首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The duration of the calcium component of the action potential (APD) of dorsal root ganglion (DRG) neurons in mouse spinal cord-ganglion explants has been shown to be dually modulated via excitatory and inhibitory opioid receptors. In order to determine if opioid-induced APD prolongation is modulated by receptors that are positively coupled to the adenylate cyclase (AC)/cyclic AMP second messenger system, whole-cell recordings were made from mouse DRG neurons grown in dissociated cell cultures. Tests for opioid responsivity were carried out after intracellular dialysis of an inhibitor of cAMP-dependent protein kinase (PKI). In control recordings, both DADLE-induced APD prolongation as well as shortening were prevented by co-perfusion with the opioid antagonist, diprenorphine (10 nM). Intracellular dialysis of PKI in these neurons completely blocked opioid-induced APD prolongation but did not attenuate APD shortening generally elicited by higher opioid concentrations. Bath perfusion of 10 nM DADLE elicited APD prolongation in 59% of the DRG neurons (n = 34) tested with control solution in the recording pipette, whereas none showed APD prolongation when the pipette contained PKI (n = 18). In control tests with 1 microM DADLE, the APD was prolonged in 37% of the cells and shortened in 26% (n = 19); in contrast, a matched group of PKI-treated cells showed no APD prolongation, whereas 42% showed APD shortening (n = 26). The results support the hypothesis that opioid-induced APD prolongation in DRG neurons is mediated by opioid receptor subtypes that are positively coupled via Gs to AC/cAMP-dependent voltage-sensitive ionic conductances.  相似文献   

2.
K.-F. Shen  S.M. Crain   《Brain research》1990,525(2):225-231
Our previous studies indicated that opioid-induced prolongation of the Ca2+ component of the action potential duration (APD) in dorsal root ganglion (DRG) neurons is mediated by excitatory opioid receptors that are coupled to cyclic AMP-dependent voltage-sensitive ionic conductances. In the present study, DRG neurons were treated with cholera toxin (CTX), or with the A subunit of CTX, in order to determine if these excitatory opioid receptors are positively coupled via the GTP-binding protein Gs to the adenylate cyclase/cyclic AMP system. In contrast, inhibitory opioid receptors have been shown to be linked to pertussis toxin-sensitive Gi/Go regulatory proteins that mediate APD shortening responses. After pretreatment of DRG-spinal cord explants with remarkably low concentrations of CTX-A (1 pg/ml-1 ng/ml; greater than 15 min) or whole toxin (1 pg/ml-1 microgram/ml) the APD prolongation elicited in DRG neurons by 1-10 nM delta/mu (DADLE) or kappa (U-50,488H) opioids was blocked (29 out of 30 cells), whereas APD shortening by microM opioid concentrations was unaffected. Opioid-induced APD prolongation was blocked even when the initial treatment with CTX or CTX-A alone did not prolong the APD. The blocking effects of CTX and CTX-A were reversed in tests made 2 h after return to control medium. The mechanisms underlying the unusually potent blocking effects of CTX and CTX-A on opioid excitatory modulation of the APD of DRG neurons require correlative biochemical analyses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Mouse sensory dorsal-root ganglion (DRG) neurons chronically exposed to 1 microM D-Ala2-D-Leu5-enkephalin (DADLE) for greater than 1 week in culture become tolerant to opioid inhibitory effects, i.e. shortening of the duration of the calcium-dependent component of the action potential (APD). Acute application of higher concentrations of DADLE (ca. 10 microM) to these treated neurons not only fails to shorten the APD but, instead, generally elicits excitatory effects, i.e. prolongation of the APD. The present study shows that chronic DADLE- or morphine-treated DRG neurons also become supersensitive to the excitatory effects of opioids. Whereas nM concentrations of dynorphin(1-13) are generally required to prolong the APD of naive DRG neurons, fM levels become effective after chronic opioid treatment. Whereas 1-30 nM naloxone or diprenorphine do not alter the APD of naive DRG neurons, both opioid antagonists unexpectedly prolong the APD of most of the treated cells. Similar supersensitivity to the excitatory effects of opioid agonists and antagonists was previously observed after acute treatment of naive DRG neurons with GM1 ganglioside. Our results suggest that both chronic opioid and acute GM1 treatments of DRG neurons greatly enhance the efficacy of opioid excitatory receptor functions so that even the extremely weak agonist properties of naloxone and diprenorphine become effective in prolonging the APD of these treated cells when tested at low concentrations, whereas their antagonist properties at inhibitory opioid receptors do not appear to be altered. Furthermore, whereas cholera toxin-B subunit (CTX-B; 1-10 nM) blocks opioid-induced APD prolongation in naive DRG neurons (presumably by interfering with endogenous GM1 modulation of excitatory opioid receptors functions), even much higher concentrations of CTX-B were ineffective in chronic opioid-treated as well as acute GM1-elevated neurons. These and related data suggest that opioid excitatory supersensitivity in chronic opioid-treated DRG neurons may be due to a cyclic AMP-dependent increase in GM1 ganglioside levels. Our results may clarify mechanisms of opioid dependence and the paradoxical supersensitivity to naloxone which triggers withdrawal symptoms after opiate addiction.  相似文献   

4.
We previously showed that mouse sensory dorsal root ganglion (DRG) neurons chronically exposed to 1 microM D-ala2-D-leu5-enkephalin (DADLE) or morphine for > 2-3 days in culture become tolerant to the usual opioid inhibitory receptor-mediated effects, i.e. shortening of the duration of the calcium-dependent component of the action potential (APD), and supersensitive to opioid excitatory APD-prolonging effects elicited by low opioid concentrations. Whereas nanomolar concentrations of dynorphin(1-13) or morphine are generally required to prolong the APD of naive DRG neurons (by activating excitatory opioid receptors), femtomolar levels become effective after chronic opioid treatment. Whereas 1-30 nM naloxone or diprenorphine prevent both excitatory and inhibitory opioid effects but do not alter the APD of native DRG neurons, both opioid antagonists unexpectedly prolong the APD of most of the chronic opioid-treated cells. In the present study, chronic exposure of DRG neurons to 1 microM DADLE together with cholera toxin-B subunit (which selectively blocks GM1 ganglioside-regulated opioid excitatory, but not inhibitory, receptor functions) prevented the development of opioid excitatory supersensitivity and markedly attenuated tolerance to opioid inhibitory effects. Conversely, sustained exposure of DRG neurons to 1 nM DADLE, which selectively activates excitatory opioid receptor functions, resulted in characteristic opioid excitatory supersensitivity but no tolerance. These results suggest that 'dependence'-like properties can be induced in chronic opioid-treated sensory neurons in the absence of tolerance. On the other hand, development of some components of tolerance in these cells may require sustained activation of both excitatory, as well as inhibitory, opioid receptor functions.  相似文献   

5.
Intracellular recordings were made from neurons of the dorsomotor vagal nucleus (DMV) in slices of rat medulla oblongata. [D-Ala2, D-Leu5]-enkephalin (DADLE), applied by perfusion (0.01-3 microM) or droplets, dose-dependently hyperpolarized 85% of the DMV neurons tested. The hyperpolarization, associated with a decrease in membrane resistance, persisted after elimination of synaptic activity by perfusion with Ca2(+)-free/high-Mg2+ solution or with 1 microM TTX solution. The opioid antagonist, naloxone, reversibly inhibited DADLE-induced hyperpolarization. The hyperpolarization depended on extracellular K+ concentration and reversed at about -90 mV. DADLE also decreased Ca2(+)-dependent spike duration and after-hyperpolarization (AHP). DAGO (a selective mu-receptor agonist), but not DPLPE (a selective delta-receptor agonist), mimicked DADLE's effects on membrane potential, Ca2(+)-dependent spike duration, and AHP. It is concluded that DADLE, through postsynaptic mu-type opioid receptors, hyperpolarized DMV neurons by increasing K+ conductance, which may have an inhibitory effect on DMV output. DADLE-induced decrease of spike duration and AHP was also mediated by mu-receptors and could have additional effects on functions of the DMV neuron by virtue of reduction in Ca2+ entry.  相似文献   

6.
In previous studies, we showed that low (nM) concentrations of opioid prolong the action potential duration (APD) of many mouse dorsal root ganglion (DRG) neurons via Gs-linked excitatory opioid receptors, whereas micromolar opioid levels shorten the APD via Gi/Go-linked inhibitory receptors. In addition, cholera toxin-B subunit (CTX-B) selectively blocks opioid- but not forskolin-induced prolongation of the APD in DRG neurons. Since CTX-B binds with selective high affinity to GM1 ganglioside located on the cell surface, the results suggest that GM1 plays an essential role in regulating excitatory opioid receptor functions. This hypothesis was tested by treating DRG neurons in mouse DRG-cord explants with exogenous gangliosides and determining whether the efficacy of opioid agonists in prolonging the APD is enhanced. The threshold concentration of the opioids, dynorphin(1-13) and morphine required to prolong the APD in many DRG neurons was markedly decreased from nM to fM levels after bath exposure to 10 nM to 1 microM GM1 ganglioside for less than 5 min. In contrast, GM2 and GM3 gangliosides and asialo-GM1 ganglioside were ineffective, even when DRG neurons were exposed to high concentrations (1-10 microM) for periods greater than 1 h. Although GD1a, GD1b and GQ1b gangliosides appeared to be as effective as GM1 when tested at microM concentrations for 15 min, tests at lower concentrations, shorter periods, and/or at lower temperature (24 degrees vs 34 degrees C), showed that they were significantly less effective than GM1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The ultra-potent opioid analgesic, etorphine, elicits naloxone-reversible, dose-dependent inhibitory effects, i.e. shortening of the action potential duration (APD) of naive and chronic morphine-treated sensory dorsal root ganglion (DRG) neurons, even at low (pM-nM) concentrations. In contrast, morphine and most other opioid agonists elicit excitatory effects, i.e. APD prolongation, at these low opioid concentrations, require much higher (ca. 0.1–1 μM) concentrations to shorten the APD of naive neurons, and evoke only excitatory effects on chronic morphine-treated cells even at high > 1–10 wM concentrations. In addition to the potent agonist action of etorphine at μ-, δ- and κ-inhibitory opioid receptors in vivo and on DRG neurons in culture, this opioid has also been shown to be a potentantagonist of excitatory μ-, δ- and κ-receptor functions in naive and chronic morphine-treated DRG neurons. The present study demonstrates that the potent inhibitory APD-shortening effects of etorphine still occur in DRG neurons tested in the presence of a mixture of selective antagonists that blocks all μ-, δ- and κ-opioid receptor-mediated functions, whereas addition of the epsilon (ε)-opioid-receptor antagonist, β-endorphin(1–27) prevents these effects of etorphine. Furthermore, after markedly enhancing excitatory opioid receptor functions in DRG neurons by treatment with GM1 ganglioside or pertussis toxin, etorphine showsexcitatory agonist action onnon-μ-/δ-/κ-opioid receptor functions in these sensory neurons, in contrast to its usual potent antagonist action on μ-, δ- and κ-excitatory receptor functions in naive and even in chronic morphine-treated cells which become supersensitive to the excitatory effects of μ-, δ- and -opioid agonists. This weak excitatory agonist action of etorphine on non-μ-/δ-/κ-opioid receptor functions may account for the tolerance and dependence observed after chronic treatment with extremely high doses of etorphine in vivo.  相似文献   

8.
S F Fan  K F Shen  S M Crain 《Brain research》1991,558(1):166-170
Previous studies showed that low concentrations of opioids prolong the calcium-dependent component of the action potential duration (APD) of dorsal root ganglion (DRG) neurons, whereas higher concentrations shorten the APD. In the present study whole-cell voltage-clamp, as well as cell-attached membrane-patch voltage-clamp, recordings demonstrate that application of picomolar to nanomolar concentrations of mu, delta or kappa opioid agonists (DAGO, DPDPE or dynorphin) to DRG neurons in dissociated cell cultures reversibly decreased the activities of voltage-sensitive K+ channels. Pretreatment of DRG neurons with the opioid receptor antagonists, naloxone (30 nM) or diprenorphine (1 nM) prevented mu/delta or kappa opioid-induced decreases in K+ channel activities, respectively. Since opioids added to the bath solution decreased the activities of K+ channels in the membrane patch sealed off by the pipette tip, our results provide strong evidence that some modes of excitatory modulation of the action potential of DRG neurons are mediated by diffusible second messengers. The data are consonant with our previous studies indicating that opioids can elicit excitatory effects on sensory neurons via cholera toxin-sensitive Gs-linked excitatory opioid receptors coupled to cyclic AMP-dependent ionic channels.  相似文献   

9.
Prolongation of the action potential duration of dorsal root ganglion (DRG) neurons by low (nM) concentrations of opioids occurs through activation of excitatory opioid receptors that are positively coupled via Gs regulatory protein to adenylate cyclase. Previous results suggested GM1 ganglioside to have an essential role in regulating this excitatory response, but not the inhibitory (APD-shortening) response to higher (μM) opioid concentrations. Furthermore, it was proposed that synthesis of GM1 is upregulated by prolonged activation of excitatory opioid receptor functions. To explore this possibility we have utilized cultures of hybrid F11 cells to carry out closely correlated electrophysiological and biochemical analyses of the effects of chronic opioid treatment on a homogeneous population of clonal cells which express many functions characteristic of DRG neurons. We show that chronic opioid exposure of F11 cells does, in fact, result in elevated levels of GM1 as well as cyclic adenosine monophosphate (AMP), concomitant with the onset of opioid excitatory supersensitivity as manifested by naloxone-evoked decreases in voltage-dependent membrane K+ currents. Such elevation of GM1 would be expected to enhance the efficacy of excitatory opioid receptor activation of the Gs/adenylate cyclase/cyclic AMP system, thereby providing a positive feedback mechanism that may account for the remarkable supersensitivity of chronic opioid-treated neurons to the excitatory effects of opioid agonists as well as antagonists. These in vitro findings may provide novel insights into the mechanisms underlying naloxone-precipitated withdrawal syndromes and opioid-induced hyperalgesia after chronic opiatf addiction in vivo. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Ca2+ entry into different diameter cell bodies of dorsal root ganglion (DRG) neurons depolarized with action potential (AP) waveform commands was studied using the whole-cell patch-clamp technique and pharmacological probes. We have previously shown that Ca2+ current expression in DRG neuron cell bodies depends on cell diameter. In small diameter DRG neurons, L- and N-type Ca2+ currents usually accounted for most Ca2+ entry during APs as determined by blockade with nimodipine and omega-conotoxin GVIA (omega-CgTx). In medium- diameter DRG neurons, T-type Ca2+ currents accounted for 29% or 54% of Ca2+ entry in cells held at -60 mV or -80 mV, respectively, based on blockade by amiloride. T-type Ca2+ currents did not usually contribute to Ca2+ entry in large diameter DRG neurons. An amiloride/omega-CgTx/nimodipine-resistant Ca2+ current was prominent in medium diameter DRG neurons, while L- and N-type Ca2+ currents played a relatively small role in Ca2+ entry. In all DRG neuron sizes, AP-generated currents were large in amplitude, resulting in significant Ca2+ entry. APs with slower rates of repolarization increased Ca2+ entry. In DRG neurons that expressed T-type Ca2+ currents, the duration of Ca2+ current entry during APs was prolonged, and this prolongation was reduced by amiloride. Thus, antagonists selective for different Ca2+ channels produced different patterns of blockade of AP-generated Ca2+ entry in different diameter DRG cell bodies. Selective Ca2+ channel modulation by neurotransmitters might be expected to have similar effects.  相似文献   

11.
Ethanol effects on the central nervous system have been well investigated and described in recent years; modulations, by ethanol, of several ligand-gated and voltage-gated ion channels have been found. In this paper, we describe a shortening of action potential duration (APD) by ethanol in approximately equal to 40% of small diameter neurons in rat dorsal root ganglia (DRG). In these neurons, designated as group A neurons, we observed an ethanol-induced increase in whole-cell outward-current. As iberiotoxin, a specific blocker of large-conductance calcium-activated K+ channels (BK(Ca) channels), blocks the effects of ethanol, we investigated the interaction between these channels and ethanol in outside-out patches. Open probability of BK(Ca) channels was increased 2-6 x depending on the concentration (40-80 mM approximately equal to 2-4 per thousand v/v) of ethanol. Functional consequences were a prolongation of the refractory period, which was reversible after addition of iberiotoxin, and reduced firing frequency during ethanol application. In contrast, another type of neuron (group B) showed a prolonged APD during application of ethanol which was irreversible in most cases. In 90% of cases, neurons of group A showed a positive staining for isolectin B4 (I-B4), a marker for nociceptive neurons. We suggest that the activation of BK(Ca) channels induced by clinically relevant concentrations of ethanol, the resulting modulations of APD and refractory period of DRG neurons, might contribute to clinically well-known ethanol-induced analgesia and paresthesia.  相似文献   

12.
Background Endogenous opioids are implicated in pain‐regulation in chronic inflammatory bowel disease (IBD). We sought to examine whether endogenous opioids suppress the excitability of colonic nociceptive dorsal root ganglia (DRG) neurons during chronic IBD, and if so, whether modulation of underlying voltage‐gated K+ currents was involved. Methods The effects of chronic dextran sulfate sodium (DSS) colitis on afferent signaling in mice was studied using patch clamp recordings. Colonic DRG neurons were identified using Fast Blue retrograde labeling and recordings obtained from small DRG neurons (<40 pF). Key Results In current‐clamp recordings, the rheobase of neurons was increased 47% (P < 0.01) and action potential discharge at twice rheobase decreased 23% (P < 0.05) following incubation in colonic supernatants from chronic DSS mice. β‐endorphin increased 14‐fold, and tissue opioid immunoreactivity and expression in CD4+ cells observed by flow cytometry increased in chronic DSS colons. Incubation of naïve neurons in the μ‐opioid receptor agonist D‐Ala2, N‐ MePhe4, Gly‐ol (DAMGO) (10 nM) partially recapitulated the effects of supernatants from DSS mice on rheobase. Supernatant effects were blocked by the μ‐opioid receptor antagonist naloxone. In voltage clamp, chronic DSS supernatants and DAMGO increased IA K+ currents. Conclusions & Inferences The release of endogenous opioids during chronic inflammation in mice suppresses the excitability of nociceptive DRG neurons. Targeting immune cells may provide a novel means of modulating IBD pain.  相似文献   

13.
Delta opioid receptors (DOR) are G-protein coupled 7-transmembrane receptors (GPCR), expressed by thymic and splenic T cells, that modulate interleukin (IL)-2 production and proliferation in response to concanavalin A or crosslinking the TCR. Mitogen-activated protein kinases (MAPKs) are involved in mediating intracellular responses to TCR crosslinking. In addition, MAPKs can be activated by signaling cascades that are initiated by the release of G-proteins from GPCRs. To determine whether DORs expressed by T cells signal through the MAPKs, extracellular-regulated kinases (ERKs) 1 and 2, two delta opioid peptides, deltorphin and [D-Ala2,D-Leu5]-enkephalin (DADLE), were studied in Jurkat cells that had been stably transfected with DOR (DOR-Ju.1). These peptides rapidly and dose-dependently induced ERK phosphorylation; pretreatment with naltrindole (NTI), a selective DOR antagonist, abolished this. Pertussis toxin (PTX) also inhibited phosphorylation, indicating the involvement of the Gi/o proteins. Herbimycin A, a protein tyrosine kinase (PTK) inhibitor, reduced the DADLE-induced ERK phosphorylation by 68%. ERK phosphorylation was inhibited by Bisindolylmaleimide 1 (GF109203X), an inhibitor of PKC, and by pretreatment with PMA prior to DADLE. A GTP/GDP exchange assay was used to assess the potential role of Ras in the pathway leading to ERK phosphorylation; DADLE failed to stimulate GTP/GDP exchange in comparison to PMA. Additional studies showed that DADLE stimulated an increase in cfos mRNA; this was reduced by the inhibitor of MAPK/ERK kinase (MEK), PD98059. Therefore, in DOR-Ju.1 cells, DOR agonists stimulate ERK phosphorylation in a Ras independent and PKC-dependent manner; PTKs appear to be involved. MAPKs mediate the increase in cfos mRNA induced by DOR agonists.  相似文献   

14.
Neuronal activity may lead to a variety of responses in neighbouring glial cells; in general, an ensemble of neurons needs to be active to evoke a K+- and/or neurotransmitter-induced glial membrane potential change. We have now detected a signal transfer from a single neuromodulatory Leydig neuron to the giant neuropil glial cells in the central nervous system of the leech Hirudo medicinalis. Activation of a Leydig neuron, two of which are located in each segmental ganglion, elicits a hyperpolarization in the giant neuropil glial cells. This hyperpolarization could be mimicked by bath application of the peptide myomodulin A (1 nM-1.0 microM). Myomodulin-like immunoreactivity has recently been found to be present in a set of leech neurons, including Leydig neurons (Keating & Sahley 1996, J. Neurobiol., 30, 374-384). The glial responses to Leydig neuron stimulation persisted in a high-divalent cation saline, when polysynaptic pathways are suppressed, indicating that the effects on the glial cell were direct. The glial responses to myomodulin A application persisted in high-Mg2+/low-Ca2+ saline, when chemical synaptic transmission is suppressed, indicating a direct effect of myomodulin A on the glial membrane. The glial hyperpolarization evoked by myomodulin A was dose dependent (EC50 = 50 nM) and accompanied by a membrane conductance increase of approximately 25%. Ion substitution experiments indicated that myomodulin A triggered a Ca2+-independent K+ conductance. Thus, our results suggest, for the first time, direct signal transmission from an identified modulatory neuron to an identified glial cell using a myomodulin-like peptide.  相似文献   

15.
To clarify the effects of opioid peptides, and in particular the effects of kappa-receptor agonists on the activity of supraoptic neurons, extracellular recordings were made from 71 spontaneously firing neurons in the rat hypothalamic slice preparation. Of 71 neurons, 28 showed a phasic firing pattern (phasic neurons: putative vasopressin neurons). The mean firing rate of phasic neurons was 2.6 spikes/s (intraburst firing rate 5.4 ± 2.2 spikes/s). The mean firing rate of neurons classified as non-phasic neurons (putative oxytocin neurons) was 4.5 spikes/s. Following bath application of leumorphin (LM) at 10?7 M, which has potent opioid activity at kappa-receptors, 17 (61%) of 28 phasic neurons were inhibited and 22 (51%) of 43 non-phasic neurons were inhibited. Excitation was observed in only one non-phasic neuron. The dose-dependence of the response to LM was tested in five supraoptic neurons. There was an inverse relationship between LM concentration and percent change in firing rate. The threshold concentration of LM was approximately 10?8 M. The relatively selective kappa-receptor antagonist, MR-2266, completely blocked the LM-induced responses. Its effects were long-lasting and only partial recovery was observed 2 h after the application of MR-2266. Dynorphin had similar inhibitory effects on supraoptic neurons to those obtained with LM when tested on the same neurons. In another series of experiments the mu-receptor agonist morphine and the delta-receptor agonist [D-Ala, D-leu]-enkephalin (DADLE) were applied to 28 supraoptic neurons (12 phasic and 16 non-phasic neurons) at 10?7 M and their actions compared directly with that of LM. Only two of 12 phasic neurons tested were inhibited by DADLE and none of five phasic neurons tested was inhibited by morphine, while eight of the 12 neurons tested were inhibited by LM. By contrast the non-phasic neurons tested were inhibited by application of each of the peptides; seven of 16 neurons tested were not only inhibited by LM, but also five of 11 neurons by DADLE and seven of 15 by morphine. The magnitude of the responses varied from cell to cell. These results suggest that LM acts at the same receptors as dynorphin, and that opioids acting preferentially at kappa-receptors inhibit both vasopressin and oxytocin neurons while delta- and mu-receptor agonists inhibit primarily oxytocin neurons.  相似文献   

16.
Fetal mouse spinal cord (SC) and dorsal root ganglion (DRG) neurons undergo a process of maturation in cell culture lasting a month or more. We have investigated the role of electrical activity in this maturational process with the use of tetrodotoxin (TTX), the specific blocker of the voltage-sensitive sodium channel responsible for action potential generation. This agent completely eliminates the spikes and related synaptic activity which occur abundantly in untreated cultures. Such blockade of electrical activity in the cultures, when begun early (day 1 or day 8 in vitro), results in a 85-95% reduction in the number of large SC neurons, without affecting DRG neuron numbers. TTX treatment initiated when cultures are mature (day 70) has no significant effect on either DRG or SC neurons. Intermediate effects are obtained when treatment is initiated at day 35 in vitro. The activity of the nerve-specific enzyme choline acetyltransferase, is significantly decreased by early TTX treatment, while DNA and protein content of the cultures (primarily contributed by glial and fibroblastic cells) is not affected.  相似文献   

17.
The effects of nociceptin (orphanin FQ) on medial vestibular nucleus (MVN) neurons in vitro, and on vestibulo-ocular reflex (VOR) function in vivo, were investigated in order to determine the role of 'opioid-like orphan' (ORL1) receptors in modulating vestibular reflex function in the rat. Nociceptin (100 nM-1 microM) potently inhibited the spontaneous discharge of the majority (86%) of MVN neurons tested in the rat dorsal brainstem slice preparation in vitro. This inhibition was dose-dependent and persisted after blockade of synaptic transmission in low Ca2+/Co2+ medium. The inhibitory effects were insensitive to the opioid antagonist naloxone, but were effectively antagonised by the selective ORL1 receptor antagonist, [Phe1Psi(CH2-NH)Gly2]Nociceptin(1-13)NH2. The majority of MVN neurons ( approximately 70%) were inhibited by both nociceptin and the delta-opioid receptor agonist, [D-ala2, D-leu5]-enkephalin (DADLE), while a minority of cells (approximately 30%) were selectively responsive either to DADLE or to nociceptin, but not both. Co-application of nociceptin and DADLE to neurons that were responsive to both agonists, resulted in an inhibitory response that was the same as or less than the inhibition evoked by either agonist alone. Intracellular whole-cell patch clamp recordings from identified Type A and Type B MVN cells showed that both these cell types are responsive to nociceptin, which induced membrane hyperpolarisation and decrease in input resistance consistent with its known effects on membrane K currents in other cell types. In alert rats, i.c.v. injection of nociceptin caused a significant decrease in the gain of the hVOR and resulted in a prolongation of post-rotatory nystagmus in darkness. The decrease in VOR gain and the increase in the VOR time-constant was significant even at low doses of nociceptin which did not cause other observable behavioural effects. These findings demonstrate that endogenously released nociceptin may have a hitherto unexplored role in the functional modulation of the neural pathways that mediate vestibular reflexes in vivo.  相似文献   

18.
Exposure of fetal mouse spinal cord-ganglion explants to morphine (greater than 0.1 microM) results in naloxone-reversible, dose-dependent depression of sensory-evoked dorsal-horn synaptic-network responses within a few minutes. After chronic opiate exposure (1 microM) for 2-3 days, these dorsal cord responses recover and can then occur even in greater than 10 microM morphine. In the present study, when naive explants were treated with forskolin (10-50 microM)--a selective activate activator of cyclase (AC)--for 10-30 min prior to and during exposure to morphine (0.1-0.3 microM) or D-Ala2-D-Leu5-enkephalin (0.03-0.1 microM), the usual opioid depressant effects on dorsal-horn responses generally failed to occur (10-30 min tests). Dibutyryl cyclic AMP (10 microM) or the more lipid-soluble analog, dioctanoyl cyclic AMP (0.1 mM), produced a similar degree of subsensitivity to opiates as 10 microM forskolin. With high levels of forskolin (50 microM), even concentrations of morphine up to 1-10 microM were far less effective in depressing cord responses. These effects of exogenous cAMP analogs and forskolin on cord-ganglion explants are probably both mediated by increases in intracellular cAMP. The marked decrease in opioid sensitivity of cAMP or forskolin-treated cord-ganglion explants provides significant electrophysiologic data compatible with the hypothesis that neurons may develop tolerance and/or dependence during chronic opioid exposure by a compensatory enhancement of their AC/cAMP system following initial opioid depression of AC activity. Previous evidence relied primarily on behavioral tests and biochemical analyses of cell cultures. It will be of interest to determine if dorsal-horn tissues of cord-ganglion explants do, in fact, develop increased AC/cAMP levels as they express physiologic signs of tolerance during chronic exposure to opioids.  相似文献   

19.
Intracellular recording techniques have been used to provide information on the identity of excitatory sensory transmitters released at synapses formed between dorsal root ganglion (DRG) and dorsal horn neurons maintained in cell culture. Explants of embryonic rat DRG were added to dissociated cultures of embryonic dorsal horn neurons and synaptic potentials were recorded intracellularly from dorsal horn neurons after DRG explant stimulation. More than 80% of dorsal horn neurons within 1 mm of DRG explants received at least one fast, DRG-evoked, monosynaptic input. In the presence of high divalent cation concentrations, the acidic amino acid receptor agonists, L-glutamate, kainate, and quisqualate excited all dorsal horn neurons which received a monosynaptic DRG neuron input, whereas aspartate and N-methyl-D-aspartate (NMDA) had little or no action. Several compounds reported to antagonize the actions of acidic amino acids were tested for their ability to block DRG-evoked synaptic potentials and glutamate-evoked responses in dorsal horn neurons. 2-Amino-5-phosphonovalerate, a selective NMDA receptor antagonist, was relatively ineffective at antagonizing DRG-evoked synaptic potentials and glutamate-evoked responses. In contrast, kynurenate was found to be a potent antagonist of amino acid-evoked responses and of synaptic transmission at all DRG-dorsal horn synapses examined. The blockade of synaptic transmission by kynurenate appeared to result from a postsynaptic action on dorsal horn neurons. These findings indicate that glutamate, or a glutamate-like compound, but not aspartate, is the excitatory transmitter that mediates fast excitatory postsynaptic potentials at the DRG-dorsal horn synapses examined in this study.  相似文献   

20.
Opiate binding sites on cultured neurons derived from 6-day-old (E6) chick embryo cerebral hemispheres (CH), shown to be cholinergic by choline acetyltransferase immunostaining, were labeledd with [3H]etorphine (μ and δ opiate receptors expression) and [3H]morphine (mostly μ). When examined by light microscope autoradiography, opiate receptors were found to be expressed by most neurons and were distributed predominantly on neuronal perikarya. Muscarnic and opiate receptors in E6CH cultured neurons were found to be functionally coupled when the effects of opiate receptor occupancy on the inositol phosphate-linked muscarinic receptors was studied. Carbachol stimulated the release of [3H]inositol phosphates (InsP) from cultures preincubated with [3H]inositol and LiCl, in a dose-dependent manner, and the functional expression of muscarinic receptors peaked in number at day 7 in culture, declining thereafter. Short-term (<1h) treatment of E6 neuronal cultures with 1 μM opioid peptides such as morphiceptin or d-Ala2-d-Leu5-enkephalin (DADLE) did not not inhibit the release of inositol phosphates in response to 1 mM carbachol whereas forskolin, which also activates adenylate cyclase and raises cAMP levels, inhibited InsP release by about 25%. In contrast, long-term (48 h) opioid treatment with either morphiceptin or DADLE (1–10 μM) inhibited the carbachol-stimulated inositol phosphate release by 50%. Prolonged treatment with morphiceptin also inhibited the bradykinin-mediated release of InsP from E6CH cells. In both cases, the inhibition was blocked by the continuous presence of naloxone, suggesting that the inhibition was mediated through opiate receptors. When E6CH cells were depolarized by 30 mM K+, allowing [Ca2+]i to increase, the inhibition of inositol phosphate formation caused by long-term morphiceptin exposure was partially relieved. This 48 h (chronic) exposure to opioids may involve some depletion of available [Ca2+]i in cholinergic neurons. We propose that these interactions between the opiate and muscarinic receptor transducing systems may represent the molecular basis of the neuromodulating activity of opioids upon the cholinergic system early in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号