interacting protein kinase (RIPK1), RIPK3, and mixed lineage kinase domain like peudokinase (MLKL) phosphorylation in L929 cells, a murine fibrosarcoma cell line. Sytox green staining revealed that A179L significantly increased the number of necroptotic cells in TSZ-treated L929 cells. Using human herpes simplex virus 1 (HSV-1) to model DNA virus-induced cell death, we found that A179L blocked the HSV-1-induced cleavage of poly (ADP-ribose) polymerase (PARP), caspase 8, and caspase 3 and decreased the number of apoptotic cells in HSV-1-infected IPEC-DQ cells, a porcine intestinal epithelial cell line. In contrast, A179L transfection of IPEC-DQ cells enhanced HSV-1-induced RIPK1, RIPK3, and MLKL phosphorylation and increased the number of necroptotic cells. Consistently, A179L also suppressed apoptosis but enhanced the necroptosis induced by two RNA viruses, Sendai virus (SeV) and influenza virus (IAV). Our study uncovers a previously unrecognized role of A179L in regulating cell death and suggests that A179L re-directs its anti-apoptotic activity to necroptosis.  相似文献   

5.
African swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed.  相似文献   

6.
African swine fever (ASF) is a highly contagious hemorrhagic disease in domestic pigs and wild boars with a mortality of up to 100%. The causative agent, African swine fever virus (ASFV), is a member of the Asfarviridae family of the nucleocytoplasmic large DNA viruses. The genome size of ASFV ranges from 170 to 194 kb, encoding more than 50 structural and 100 nonstructural proteins. ASFV virions are 260–300 nm in diameter and composed of complex multilayered structures, leading to an intricate internalization pathway to enter host cells. Currently, no commercial vaccines or antivirals are available, due to the insufficient knowledge of the viral receptor(s), the molecular events of ASFV entry into host cells, and the functions of virulence-associated genes. During the early stage of ASFV infection, the fundamental aspects of virus-host interactions, including virus internalization, intracellular transport through the endolysosomal system, and membrane fusion with endosome, are precisely regulated and orchestrated via a series of molecular events. In this review, we summarize the currently available knowledge on the pathways of ASFV entry into host cells and the functions of viral proteins involved in virus entry. Furthermore, we conclude with future perspectives and highlight areas that require further investigation. This review is expected to provide unique insights for further understanding ASFV entry and facilitate the development of vaccines and antivirals.  相似文献   

7.
African swine fever (ASF) is a contagious viral hemorrhagic disease that affects domestic pigs and wild boar. The disease is notifiable to the World Organization of Animal Health (WOAH), and causes significant deaths and economic losses. There is currently no fully licensed vaccine available. As a result, early identification of the causative agent, ASF virus (ASFV), is crucial for the implementation of control measures. PCR and real-time PCR are the WOAH-recommended standard methods for the direct detection of ASFV. However, under special field conditions or in simple or remote field laboratories, there may be no sophisticated equipment or even stable electricity available. Under these circumstances, point-of-care systems can be put in place. Along these lines, a previously published, rapid, reliable, and electricity-free extraction method (TripleE) was used to isolate viral nucleic acid from diagnostic specimens. With this tool, nucleic acid extraction from up to eight diagnostic samples can be realized in one run in less than 10 min. In addition, the possibility of completely omitting viral DNA extraction was analyzed with so-called direct real-time PCR protocols using ASFV original samples diluted to 1:40 in RNase-free water. Furthermore, three real-time PCR cyclers, developed for use under field conditions (IndiField, Liberty16 and UF-300 GenecheckerTM), were comparatively applied for the sensitive high-speed detection of ASFV genomes, with overall PCR run times between 20 and 54 min. Depending on the viral DNA extraction/releasing method used and the point-of-care cycler applied, a total time for detection of 30 to 60 min for up to eight samples was feasible. As expected, the limitations in analytical sensitivity were positively correlated to the analysis time. These limitations are acceptable for ASFV diagnostics due to the expected high ASFV genome loads in diseased animals or carcasses.  相似文献   

8.
African swine fever virus (ASFV) is the causative agent of a deadly disease in pigs and is spread rapidly across borders. Samples collected from suspected cases must be sent to the reference laboratory for diagnosis using polymerase chain reaction (PCR). In this study, we aimed to develop a simple DNA isolation step and real-time recombinase polymerase amplification (RPA) assay for rapid detection of ASFV. RPA assay based on the p72 encoding B646L gene of ASFV was established. The assays limit of detection and cross-reactivity were investigated. Diagnostic performance was examined using 73 blood and serum samples. Two extraction approaches were tested: silica-column-based extraction method and simple non-purification DNA isolation (lysis buffer and heating, 70 °C for 20 min). All results were compared with well-established real-time PCR. In a field deployment during a disease outbreak event in Uganda, 20 whole blood samples were tested. The assay’s analytical sensitivity was 3.5 DNA copies of molecular standard per µL as determined by probit analysis on eight independent assay runs. The ASFV RPA assay only detected ASFV genotypes. Compared to real-time PCR, RPA diagnostic sensitivity and specificity were 100%. Using the heating/lysis buffer extraction procedure, ASFV-RPA revealed better tolerance to inhibitors than real-time PCR (97% and 38% positivity rate, respectively). In Uganda, infected animals were identified before the appearance of fever. The ASFV-RPA assay is shown to be as sensitive and specific as real-time PCR. Moreover, the combination of the simple extraction protocol allows its use at the point of need to improve control measures.  相似文献   

9.
The African swine fever virus (ASFV) is the cause of a recent pandemic that is threatening the global pig industry. The virus infects domestic and wild pigs and manifests with a variety of clinical symptoms, depending on the strain. No commercial vaccine is currently available to protect animals from this virus, but some attenuated and recombinant live vaccine candidates might be effective against the disease. This article describes the immunobiological characteristics of one such candidate—the laboratory-attenuated ASFV strain, Katanga-350—which belongs to genotype I. In this study, we assessed clinical signs and post-mortem changes, the levels of viremia and the presence of viral DNA caused by injection of ASF virus strains Katanga-350, Lisbon-57, and Stavropol 08/01. Intramuscular injection of this strain protected 80% of pigs from a virulent strain of the same genotype and seroimmunotype (Lisbon-57). At least 50% of the surviving pigs received protection from subsequent intramuscular infection with a heterologous (genotype II, seroimmunotype VIII) virulent strain (Stavropol 08/01). Virus-specific antibodies were detectable in serum and saliva samples between 8–78 days after the first inoculation of the Katanga-350 strain (the observational period). The results suggested that this strain could serve as a basis for the development of a recombinant vaccine against ASF viruses belonging to seroimmunotype I.  相似文献   

10.
11.
12.
African swine fever virus (ASFV) produces a lethal disease (ASF) in domestic pigs, which is currently causing a pandemic deteriorating pig production across Eurasia. ASFV is a large and structurally complex virus with a large genome harboring more than 150 genes. ASFV gene QP509L has been shown to encode for an ATP-dependent RNA helicase, which appears to be important for efficient virus replication. Here, we report the development of a recombinant virus, ASFV-G-∆QP509L, having deleted the QP509L gene in the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). It is shown that ASFV-G-∆QP509L replicates in primary swine macrophage cultures as efficiently as the parental virus ASFV-G. In addition, the experimental inoculation of pigs with 102 HAD50 by the intramuscular route produced a slightly protracted but lethal clinical disease when compared to that of animals inoculated with virulent parental ASFV-G. Viremia titers in animals infected with ASFV-G-∆QP509L also had slightly protracted kinetics of presentation. Therefore, ASFV gene QP509L is not critical for the processes of virus replication in swine macrophages, nor is it clearly involved in virus replication and virulence in domestic pigs.  相似文献   

13.
African swine fever is an important viral disease of wild and domestic pigs. To gain further knowledge of the properties of the currently circulating African swine fever virus (ASFV), experimental infections of young pigs (approximately 8 weeks of age) and pregnant sows (infected at about 100 days of gestation) with the genotype II ASFV Georgia/2007 were performed. The inoculated young pigs developed typical clinical signs of the disease and the infection was transmitted (usually within 3–4 days) to all of the “in contact” animals that shared the same pen. Furthermore, typical pathogical lesions for ASFV infection were found at necropsy. Inoculation of pregnant sows with the same virus also produced rapid onset of disease from post-infection day three; two of the three sows died suddenly on post-infection day five, while the third was euthanized on the same day for animal welfare reasons. Following necropsy, the presence of ASFV DNA was detected in tonsils, spleen and lymph nodes of some of the fetuses, but the levels of viral DNA were much lower than in these tissues from the sows. Thus, only limited transplacental transmission occurred during the course of this experiment. These studies contribute towards further understanding about the spread of this important viral disease in domestic pigs.  相似文献   

14.
African swine fever virus (ASFV) causes hemorrhagic fever with mortality rates of up to 100% in domestic pigs. Currently, there are no commercial vaccines for the disease. Only some live-attenuated viruses have been able to protect pigs from ASFV infection. The immune mechanisms involved in the protection are unclear. Immune sera can neutralize ASFV but incompletely. The mechanisms involved are not fully understood. Currently, there is no standardized protocol for ASFV neutralization assays. In this study, a flow cytometry-based ASFV neutralization assay was developed and tested in pig adherent PBMC using a virulent ASFV containing a fluorescent protein gene as a substrate for neutralization. As with previous studies, the percentage of infected macrophages was approximately five time higher than that of infected monocytes, and nearly all infected cells displayed no staining with anti-CD16 antibodies. Sera from naïve pigs and pigs immunized with a live-attenuated ASFV and fully protected against parental virus were used in the assay. The sera displayed incomplete neutralization with MOI-dependent neutralizing efficacies. Extracellular, but not intracellular, virions suspended in naïve serum were more infectious than those in the culture medium, as reported for some enveloped viruses, suggesting a novel mechanism of ASFV infection in macrophages. Both the intracellular and extracellular virions could not be completely neutralized.  相似文献   

15.
African swine fever (ASF) is a frequently lethal disease of domestic and wild swine currently producing a pandemic affecting pig production in Eurasia. The causative agent, ASF virus (ASFV) is a structurally complex virus with a large genome harboring over 150 genes. One of them, E165R, encodes for a protein belonging to the dUTPase family. The fine structure of the purified protein has been recently analyzed and its dUTPase activity tested. In addition, it has been reported that a BA71 mutant virus, adapted to growth in Vero cells, lacking the E165R gene presented a drastic decreased replication in swine macrophages, its natural target cell. Herein, we report the development of a recombinant virus, ASFV-G-∆E165R, harboring the deletion of the E165R gene from the genome of the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). Interestingly, ASFV-G-∆E165R replicates in primary swine macrophage cultures as efficiently as the parental virus ASFV-G. In addition, ASFV-G-∆E165R also replicates in experimentally inoculated domestic pigs with equal efficacy as ASFV-G and produced a lethal disease almost indistinguishable from that induced by the parental virus. Therefore, results presented here clearly demonstrated that E165R gene is not essential or important for ASFV replication in swine macrophages nor disease production in domestic pigs.  相似文献   

16.
17.
African swine fever virus (ASFV) is the etiological agent of a frequently lethal disease, ASF, affecting domestic and wild swine. Currently, ASF is causing a pandemic affecting pig production in Eurasia. There are no vaccines available, and therefore control of the disease is based on culling infected animals. We report here that deletion of the ASFV gene A104R, a virus histone-like protein, from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) strain induces a clear decrease in virus virulence when experimentally inoculated in domestic swine. A recombinant virus lacking the A104R gene, ASFV-G-∆A104R, was developed to assess the role of the A104R gene in disease production in swine. Domestic pigs were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A104R, and compared with animals that received a similar dose of virulent ASFV-G. While all ASFV-G inoculated animals developed a fatal form of the disease, animals receiving ASFV-G-∆A104R survived the challenge, remaining healthy during the 28-day observational period, with the exception of only one showing a protracted but fatal form of the disease. ASFV-G-∆A104R surviving animals presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G, and all of them developed a strong virus-specific antibody response. This is the first report demonstrating that the A104R gene is involved in ASFV virulence in domestic swine, suggesting that A104R deletion may be used to increase the safety profile of currently experimental vaccines.  相似文献   

18.
African swine fever virus (ASFV), causing an OIE-notifiable viral disease of swine, is spreading over the Eurasian continent and threatening the global pig industry. Here, we conducted the first proteome analysis of ASFV-infected primary porcine monocyte-derived macrophages (moMΦ). In parallel to moMΦ isolated from different pigs, the stable porcine cell line WSL-R was infected with a recombinant of ASFV genotype IX strain “Kenya1033”. The outcome of the infections was compared via quantitative mass spectrometry (MS)-based proteome analysis. Major differences with respect to the expression of viral proteins or the host cell response were not observed. However, cell-specific expression of some individual viral proteins did occur. The observed modulations of the host proteome were mainly related to cell characteristics and function. Overall, we conclude that both infection models are suitable for use in the study of ASFV infection in vitro.  相似文献   

19.
African swine fever (ASF) is currently causing an epizootic, affecting pigs throughout Eurasia, and causing significant economic losses in the swine industry. ASF is caused by African swine fever virus (ASFV) that consists of a large dsDNA genome that encodes for more than 160 genes; few of these genes have been studied in detail. ASFV contains four multi-gene family (MGF) groups of genes that have been implicated in regulating the immune response and host specificity; however, the individual roles of most of these genes have not been well studied. Here, we describe the evaluation of the previously uncharacterized ASFV MGF110-1L open reading frame (ORF) using a deletion mutant of the ASFV currently circulating throughout Eurasia. The recombinant ASFV lacking the MGF110-1L gene (ASFV-G-ΔMGF110-1L) demonstrated in vitro that the MGF110-1L gene is non-essential, since ASFV-G-ΔMGF110-1L had similar replication kinetics in primary swine macrophage cell cultures when compared to parental highly virulent field isolate Georgia2007 (ASFV-G). Experimental infection of domestic pigs with ASFV-G-ΔMGF110-1L produced a clinical disease similar to that caused by the parental ASFV-G, confirming that deletion of the MGF110-1L gene from the ASFV genome does not affect viral virulence.  相似文献   

20.
We investigated the possibility that sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks had extended beyond the historically affected northern part of South Africa that was declared a controlled area in 1935 to prevent the spread of infection to the rest of the country. We recently reported finding antibody to the virus in extralimital warthogs in the south of the country, and now describe the detection of infected ticks outside the controlled area. A total of 5078 ticks was collected at 45 locations in 7/9 provinces during 2019–2021 and assayed as 711 pools for virus content by qPCR, while 221 pools were also analysed for tick phylogenetics. Viral nucleic acid was detected in 50 tick pools representing all four members of the Ornithodoros (Ornithodoros) moubata complex known to occur in South Africa: O. (O.) waterbergensis and O. (O.) phacochoerus species yielded ASFV genotypes XX, XXI, XXII at 4 locations and O. (O.) moubata yielded ASFV genotype I at two locations inside the controlled area. Outside the controlled area, O. (O.) moubata and O. (O.) compactus ticks yielded ASFV genotype I at 7 locations, while genotype III ASFV was identified in O. (O.) compactus ticks at a single location. Two of the three species of the O. (O.) savignyi complex ticks known to be present in the country, O. (O.) kalahariensis and O. (O.) noorsveldensis, were collected at single locations and found negative for virus. The only member of the Pavlovskyella subgenus of Ornithodoros ticks known to occur in South Africa, O. (P.) zumpti, was collected from warthog burrows for the first time, in Addo National Park in the Eastern Cape Province where ASFV had never been recorded, and it tested negative for the viral nucleic acid. While it is confirmed that there is sylvatic circulation of ASFV outside the controlled area in South Africa, there is a need for more extensive surveillance and for vector competence studies with various species of Ornithodoros ticks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号