首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial Na(+)-Ca(2+) exchanger (mNCE) mediates efflux of Ca(2+) from mitochondria in exchange for influx of Na(+). We show that inhibition of the mNCE enhances mitochondrial oxidative metabolism and increases glucose-stimulated insulin secretion in rat islets and INS-1 cells. The benzothiazepine CGP37157 inhibited mNCE activity in INS-1 cells (50% inhibition at IC(50) = 1.5 micro mol/l) and increased the glucose-induced rise in mitochondrial Ca(2+) ([Ca(2+)](m)) 2.1 times. Cellular ATP content was increased by 13% in INS-1 cells and by 49% in rat islets by CGP37157 (1 micro mol/l). Krebs cycle flux was also stimulated by CGP37157 when glucose was present. Insulin secretion was increased in a glucose-dependent manner by CGP37157 in both INS-1 cells and islets. In islets, CGP37157 increased insulin secretion dose dependently (half-maximal efficacy at EC(50) = 0.06 micro mol/l) at 8 mmol/l glucose and shifted the glucose dose response curve to the left. In perifused islets, mNCE inhibition had no effect on insulin secretion at 2.8 mmol/l glucose but increased insulin secretion by 46% at 11 mmol/l glucose. The effects of CGP37157 could not be attributed to interactions with the plasma membrane sodium calcium exchanger, L-type calcium channels, ATP-sensitive K(+) channels, or [Ca(2+)](m) uniporter. In hyperglycemic clamp studies of Wistar rats, CGP37157 increased plasma insulin and C-peptide levels only during the hyperglycemic phase of the study. These results illustrate the potential utility of agents that affect mitochondrial metabolism as novel insulin secretagogues.  相似文献   

2.
Glucose metabolism and pulsatile insulin release from isolated islets   总被引:4,自引:0,他引:4  
Westerlund J  Bergsten P 《Diabetes》2001,50(8):1785-1790
The effects of metabolic inhibition on insulin release and the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) were studied in individually perifused pancreatic islets from ob/ob mice. The modest basal secretion in the presence of 3 mmol/l glucose was pulsatile with a frequency of approximately 0.2/min, although [Ca(2+)](i) was stable at approximately 100 nmol/l. Introduction of 11 mmol/l glucose resulted in large amplitude oscillations of [Ca(2+)](i) and almost 20-fold stimulation of average secretion manifested as increased amplitude of the insulin pulses without change in frequency. Inhibition of glycolysis with iodoacetamide or mitochondrial metabolism with dinitrophenol or antimycin A reduced glucose-stimulated secretion back to basal levels with maintained pulsatility. The [Ca(2+)](i) responses to the metabolic inhibitors were more complex, but in general there was an initial peak and eventually sustained elevation without oscillations. When introduced in the presence of 3 mmol/l glucose, the metabolic inhibitors tended to increase the amplitude of the insulin pulses, although the simultaneous elevation in [Ca(2+)](i) occurred without oscillations. The data indicate that pulsatile secretion is regulated by factors other than [Ca(2+)](i) under basal conditions and after metabolic inhibition. Although pulsatile secretion can be driven by oscillations in metabolism when [Ca(2+)](i) is stable, it was not possible from the present data to determine whether insulin pulses have a glycolytic or mitochondrial origin.  相似文献   

3.
Kjems LL  Ravier MA  Jonas JC  Henquin JC 《Diabetes》2002,51(Z1):S177-S182
That oscillations of the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) in beta-cells induce oscillations of insulin secretion is not disputed, but whether metabolism-driven oscillations of secretion can occur in the absence of [Ca(2+)](i) oscillations is still debated. Because this possibility is based partly on the results of experiments using islets from aged, hyperglycemic, hyperinsulinemic ob/ob mice, we compared [Ca(2+)](i) and insulin secretion patterns of single islets from 4- and 10-month-old, normal NMRI mice to those of islets from 7- and 10-month-old ob/ob mice (Swedish colony) and their lean littermates. The responses were subjected to cluster analysis to identify significant peaks. Control experiments without islets and with a constant insulin concentration were run to detect false peaks. Both ob/ob and NMRI islets displayed large synchronous oscillations of [Ca(2+)](i) and insulin secretion in response to repetitive depolarizations with 30 mmol/l K(+) in the presence of 0.1 mmol/l diazoxide and 12 mmol/l glucose. Continuous depolarization with high K(+) steadily elevated [Ca(2+)](i) in all types of islets, with no significant oscillation, and caused a biphasic insulin response. In islets from young (4-month-old) NMRI mice and 7-month-old lean mice, the insulin profile did not show significant peaks when [Ca(2+)](i) was stable. In contrast, two or more peaks were detected over 20 min in the response of most ob/ob islets. Similar insulin peaks appeared in the insulin response of 10-month-old lean and NMRI mice. However, the size of the insulin peaks detected in the presence of stable [Ca(2+)](i) was small, so that no more than 10-13% of total insulin secretion occurred in a pulsatile manner. In conclusion, insulin secretion does not oscillate when [Ca(2+)](i) is stably elevated in beta-cells from young normal mice. Some oscillations are observed in aged mice and are seen more often in ob/ob islets. These fluctuations of the insulin secretion rate at stably elevated [Ca(2+)](i), however, are small compared with the large oscillations induced by [Ca(2+)](i) oscillations in beta-cells.  相似文献   

4.
When fed a high-energy (HE) diet, diabetes-prone (DP) Psammomys obesus develop type 2 diabetes with altered glucose-stimulated insulin secretion (GSIS). Beta-cell stimulus-secretion coupling was investigated in islets isolated from DP P. obesus fed a low-energy (LE) diet (DP-LE) and after 5 days on a HE diet (DP-HE). DP-LE islets cultured overnight in 5 mmol/l glucose displayed glucose dose-dependent increases in NAD(P)H, mitochondrial membrane potential, ATP/(ATP + ADP) ratio, cytosolic calcium concentration ([Ca(2+)](c)), and insulin secretion. In comparison, DP-HE islets cultured overnight in 10 mmol/l glucose were 80% degranulated and displayed an increased sensitivity to glucose at the level of glucose metabolism, [Ca(2+)](c), and insulin secretion. These changes in DP-HE islets were only marginally reversed after culture in 5 mmol/l glucose and were not reproduced in DP-LE islets cultured overnight in 10 mmol/l glucose, except for the 75% degranulation. Diabetes-resistant P. obesus remain normoglycemic on HE diet. Their beta-cell stimulus-secretion coupling was similar to that of DP-LE islets, irrespective of the type of diet. Thus, islets from diabetic P. obesus display an increased sensitivity to glucose at the level of glucose metabolism and a profound beta-cell degranulation, both of which may affect their in vivo GSIS.  相似文献   

5.
In mouse islet grafts under the kidney capsule, the potentiating responsiveness to acetylcholine was markedly attenuated after a few weeks. The question arose as to whether transplanted islets show an decreased responsiveness to potentiators in general. The effect of caffeine on glucose-induced insulin secretion was, therefore, examined. Intrastrain transplantation was performed in NMRI and BALB/c mice, and islet grafts were removed and perifused in vitro after 3 and 12 wk. In grafts from both NMRI and BALB/c mice, 16.7 mmol/L glucose induced a biphasic insulin release. When 1 or 5 mmol/L caffeine was included in the perifusion medium, there was a marked potentiation of the glucose-induced insulin release that was at least as responsiveness as fresh untransplanted islets. In the absence of caffeine, 3-wk-old BALB/c grafts reacted less strongly to acetylcholine than did untransplanted islets. The addition of 1 mmol/L caffeine did not enhance the potentiating effect of acetylcholine, whether in untransplanted or transplanted islets. Rather, the interaction between caffeine and acetylcholine appeared negative. We concluded that the glucose-induced insulin secretion exhibits a diminished potentiatory responsiveness to acetylcholine but not to caffeine. The displacement and denervation of transplanted islets is likely to affect either the cholinergic receptors or their mediated influence on intracellular calcium.  相似文献   

6.
Johnson D  Shepherd RM  Gill D  Gorman T  Smith DM  Dunne MJ 《Diabetes》2007,56(6):1694-1702
Because glucokinase is a metabolic sensor involved in the regulated release of insulin, we have investigated the acute actions of novel glucokinase activator compound 50 (GKA50) on islet function. Insulin secretion was determined by enzyme-linked immunosorbent assay, and microfluorimetry with fura-2 was used to examine intracellular Ca(2+) homeostasis ([Ca(2+)](i)) in isolated mouse, rat, and human islets of Langerhans and in the MIN6 insulin-secreting mouse cell line. In rodent islets and MIN6 cells, 1 micromol/l GKA50 was found to stimulate insulin secretion and raise [Ca(2+)](i) in the presence of glucose (2-10 mmol/l). Similar effects on insulin release were also seen in isolated human islets. GKA50 (1 micromol/l) caused a leftward shift in the glucose-concentration response profiles, and the half-maximal effective concentration (EC(50)) values for glucose were shifted by 3 mmol/l in rat islets and approximately 10 mmol/l in MIN6 cells. There was no significant effect of GKA50 on the maximal rates of glucose-stimulated insulin secretion. In the absence of glucose, GKA50 failed to elevate [Ca(2+)](i) (1 micromol/l GKA50) or to stimulate insulin release (30 nmol/l-10 micromol/l GKA50). At 5 mmol/l glucose, the EC(50) for GKA50 in MIN6 cells was approximately 0.3 micromol/l. Inhibition of glucokinase with mannoheptulose or 5-thioglucose selectively inhibited the action of GKA50 on insulin release but not the effects of tolbutamide. Similarly, 3-methoxyglucose prevented GKA50-induced rises in [Ca(2+)](i) but not the actions of tolbutamide. Finally, the ATP-sensitive K(+) channel agonist diazoxide (200 micromol/l) inhibited GKA50-induced insulin release and its elevation of [Ca(2+)](i.) We show that GKA50 is a glucose-like activator of beta-cell metabolism in rodent and human islets and a Ca(2+)-dependent modulator of insulin secretion.  相似文献   

7.
Henquin JC  Dufrane D  Nenquin M 《Diabetes》2006,55(12):3470-3477
Pancreatic islets were isolated from 16 nondiabetic organ donors and, after culture for approximately 2 days in 5 mmol/l glucose, were perifused to characterize nutrient-induced insulin secretion in human islets. Stepwise increases from 0 to 30 mmol/l glucose (eight 30-min steps) evoked concentration-dependent insulin secretion with a threshold at 3-4 mmol/l glucose, K(m) at 6.5 mmol/l glucose, and V(max) at 15 mmol/l glucose. An increase from 1 to 15 mmol/l glucose induced biphasic insulin secretion with a prominent first phase (peak increase of approximately 18-fold) and a sustained, flat second phase ( approximately 10-fold increase), which were both potentiated by forskolin. The central role of ATP-sensitive K(+) channels in the response to glucose was established by abrogation of insulin secretion by diazoxide and reversible restoration by tolbutamide. Depolarization with tolbutamide or KCl (plus diazoxide) triggered rapid insulin secretion in 1 mmol/l glucose. Subsequent application of 15 mmol/l glucose further increased insulin secretion, showing that the amplifying pathway is operative. In control medium, glutamine alone was ineffective, but its combination with leucine or nonmetabolized 2-amino-bicyclo [2,2,1]-heptane-2-carboxylic acid (BCH) evoked rapid insulin secretion. The effect of BCH was larger in low glucose than in high glucose. In contrast, the insulin secretion response to arginine or a mixture of four amino acids was potentiated by glucose or tolbutamide. Palmitate slightly augmented insulin secretion only at the supraphysiological palmitate-to-albumin ratio of 5. Inosine and membrane-permeant analogs of pyruvate, glutamate, or succinate increased insulin secretion in 3 and 10 mmol/l glucose, whereas lactate and pyruvate had no effect. In conclusion, nutrient-induced insulin secretion in normal human islets is larger than often reported. Its characteristics are globally similar to those of insulin secretion by rodent islets, with both triggering and amplifying pathways. The pattern of the biphasic response to glucose is superimposable on that in mouse islets, but the concentration-response curve is shifted to the left, and various nutrients, in particular amino acids, influence insulin secretion within the physiological range of glucose concentrations.  相似文献   

8.
Björklund A  Lansner A  Grill VE 《Diabetes》2000,49(11):1840-1848
Chronic hyperglycemia desensitizes beta-cells to glucose. To further define the mechanisms behind desensitization and the role of overstimulation, we tested human pancreatic islets for the effects of long-term elevated glucose levels on cytoplasmic free Ca2+ concentration ([Ca2+]i) and its relationship to overstimulation. Islets were cultured for 48 h with 5.5 or 27 mmol/l glucose. Culture with 27 mmol/l glucose obliterated postculture insulin responses to 27 mmol/l glucose. This desensitization was specific for glucose versus arginine. Desensitization was accompanied by three major [Ca2+]i abnormalities: 1) elevated basal [Ca2+]i, 2) loss of a glucose-induced rise in [Ca2+]i, and 3) perturbations of oscillatory activity with a decrease in glucose-induced slow oscillations (0.2-0.5 min(-1)). Coculture with 0.3 mmol/l diazoxide was performed to probe the role of overstimulation. Neither glucose nor diazoxide affected islet glucose utilization or oxidation. Coculture with diazoxide and 27 mmol/l glucose significantly (P < 0.05) restored postculture insulin responses to glucose and lowered basal [Ca2+]i and normalized glucose-induced oscillatory activity. However, diazoxide completely failed to revive an increase in [Ca2+]i during postculture glucose stimulation. In conclusion, desensitization of glucose-induced insulin secretion in human pancreatic islets is induced in parallel with major glucose-specific [Ca2+]i abnormalities. Overstimulation is an important but not exclusive factor behind [Ca2+]i abnormalities.  相似文献   

9.
Rapid and sustained stimulation of beta-cells with glucose induces biphasic insulin secretion. The two phases appear to reflect a characteristic of stimulus-secretion coupling in each beta-cell rather than heterogeneity in the time-course of the response between beta-cells or islets. There is no evidence indicating that biphasic secretion can be attributed to an intrinsically biphasic metabolic signal. In contrast, the biphasic rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) induced by glucose is important to shape the two phases of secretion. The first phase requires a rapid and marked elevation of [Ca(2+)](i) and corresponds to the release of insulin granules from a limited pool. The magnitude of the second phase is determined by the elevation of [Ca(2+)](i), but its development requires production of another signal. This signal corresponds to the amplifying action of glucose and may serve to replenish the pool of granules that are releasable at the prevailing [Ca(2+)](i). The species characteristics of biphasic insulin secretion and its perturbations in pathological situations are discussed.  相似文献   

10.
Two sarcoendoplasmic reticulum Ca(2+)-ATPases, SERCA3 and SERCA2b, are expressed in pancreatic islets. Immunocytochemistry showed that SERCA3 is restricted to beta-cells in the mouse pancreas. Control and SERCA3-deficient mice were used to evaluate the role of SERCA3 in beta-cell cytosolic-free Ca(2+) concentration ([Ca(2+)](c)) regulation, insulin secretion, and glucose homeostasis. Basal [Ca(2+)](c) was not increased by SERCA3 ablation. Stimulation with glucose induced a transient drop in basal [Ca(2+)](c) that was suppressed by inhibition of all SERCAs with thapsigargin (TG) but unaffected by selective SERCA3 ablation. Ca(2+) mobilization by acetylcholine was normal in SERCA3-deficient beta-cells. In contrast, [Ca(2+)](c) oscillations resulting from intermittent glucose-stimulated Ca(2+) influx and [Ca(2+)](c) transients induced by pulses of high K(+) were similarly affected by SERCA3 ablation or TG pretreatment of control islets; their amplitude was increased and their slow descending phase suppressed. This suggests that, during the decay of each oscillation, the endoplasmic reticulum releases Ca(2+) that was pumped by SERCA3 during the upstroke phase. SERCA3 ablation increased the insulin response of islets to 15 mmol/l glucose. However, basal and postprandial plasma glucose and insulin concentrations in SERCA3-deficient mice were normal. In conclusion, SERCA2b, but not SERCA3, is involved in basal [Ca(2+)](c) regulation in beta-cells. SERCA3 becomes operative when [Ca(2+)](c) rises and is required for normal [Ca(2+)](c) oscillations in response to glucose. However, a lack of SERCA3 is insufficient in itself to alter glucose homeostasis or impair insulin secretion in mice.  相似文献   

11.
Increased beta-cell sensitivity to glucose precedes the loss of glucose-induced insulin secretion in diabetic animals. Changes at the level of beta-cell glucose sensor have been described in these situations, but it is not clear whether they fully account for the increased insulin secretion. Using a euglycemic-normolipidemic 60% pancreatectomized (60%-Px) mouse model, we have studied the ionic mechanisms responsible for increased beta-cell glucose sensitivity. Two weeks after Px (Px14 group), Px mice maintained normoglycemia with a reduced beta-cell mass (0.88 +/- 0.18 mg) compared with control mice (1.41 +/- 0.21 mg). At this stage, the dose-response curve for glucose-induced insulin release showed a significant displacement to the left (P < 0.001). Islets from the Px14 group showed oscillatory electrical activity and cytosolic Ca2+ ([Ca2+]i) oscillations in response to glucose concentrations of 5.6 mmol/l compared with islets from the control group at 11.1 mmol/l. All the above changes were fully reversible both in vitro (after 48-h culture of islets from the Px14 group) and in vivo (after regeneration of beta-cell mass in islets studied 60 days after Px). No significant differences in the input resistance and ATP inhibition of ATP-sensitive K+ (K(ATP)) channels were found between beta-cells from the Px14 and control groups. The dose-response curve for glucose-induced MTT (C,N-diphenyl-N'-4,5-dimethyl thiazol 2 yl tetrazolium bromide) reduction showed a significant displacement to the left in islets from the Px14 group (P < 0.001). These results indicate that increased glucose sensitivity in terms of insulin secretion and Ca2+ signaling was not due to intrinsic modifications of K(ATP) channel properties, and suggest that the changes are most likely to be found in the glucose metabolism.  相似文献   

12.
1-Cells from rodents and humans express different receptors recognizing hormones of the secretin-glucagon family, which--when activated--synergize with glucose in the control of insulin release. We have recently reported that isolated islets from mice homozygous for a GLP-1 receptor null mutation (GLP-1R(-/-)) exhibit a well-preserved insulin-secretory response to glucose. This observation can be interpreted in two different ways: 1) the presence of GLP-1R is not essential for the secretory response of isolated islets to glucose alone; 2) beta-cells in GLP-1R(-/-) pancreases underwent compensatory changes in response to the null mutation. To explore these possibilities, we studied islets from control GLP-IR(+/+) mice in the absence or presence of 1 pmol/l exendin (9-39)amide, a specific and potent GLP-1R antagonist. Exendin (9-39)amide (15-min exposure) reduced glucose-induced insulin secretion from both perifused and statically incubated GLP-1R(+/+) islets by 50% (P < 0.05), and reduced islet cAMP production in parallel (P < 0.001). Furthermore, GLP-1R(-/-) islets exhibited: 1) reduced cAMP accumulation in the presence of 20 mmol/l glucose (knockout islets versus control islets, 12 +/- 1 vs. 27 +/- 3 fmol x islet(-1) x 15 min(-1); P < 0.001) and exaggerated acceleration of cAMP production by 10 nmol/l glucose-dependent insulinotropic peptide (GIP) (increase over 20 mmol/l glucose by GIP in knockout islets versus control islets: 66 +/- 5 vs. 14 +/- 3 fmol x islet(-1) x 15 min(-1); P < 0.001); 2) increased mean cytosolic [Ca2+] ([Ca2+]c) at 7, 10, and 15 mmol/l glucose in knockout islets versus control islets; and 3) signs of asynchrony of [Ca2+]c oscillations between different islet subregions. In conclusion, disruption of GLP-1R signaling is associated with reduced basal but enhanced GIP-stimulated cAMP production and abnormalities in basal and glucose-stimulated [Ca2+]c. These abnormalities suggest that GLP-1R signaling is an essential upstream component of multiple beta-cell signaling pathways.  相似文献   

13.
Hope KM  Tran PO  Zhou H  Oseid E  Leroy E  Robertson RP 《Diabetes》2004,53(6):1488-1495
The "switch-off" hypothesis to explain beta-cell regulation of alpha-cell function during hypoglycemia has not been assessed previously in isolated islets, largely because they characteristically do not respond to glucose deprivation by secreting glucagon. We examined this hypothesis using normal human and Wistar rat islets, as well as islets from streptozotocin (STZ)-administered beta-cell-deficient Wistar rats. As expected, islets perifused with glucose and 3-isobutryl-1-methylxanthine did not respond to glucose deprivation by increasing glucagon secretion. However, if normal rat islets were first perifused with 16.7 mmol/l glucose to increase endogenous insulin secretion, followed by discontinuation of the glucose perifusate, a glucagon response to glucose deprivation was observed (peak change within 10 min after switch off = 61 +/- 15 pg/ml [mean +/- SE], n = 6, P < 0.01). A glucagon response from normal human islets using the same experimental design was also observed. A glucagon response (peak change within 7 min after switch off = 31 +/- 1 pg/ml, n = 3, P < 0.01) was observed from beta-cell-depleted, STZ-induced diabetic rats whose islets still secreted small amounts of insulin. However, when these islets were first perifused with both exogenous insulin and 16.7 mmol/l glucose, followed by switching off both the insulin and glucose perifusate, a significantly larger (P < 0.05) glucagon response was observed (peak change within 7 min after switch off = 71 +/- 11 pg/ml, n = 4, P < 0.01). This response was not observed if the insulin perifusion was not switched off when the islets were deprived of glucose or when insulin was switched off without glucose deprivation. These data uniquely demonstrate that both normal, isolated islets and islets from STZ-administered rats can respond to glucose deprivation by releasing glucagon if they are first provided with increased endogenous or exogenous insulin. These results fully support the beta-cell switch-off hypothesis as a key mechanism for the alpha-cell response to hypoglycemia.  相似文献   

14.
Gilon P  Ravier MA  Jonas JC  Henquin JC 《Diabetes》2002,51(Z1):S144-S151
The mechanisms driving the pulsatility of insulin secretion in vivo and in vitro are still unclear. Because glucose metabolism and changes in cytosolic free Ca(2+) ([Ca(2+)](c)) in beta-cells play a key role in the control of insulin secretion, and because oscillations of these two factors have been observed in single isolated islets and beta-cells, pulsatile insulin secretion could theoretically result from [Ca(2+)](c) or metabolism oscillations. We could not detect metabolic oscillations independent from [Ca(2+)](c) changes in beta-cells, and imposed metabolic oscillations were poorly effective in inducing oscillations of secretion when [Ca(2+)](c) was kept stable, which suggests that metabolic oscillations are not the direct regulator of the oscillations of secretion. By contrast, tight temporal and quantitative correlations between the changes in [Ca(2+)](c) and insulin release strongly suggest that [Ca(2+)](c) oscillations are the direct drivers of insulin secretion oscillations. Metabolism may play a dual role, inducing [Ca(2+)](c) oscillations (via changes in ATP-sensitive K(+) channel activity and membrane potential) and amplifying the secretory response by increasing the efficiency of Ca(2+) on exocytosis. The mechanisms underlying the oscillations of insulin secretion by the isolated pancreas and those observed in vivo remain elusive. It is not known how the functioning of distinct islets is synchronized, and the possible role of intrapancreatic ganglia in this synchronization requires confirmation. That pulsatile insulin secretion is beneficial in vivo, by preventing insulin resistance, is suggested by the greater hypoglycemic effect of exogenous insulin when it is infused in a pulsatile rather than continuous manner. The observation that type 2 diabetic patients have impaired pulsatile insulin secretion has prompted the suggestion that such dysregulation contributes to the disease and justifies the efforts toward understanding of the mechanism underlying the pulsatility of insulin secretion both in vitro and in vivo.  相似文献   

15.
Bleck C  Wienbergen A  Rustenbeck I 《Diabetes》2004,53(Z3):S135-S139
The glucose dependence of the insulinotropic action of KATP channel-blocking imidazoline compounds was investigated. Administration of 100 micromol/l phentolamine, but not 100 micromol/l efaroxan, markedly increased insulin secretion of freshly isolated mouse islets when the perifusion medium contained 5 mmol/l glucose. When the glucose concentration was raised to 10 mmol/l in the continued presence of either imidazoline, a clear potentiation of secretion occurred as compared with 10 mmol/l glucose alone. In the presence of efaroxan, a brisk first-phase-like increase was followed by a sustained phase, whereas a more gradual increase resulted in the presence of phentolamine. Administration of 100 micromol/l phentolamine was somewhat more effective than 100 micromol/l efaroxan to inhibit KATP channel activity in intact cultured beta-cells (reduction by 96 vs. 83%). Both compounds were similarly effective to depolarize the beta-cells. When measured by the perforated patch-technique, the depolarization by efaroxan was often oscillatory, whereas that by phentolamine was sustained. In perifused cultured islets, both compounds increased the cytosolic calcium concentration ([Ca2+]c) in the presence of 5 and 10 mmol/l glucose. Efaroxan induced large amplitude oscillations of [Ca2+]c, whereas phentolamine induced a sustained increase. It appears that a KATP channel block by imidazolines is not incompatible with a glucose-selective enhancement of insulin secretion. The glucose selectivity of efaroxan may involve an inhibitory effect distal to [Ca2+]c increase and/or the generation of [Ca2+]c oscillations.  相似文献   

16.
Autoantibodies against CD38 (adenosine-5'-diphosphate[ADP]-ribosyl cyclase/cyclic ADP-ribose hydrolase) have been described in 10-12% of patients with type 2 diabetes. In human islets, anti-CD38 autoantibodies (CD38Abs) acutely stimulate insulin release (IR) and increase the cytosolic calcium concentration ([Ca(2+)](i)). Whether CD38Abs affect human islet cell function and survival upon prolonged in vitro exposure is not known. We cultured human islets for up to 7 days in the presence of sera from 10 patients with type 2 diabetes that had neither CD38Ab- nor [Ca(2+)](i)-mobilizing activity (-/-), sera from 6 patients with type 2 diabetes that was CD38Ab-positive and had [Ca(2+)](i)-mobilizing activity (+/+), or no sera (control). At baseline, +/+ sera caused a significant (P < 0.002) acute stimulation of IR (IR at 3.3 mmol/l glucose was 45 +/- 19, 84 +/- 24, and 34 +/- 12 micro U/ml in control, +/+, and -/- sera, respectively; the corresponding IR at 16.7 mmol/l glucose was 72 +/- 25, 204 +/- 56, and 80 +/- 32 micro U/ml). At 3 days, IR at 3.3 mmol/l glucose was 42 +/- 18, 27 +/- 11, and 43 +/- 24 micro U/ml (P = 0.0003) for control, +/+, and -/- sera, respectively, whereas at 16.7 mmol/l glucose, it was 95 +/- 76, 45 +/- 35, and 76 +/- 42 micro U/ml, respectively. After 7 days of exposure, the corresponding IR at 3.3 mmol/l glucose was 40 +/- 11, 28 +/- 12, and 35 +/- 15 micro U/ml, respectively, whereas at 16.7 mmol/l glucose it was 79 +/- 39, 39 +/- 17, and 62 +/- 39 micro U/ml. At both 3 and 7 days, IR still increased when switching from 3.3 to 16.7 mmol/l glucose (P < 0.0003), and incubation with +/+ sera induced a significant decrease in the insulin response (P < 0.002). At 7 days, the number of dead cells (as evaluated by an enzyme-linked immunosorbent assay technique) differed significantly between control (1.2 +/- 0.3 OD units) cells, islets exposed to -/- sera (1.4 +/- 0.1), and islets coincubated with +/+ sera (1.9 +/- 0.4, P < 0.01). We conclude that prolonged exposure of human islets to sera positive for the presence of CD38Abs with [Ca(2+)](i)-mobilizing activity impairs beta-cell function and viability in cultured human pancreatic islets.  相似文献   

17.
Ling ZC  Hong-Lie C  Ostenson CG  Efendic S  Khan A 《Diabetes》2001,50(Z1):S108-S112
Insulin secretion and glucose metabolism were compared in pancreatic islets from type 2 diabetic GK rats treated with phlorizin or vehicle. Treatment of control and GK rats with phlorizin for 30 days did not affect body weight, islet glucose utilization, or islet glucose oxidation. In phlorizin-treated GK rats, glucose-induced insulin release was about twofold higher at 11.0 and 16.7 mmol/l glucose compared with vehicle, treated GK rats, whereas phlorizin had no effect on control Wistar rats. However, also in phlorizin-treated GK rats, the amount of insulin released by the islets was significantly less than that from control rats (5.29+/-0.33 vs. 7.50+/-1.31 pmol x min(-1) islet(-1) at 16.7 mmol/l glucose; P<0.001). Islet glucose-6-phosphatase activity was significantly higher in GK rats than in control rats; phlorizin treatment significantly decreased this activity. These findings demonstrate that hyperglycemia per se constitutes an important factor for impaired insulin release in GK rats. Correction of hyperglycemia normalizes islet glucose-6-phosphatase activity, which may be an underlying factor for the partial improvement of glucose-induced insulin release.  相似文献   

18.
Human pancreatic islets from eight donors were incubated for 48 h in the presence of 2.0 mmol/l free fatty acid (FFA) (oleate to palmitate, 2 to 1). Insulin secretion was then assessed in response to glucose (16.7 mmol/l), arginine (20 mmol/l), and glyburide (200 micromol/l) during static incubation or by perifusion. Glucose oxidation and utilization and intra-islet triglyceride content were measured. The effect of metformin (2.4 microg/ml) was studied because it protects rat islets from lipotoxicity. Glucose-stimulated but not arginine- or glyburide-stimulated insulin release was significantly lower from FFA-exposed islets. Impairment of insulin secretion after exposure to FFAs was mainly accounted for by defective early-phase release. In control islets, increasing glucose concentration was associated with an increase in glucose utilization and oxidation. FFA incubation reduced both glucose utilization and oxidation at maximal glucose concentration. Islet triglyceride content increased significantly after FFA exposure. Addition of metformin to high-FFA media prevented impairment in glucose-mediated insulin release, decline of first-phase insulin secretion, and reduction of glucose utilization and oxidation without significantly affecting islet triglyceride accumulation. These results show that lipotoxicity in human islets is characterized by selective loss of glucose responsiveness and impaired glucose metabolism, with a clear defect in early-phase insulin release. Metformin prevents these deleterious effects, supporting a direct protective action on human beta-cells.  相似文献   

19.
Glucose augments Ca2+-stimulated insulin release from the pancreatic beta-cell in an ATP-sensitive K+ channel (K(ATP) channel)-independent manner. In studying the mechanisms underlying this action, we used rat pancreatic islets and examined the effects of exogenous free fatty acids (FFAs), which are precursors of long-chain acyl-CoA (LC-CoA), on KCl-induced Ca2+-stimulated insulin release. Myristate, palmitate, and stearate augmented insulin release induced by 50 mmol/l KCl in the presence of 2.8 mmol/l glucose. Added acutely, their potency was weak compared with that of glucose-induced augmentation. The FFA-induced augmentation became much greater, however, when islets were preincubated with FFAs under stringent Ca2+-free conditions (with 1 mmol/l EGTA) before the KCl stimulation. Under these conditions, 16.7 mmol/l glucose augmented 13-fold insulin release induced by 50 mmol/l KCl, whereas palmitate or myristate (both at a free concentration of 10 micromol/l) produced 5.8- and 5.2-fold augmentations. Effects of FFAs and glucose were concentration-dependent. The temporal profiles of augmentation induced by 11.1 mmol/l glucose and 10 micromol/l palmitate were similar. Glucose and palmitate caused almost identical augmentation patterns for the initial 10 min of stimulation; subsequently, glucose augmentation was better sustained than palmitate augmentation. This suggests the existence of a longer-term glucose-specific signaling moiety that cannot be mimicked by FFAs. Our results provide direct evidence that FFAs can mimic the K(ATP) channel-independent action of glucose. Taking these results together with previous results, we conclude that glucose augments Ca2+-stimulated insulin release, at least in part, by increasing malonyl-CoA and cytosolic LC-CoA. However, one or more other glucose-specific signaling molecules are required for the full expression of augmentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号