共查询到18条相似文献,搜索用时 15 毫秒
1.
This article presents the results of research on the recycling of non-ferrous metals from PCB scrap using melting in metallic lead. The idea of this process is to dissolve (transfer) metals from PCB scrap in lead, and then liquation them by cooling the lead-metals alloy. PCB scrap was crushed and then melted into liquid lead. The lead after process was then poured into the casting mold and its chemical composition was examined. Among the various metals in the PCB scrap, copper and tin in particular are dissolved in lead. The more scrap dissolved in lead, the higher the concentration of copper and tin in the alloy. The highest obtained concentration of copper in lead were about 2.2 wt.%, and for tin about 0.8 wt.%. 相似文献
2.
Stanisaw Maecki Krzysztof Gargul Marek Warzecha Grzegorz Stradomski Artur Hutny Mateusz Madej Micha Dobrzyski Ryszard Prajsnar Grzegorz Krawiec 《Materials》2021,14(20)
A highly effective method of the processing of steelmaking dust in an arc-resistant furnace has been presented. The aim of the research was to investigate the possibility of processing steelmaking dust in terms of waste minimization and selective recovery of valuable components. For this purpose, an electric arc resistance furnace was used. Granulated steelmaking dust with reducer (coal dust) was the input material. The products of the process are zinc oxide, iron alloy and slag, with properties meeting high ecological requirements. The technology does not generate solid waste. Zinc recovery is over 99% and iron recovery over 98%. The content of heavy metals (Zn + Pb + Cu) in glassy slag is below 0.2%, which ensures very low leachability. 相似文献
3.
Tomasz Skrzekut Andrzej Piotrowicz Piotr Noga Maciej Wdrychowicz Adam W. Bydaek 《Materials》2022,15(11)
Recovery of zinc and manganese from scrapped alkaline batteries were carried out in the following way: leaching in H2SO4 and selective precipitation of zinc and manganese by alkalization/neutralization. As a result of non-selective leaching, 95.6–99.7% Zn was leached and 83.7–99.3% Mn was leached. A critical technological parameter is the liquid/solid treatment (l/s) ratio, which should be at least 20 mL∙g−1. Selective leaching, which allows the leaching of zinc only, takes place with a leaching yield of 84.8–98.5% Zn, with minimal manganese co-leaching, 0.7–12.3%. The optimal H2SO4 concentration is 0.25 mol∙L−1. Precipitation of zinc and manganese from the solution after non-selective leaching, with the use of NaOH at pH = 13, and then with H2SO4 to pH = 9, turned out to be ineffective: the manganese concentrate contained 19.9 wt.% Zn and zinc concentrate, and 21.46 wt.% Mn. Better selectivity results were obtained if zinc was precipitated from the solution after selective leaching: at pH = 6.5, 90% of Zn precipitated, and only 2% manganese. Moreover, the obtained concentrate contained over 90% of ZnO. The precipitation of zinc with sodium phosphate and sodium carbonate is non-selective, despite its relatively high efficiency: up to 93.70% of Zn and 4.48–93.18% of Mn and up to 95.22% of Zn and 19.55–99.71% Mn, respectively for Na3PO4 and Na2CO3. Recovered zinc and manganese compounds could have commercial values with suitable refining processes. 相似文献
4.
Hui Li Yutian Fu Jinglong Liang Chenxiao Li Jing Wang Hongyan Yan Zongying Cai 《Materials》2021,14(22)
With the widespread use of lithium-ion batteries, the cumulative amount of used lithium-ion batteries is also increasing year by year. Since waste lithium-ion batteries contain a large amount of valuable metals, the recovery of valuable metals has become one of the current research hotspots. The research uses electrometallurgical technology, and the main methods used are cyclic voltammetry, square wave voltammetry, chronoamperometry and open circuit potential. The electrochemical reduction behavior of Ni3+ in NaCl-CaCl2 molten salt was studied, and the electrochemical reduction behavior was further verified by using a Mo cavity electrode. It is determined that the reduction process of Ni3+ in LiNiO2 is mainly divided into two steps: LiNiO2 → NiO → Ni. Through the analysis of electrolysis products under different conditions, when the current value of LiNiO2 is not less than 0.03 A, the electrolysis product after 10 h is metallic Ni. When the current reaches 0.07 A, the current efficiency is 77.9%, while the Li+ in LiNiO2 is enriched in NaCl-CaCl2 molten salt. The method realizes the separation and extraction of the valuable metal Ni in the waste lithium-ion battery. 相似文献
5.
Lorena Alcaraz Carlos Díaz-Guerra Joaquín Calbet María Luisa Lpez Flix A. Lpez 《Materials》2022,15(9)
Spent batteries recycling is an important way to obtain low-cost graphite. Nevertheless, the obtaining of crystalline graphite with a rather low density of defects is required for many applications. In the present work, high-quality graphites have been obtained from different kinds of spent batteries. Black masses from spent alkaline batteries (batteries black masses, BBM), and lithium-ion batteries from smartphones (smartphone black masses, SBM) and electric and/or hybrid vehicles (lithium-ion black masses, LBM) were used as starting materials. A hydrometallurgical process was then used to obtain recycled graphites by acidic leaching. Different leaching conditions were used depending on the type of the initial black mass. The final solids were characterized by a wide set of complementary techniques. The performance as Li ion batteries anode of the sample with better structural quality was assessed. 相似文献
6.
Currently, the Brown-Schlesinger process is still regarded as the most common and mature method for the commercial production of sodium borohydride (NaBH4). However, the metallic sodium, currently produced from the electrolysis of molten NaCl that is mass-produced by evaporation of seawater or brine, is probably the most costly raw material. Recently, several reports have demonstrated the feasibility of utilizing green electricity such as offshore wind power to produce metallic sodium through electrolysis of seawater. Based on this concept, we have made improvements and modified our previously proposed life cycle of sodium borohydride (NaBH4) and ammonia borane (NH3BH3), in order to further reduce costs in the conventional Brown-Schlesinger process. In summary, the revision in the concept combining the regeneration of the spent borohydrides and the used catalysts with the green electricity is reflected in (1) that metallic sodium could be produced from NaCl of high purity obtained from the conversion of the byproduct in the synthesis of NH3BH3 to devoid the complicated purification procedures if produced from seawater; and (2) that the recycling and the regeneration processes of the spent NaBH4 and NH3BH3 as well as the used catalysts could be simultaneously carried out and combined with the proposed life cycle of borohydrides. 相似文献
7.
Electronic products are ever growing in popularity, and tantalum capacitors are heavily used in small electronic products. Spent epoxy-coated solid electrolyte tantalum capacitors, containing about 22 wt.% of tantalum and 8 wt.% of manganese, were treated with selective leaching by hydrochloric acid and chlorination after removing the epoxy resin, and the products converted, respectively, to Mn(OH)2 and TaCl5. The effects of acid type, acid concentration, liquid–solid ratio, and reaction time were investigated to dissolve the manganese. The optimal selective leaching conditions were determined as 3 mol/L of HCl, 40 mL/g at 25 °C for 32 min. Next, residues of selective leaching after washing and drying were heated with ferrous chloride to convert to pure TaCl5. Mixing 48 wt.% of chloride and 52 wt.% of residues for a total of 5 g was conducted to complete the chlorination process in the tube furnace at 450 °C for 3 h. A total of 2.35 g of Ta was collected and the recovery of Ta achieved 94%. Finally, Mn(OH)2 and TaCl5 were separated and purified as the products. 相似文献
8.
One of the existing priorities of the European Union is to search for rational waste management and to keep such waste in the economic cycle, while meeting the highest safety requirements. The paper presents the results of environmental tests of composites based on the polyethylene (rPE) and polypropylene (rPP) matrix and reinforced with cellulose fibres (newsprint, NP). Raw materials were obtained by recycling post-consumer waste such as beverage bottles and newsprint. The composites were tested for their potential use as materials in cladding panels and acoustic barriers. Given that normative documents for these products do not define specific environmental requirements, the composites were tested for the release of dangerous substances, such as anions of inorganic compounds, heavy metals, volatile organic compounds (VOCs), and their impact on the environment. A detailed in-depth analysis of the mechanisms of release of substances (diffusion, dissolution, surface leaching and depletion) from the rPP/NP composite into surface water, groundwater and soil was carried out. In turn, emission of VOCs from the rPE (low-density:high-density (LD:HD)—50:50) and rPE (LD:HD—30:70) composites into indoor air was also carried out. Raw materials in the form of granulates and loose cellulose fibres, used to produce the composites, were also tested for their environmental impact. 相似文献
9.
The recovery and reuse of waste printed circuit boards (PCBs) has attracted more and more attention from global researchers, as recycling of waste PCB metals is of great significance to the rational utilization of metal material resources. This study puts forward a clean and economical method in which enhanced gravity separation and wet high-gradient magnetic separation were combined to recover waste PCBs with heat treatment at a temperature of 240 °C. The heat treatment could improve the metal liberation effect of the PCBs, and the thermal behavior was measured by thermogravimetric analysis (TGA). The pyrolysis of the non-metal fraction (NMF) began around 300 °C, and the glass transition temperature of epoxy resin was 135.17 °C. The enhanced gravity separation technique was used for the separation of metals and NMF under the compound force field. The metals grade of the gravity concentrates fraction (GRF) was 82.97% under the optimal conditions, and the metals recovery reached 90.55%. A wet high-gradient magnetic separator was applied to classify the GRF into magnetic (MA) and non-magnetic (NMA) fractions, which could achieve iron and copper enrichment. After the three stages combined process, the copper and iron grades of the NMA and MA fractions were 70.17% and 73.42%, and the recovery reached 74.02% and 78.11%, respectively. 相似文献
10.
Kamila Hyra Pawe M. Nuckowski Joanna Willner Tomasz Suponik Dawid Franke Mirosawa Pawlyta Krzysztof Matus Waldemar Kwany 《Materials》2022,15(13)
The article presents the assessment of solutions and dried residues precipitated from solutions after the bioleaching process of Printed Circuit Boards (PCB) utilizing the Acidithiobacillus ferrooxidans. The obtained dried residues precipitated from bioleaching solution (leachate) and control solution were tested using morphology, phase, and chemical composition analysis, with particular emphasis on the assessment of crystalline and amorphous components. The analysis of the dried residues from leachate after bioleaching as well as those from the sterile control solution demonstrated a difference in the component oxidation—the leachate consisted of mainly amorphous spherical particles in diameter up to 200 nm, forming lacy aggregates. In the specimenform control solution larger particles (up to 500 nm) were observed with a hollow in the middle and crystalline outer part (probably Fe2O3, CuFeS2, and Cu2O). The X-ray diffraction phase analysis revealed that specimen obtained from leachate after bioleaching consisted mainly of an amorphous component and some content of Fe2O3 crystalline phase, while the dried residue from control solution showed more crystalline components. The share of the crystalline and amorphous components can be related to efficiency in dissolving metals during bioleaching. Obtained results of the investigation confirm the activity and participation of the A. ferrooxidans bacteria in the solubilization process of electro-waste components, with their visible degradation–acceleration of the reaction owing to a continuous regeneration of the leaching medium. The performed investigations allowed to characterize the specimen from leachate and showed that the application of complementary cross-check of the micro (SEM and S/TEM) and macro (ICP-OES and XRD) methods are of immense use for complete guidance assessment and obtained valuable data for the next stages of PCBs recycling. 相似文献
11.
As an important secondary zinc resource, large-scale reserves of zinc oxide dust (ZOD) from a wide range of sources is of high comprehensive recycling value. Therefore, an experimental study on ultrasound-enhanced sulfuric acid leaching for zinc extraction from zinc oxide dust was carried out to investigate the effects of various factors such as ultrasonic power, reaction time, sulfuric acid concentration, and liquid–solid ratio on zinc leaching rate. The results show that the zinc leaching rate under ultrasound reached 91.16% at a temperature of 25 °C, ultrasonic power 500 W, sulfuric acid concentration 140 g/L, liquid–solid ratio 5:1, rotating speed 100 r/min, and leaching time 30 min. Compared with the conventional leaching method (leaching rate: 85.36%), the method under ultrasound increased the zinc leaching rate by 5.8%. In a kinetic analysis of the ultrasound-enhanced sulfuric acid leaching of zinc oxide dust, the initial apparent activation energy of the reaction was 6.90 kJ/mol, indicating that the ultrasound-enhanced leaching process was controlled by the mixed solid product layers. Furthermore, the leached residue was characterized by XRD and SEM-EDS, and the results show that, with ultrasonic waves, the encapsulated mineral particles were dissociated, and the dissolution of ZnO was enhanced. Mostly, the zinc in leached residue existed in the forms of ZnFe2O4, Zn2SiO4, and ZnS. 相似文献
12.
This study indicates that a new amine derivative of β-diketone (EDAB-acac) can be successfully used in an acidic medium (HCl) to separate a mixture containing Au(III), Pd(II), and Pt(IV) ions using solvent extraction. The study was conducted in single and ternary model solutions. The impact of acid concentration and the type of solvent (toluene, chloroform, methylene chloride, 2-ethylhexanol) on separation efficiency was discussed. It has been shown that increasing the HCl concentration in the aqueous phase does not favor extraction. In contrast, solvents with high donor numbers (methylene chloride, 2-ethylhexanol) increase both the extraction percentage of Pd and Au as well as the separation coefficients of Pd in relation to Au and Pt. The palladium(II) and gold(III) (which form 4-coordinated planar [MCl4]2− complexes) are extracted most efficiently, Pd(II) (87–93%) and Au(III) (56–62%). The stripping of Au(III), Pd(II), and Pt(IV) ions from the EDAB-acac-methylene chloride phase was also investigated using 0.5 M ammonia aq., mineral acid (5 M HCl, 5 M HNO3), 0.1 M thiourea in HCl and 0.5 M ammonium thiocyanate. A 3-step stripping process was proposed for the recovery of Pd(II), Au(III), and Pt(IV) from the Pd-Au-Pt mixture in the EDAB-acac-methylene chloride system. In the first stage, the aqueous phase is treated with 5 M HNO3 (Pt separation), followed by the application of 0.5 M ammonia (Pd separation) and, finally, 0.1 M thiourea in HCl (Au separation). The solvent extraction with EDAB-acac in acidic medium (HCl) can be used for separation of Pd(II) and Au(III) ions from e-waste leach solutions. 相似文献
13.
Neven Ukrainczyk 《Materials》2021,14(6)
This paper investigates alkali leaching from geopolymers under various concentrations of acetic acid solutions. The effects of the raw metakaolin purity as well as fly ash-based geopolymer mortars and pastes are considered. A new methodology for (acetic) acid attack is proposed, adapting standard approaches, where the concentration of the leached alkali in the exposure solution is measured over time. The applicability of a simple diffusion-based mathematical model to determine the apparent diffusion coefficient (Dapp) for geopolymer pastes and mortars was validated. At the end of the paste tests, microstructural alterations of the specimens’ cross-sections were analyzed microscopically, revealing occurrence of degradation across the outermost surface parts and, especially under acid attack, the formation of long cracks that connect the surface with the intact inner zone. Drastically different Dapp are discussed in terms of the differences in the mix designs, principally resulting in different alkali-binding capacities of the geopolymers, while the acid promoted dissolution and increased porosity. As a result of this interpretation, it was concluded that Dapp is governed mainly by the chemistry of the alkali release from the gel, as it overruled the effects of porosity and cracks. 相似文献
14.
Joanna Klebeko Paula Ossowicz-Rupniewska Anna Nowak Ewa Janus Wiktoria Duchnik Urszula Adamiak-Giera ukasz Kucharski Piotr Prowans Jan Petriczko Norbert Czapla Piotr Bargiel Marta Markowska Adam Klimowicz 《Materials》2021,14(21)
This paper aimed to evaluate the effect of vehicle and chemical modifications of the structure of active compounds on the skin permeation and accumulation of ibuprofen [IBU]. In vitro permeation experiments were performed using human abdominal skin and Strat-M™ membrane. The HPLC method was used for quantitative determinations. The formulations tested were hydrogels containing IBU and its derivatives and commercial gel with ibuprofen. The results obtained indicate that Celugel® had an enhancing effect on the skin penetration of IBU. The average cumulative mass of [IBU] after 24 h permeation test from Celugel® formulation through human skin was over 3 times higher than for the commercial product. Three ibuprofen derivatives containing [ValOiPr][IBU], [ValOPr][IBU], and [ValOBu][IBU] cation were evaluated as chemical penetration enhancers. The cumulative mass after 24 h of penetration was 790.526 ± 41.426, 682.201 ± 29.910, and 684.538 ± 5.599 μg IBU cm−2, respectively, compared to the formulation containing unmodified IBU-429.672 ± 60.151 μg IBU cm−2. This study demonstrates the perspective of the transdermal hydrogel vehicle in conjunction with the modification of the drug as a potential faster drug delivery system. 相似文献
15.
This study defines the optimal parameters that allow the use of waste mollusk shells (WS) to remove heavy metals from three mining and metallurgical leachates. First, the influence of parameters such as pH, contact time, initial metal concentration, adsorbent dose and the presence of co-ions in Cu2+, Cd2+, Zn2+ and Ni2+ adsorption was investigated in synthetic solutions. Metal uptake was found to be dependent on the initial pH of the solution, the removal rate increasing with the increase in pH, showing the highest affinity at pH 5–6. The removal efficiency at lower concentrations was greater than at higher values. The competitive adsorption results on bimetallic solutions showed that the adsorption capacity of the sorbent was restricted by the presence of other ions and suppressed the uptake of heavy metals compared to the single adsorption. Cu2+ was the metal that most inhibited the removal of Cd2+, Zn2+ and Ni2+. The Langmuir isotherm provided the best fit to the experimental data for Cu2+, Cd2+ and Zn2+ and the Freundlich isotherm, for Ni2+. The data showed that the maximum adsorption capacity amax for Zn2+, Cd2+ and Cu2+, was 526.32 mg g−1, 555.56 mg g−1 and 769.23 mg g−1, respectively. Sorption kinetics data best fit the pseudo-second-order kinetic model. The results obtained in the tests with three mining and metallurgical leachates showed that WS were effective in simultaneously removing several heavy metals ions such as Cu, Ni, Zn, Cd, Ni, As and Se. 相似文献
16.
Matilde Almiro Beatriz Marinho Antnio H. S. Delgado Joo Rua Paulo Monteiro Inês Caetano Santos Luís Proena Jos Joo Mendes Marco M. M. Gresnigt 《Materials》2022,15(6)
There is still a lack of consensus concerning the recommended etching concentration, application time and type of silane when bonding lithium disilicate-reinforced glass ceramics manufactured by CAD/CAM. The purpose of this study was thus to conduct an in vitro study which investigates the influence of hydrofluoric acid (HF) concentration, etching time and silane type on the microtensile bond strength (μTBS) of lithium disilicate to resin composites. Thirty-nine IPS e.max CAD blocks were randomly divided between thirteen groups (n = 3). The variables were HF concentration (9.5 or 4.9%), etching time (20 or 60 s) and silane type (Bis-Silane, Monobond Plus and ESPE Sil Silane). The blocks were cut into beams, aged for 10,000 cycles in a thermocycler and submitted to tensile stress to determine μTBS. A control group featuring the Monobond Etch & Prime (MEP) agent that combines etching/silanisation into a simultaneous process was also added. This group was discarded from the analysis due to only having pre-test failures. The data were analysed using a three-way ANOVA (α = 0.05). The HF concentration, etching time and silane type significantly influenced μTBS (p < 0.001). Significant interactions between time and silane type (p = 0.004), HF concentration and silane type (p < 0.001) and among the three factors (p < 0.001) were noted. Etching lithium disilicate with 9.5% HF (60 s), followed by the application of Bis-Silane, resulted in the highest μTBS (16.6 ± 9.0 MPa). The highest concentration and etching time under study, combined with a two-part silane, resulted in the highest bond strength, while the application of MEP showed a complete pre-test failure. 相似文献
17.
Sho Nakakubo Keisuke Kamada Yu Yamashita Junichi Nakamura Munehiro Matsumoto Hiroshi Horii Kazuki Sato Daisuke Morinaga Masaru Suzuki Nanase Okazaki Emi Takakuwa Yoshihiro Matsuno Satoshi Konno 《Internal medicine (Tokyo, Japan)》2022,61(9):1403
We present three cases with an atypical clinical course of organizing pneumonia (OP) secondary to coronavirus disease 2019 (COVID-19). Three patients were discharged with satisfactory improvement after standard steroid therapy for COVID-19. Shortly after the completion of treatment, the patients experienced a flare-up of symptoms. Imaging results showed new lesions in the lungs. Transbronchial lung cryobiopsy showed histological findings consistent with OP in all cases. Steroids were administered, and a good therapeutic response was observed. This report is the first to describe pathologically confirmed OP that developed after recovery from COVID-19. Careful follow-up is advisable for patients who have recovered from COVID-19. 相似文献
18.
Lithium niobate (LiNbO) is known for its high Curie temperature, making it an attractive candidate for high-temperature piezoelectric applications (>200 °C); however, the literature suffers from a paucity of reliable material properties data at high temperatures. This paper therefore provides a complete set of elastic and piezoelectric coefficients, as well as complex dielectric constants and the electrical conductivity, for congruent monocrystalline LiNbO from 25 °C to 900 °C at atmospheric pressure. An inverse approach using the electrochemical impedance spectroscopy (EIS) resonance method was used to determine the materials’ coefficients and constants. Single crystal Y-cut and Z-cut samples were used to estimate the twelve coefficients defining the electromechanical coupling of LiNbO. We employed an analytical model inversion to calculate the coefficients based on a linear superposition of nine different bulk acoustic waves (three longitudinal waves and six shear waves), in addition to considering the thermal expansion of the crystal. The results are reported and compared with those of other studies for which the literature has available values. The dominant piezoelectric stress constant was found to be , which remained virtually constant between 25 °C and 600 °C; thereafter, it decreased by approximately 10% between 600 °C and 900 °C. The elastic stiffness coefficients , , and all decreased as the temperature increased. The two dielectric constants and increased exponentially as a function of temperature. 相似文献