首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parkinson's disease (PD) is the most common movement disorder characterized by dopaminergic dysfunction and degeneration. The cause of most PD cases is unknown, although postmortem studies have implicated the involvement of oxidative stress. The identification of familial PD-associated genes offers the opportunity to study mechanisms of PD pathogenesis in model organisms. Here, we show that DJ-1A, a Drosophila homologue of the familial PD-associated gene DJ-1, plays an essential role in oxidative stress response and neuronal maintenance. Inhibition of DJ-1A function through RNA interference (RNAi) results in cellular accumulation of reactive oxygen species, organismal hypersensitivity to oxidative stress, and dysfunction and degeneration of dopaminergic and photoreceptor neurons. To identify other genes that may interact with DJ-1A in regulating cell survival, we performed genetic interaction studies and identified components of the phosphatidylinositol 3-kinase (PI3K)/Akt-signaling pathway as specific modulators of DJ-1A RNAi-induced neurodegeneration. PI3K signaling suppresses DJ-1A RNAi phenotypes at least in part by reducing cellular reactive oxygen species levels. Consistent with the genetic interaction results, we also found reduced phosphorylation of Akt in DJ-1A RNAi animals, indicating an impairment of PI3K/Akt signaling by DJ-1A down-regulation. Together with recent findings in mammalian systems, these results implicate impairments of PI3K/Akt signaling and oxidative stress response in DJ-1-associated disease pathogenesis. We also observed impairment of PI3K/Akt signaling in the fly parkin model of PD, hinting at a common molecular event in the pathogenesis of PD. Manipulation of PI3K/Akt signaling may therefore offer therapeutic benefits for the treatment of PD.  相似文献   

2.
Mutations of the DJ-1 (PARK7) gene are linked to familial Parkinson's disease. We used gene targeting to generate DJ-1-deficient mice that were viable, fertile, and showed no gross anatomical or neuronal abnormalities. Dopaminergic neuron numbers in the substantia nigra and fiber densities and dopamine levels in the striatum were normal. However, DJ-1-/- mice showed hypolocomotion when subjected to amphetamine challenge and increased striatal denervation and dopaminergic neuron loss induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine. DJ-1-/-embryonic cortical neurons showed increased sensitivity to oxidative, but not nonoxidative, insults. Restoration of DJ-1 expression to DJ-1-/- mice or cells via adenoviral vector delivery mitigated all phenotypes. WT mice that received adenoviral delivery of DJ-1 resisted 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine-induced striatal damage, and neurons overexpressing DJ-1 were protected from oxidative stress in vitro. Thus, DJ-1 protects against neuronal oxidative stress, and loss of DJ-1 may lead to Parkinson's disease by conferring hypersensitivity to dopaminergic insults.  相似文献   

3.
The brain vesicular monoamine transporter (VMAT2) pumps monoamine neurotransmitters and Parkinsonism-inducing dopamine neurotoxins such as 1-methyl-4-phenyl-phenypyridinium (MPP+) from neuronal cytoplasm into synaptic vesicles, from which amphetamines cause their release. Amphetamines and MPP+ each also act at nonvesicular sites, providing current uncertainties about the contributions of vesicular actions to their in vivo effects. To assess vesicular contributions to amphetamine-induced locomotion, amphetamine-induced reward, and sequestration and resistance to dopaminergic neurotoxins, we have constructed transgenic VMAT2 knockout mice. Heterozygous VMAT2 knockouts are viable into adult life and display VMAT2 levels one-half that of wild-type values, accompanied by smaller changes in monoaminergic markers, heart rate, and blood pressure. Weight gain, fertility, habituation, passive avoidance, and locomotor activities are similar to wild-type littermates. In these heterozygotes, amphetamine produces enhanced locomotion but diminished behavioral reward, as measured by conditioned place preference. Administration of the MPP+ precursor N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to heterozygotes produces more than twice the dopamine cell losses found in wild-type mice. These mice provide novel information about the contributions of synaptic vesicular actions of monoaminergic drugs and neurotoxins and suggest that intact synaptic vesicle function may contribute more to amphetamine-conditioned reward than to amphetamine-induced locomotion.  相似文献   

4.
Parkinson's disease (PD) is a major neurodegenerative condition with several rare Mendelian forms. Oxidative stress and mitochondrial function have been implicated in the pathogenesis of PD but the molecular mechanisms involved in the degeneration of neurons remain unclear. DJ-1 mutations are one cause of recessive parkinsonism, but this gene is also reported to be involved in cancer by promoting Ras signaling and suppressing PTEN-induced apoptosis. The specific function of DJ-1 is unknown, although it is responsive to oxidative stress and may play a role in the maintenance of mitochondria. Here, we show, using four independent methods, that DJ-1 associates with RNA targets in cells and the brain, including mitochondrial genes, genes involved in glutathione metabolism, and members of the PTEN/PI3K cascade. Pathogenic recessive mutants are deficient in this activity. We show that DJ-1 is sufficient for RNA binding at nanomolar concentrations. Further, we show that DJ-1 binds RNA but dissociates after oxidative stress. These data implicate a single mechanism for the pleiotropic effects of DJ-1 in different model systems, namely that the protein binds multiple RNA targets in an oxidation-dependent manner.  相似文献   

5.
Oxidative stress is reported as one of the most widely accepted mechanisms of maneb (MB)- and paraquat (PQ)-induced nigrostriatal dopaminergic neurodegeneration leading to the Parkinson's disease (PD) phenotype. The study investigated the effects of silymarin, an antioxidant of plant origin, and melatonin, an indoleamine produced in all species, in MB- and PQ-induced mouse model of PD. The mice were treated intraperitoneally daily with silymarin (40mg/kg) or melatonin (30mg/kg) along with respective controls for 9wk. Subsets of these animals were also treated with MB (30mg/kg) and PQ (10mg/kg), twice a week, for 9wk, 2hr after silymarin/melatonin treatment. Locomotor activities along with striatal dopamine content, tyrosine hydroxylase (TH) immunoreactivity, number of degenerating neurons, lipid peroxidation and nitrite content were estimated. Additionally, mRNA expression of vesicular monoamine transporter, cytochrome P-450 2E1 (CYP2E1), and glutathione-S-transferase A4-4 (GSTA4-4), catalytic activities of CYP2E1 and GSTA4-4 and protein expressions of unphosphorylated and phosphorylated p53 (p53 and P-p53), Bax and caspase 9 were measured in control and MB- and PQ-treated mice with either silymarin or melatonin treatments. Silymarin/melatonin significantly offset MB- and PQ-mediated reductions in locomotor activities, dopamine content, TH immunoreactivity, VMAT 2 mRNA expression and the expression of p53 protein. Silymarin/melatonin attenuated the increases in lipid peroxidation, number of degenerating neurons, nitrite content, mRNA expressions of cytochrome P-450 2E1 (CYP2E1) and GSTA4-4, catalytic activities of CYP2E1 and GST and P-p53, Bax and caspase 9 protein expressions. The results demonstrate that silymarin and melatonin offer nigrostriatal dopaminergic neuroprotection against MB- and PQ-induced PD by the modulation of oxidative stress and apoptotic machinery.  相似文献   

6.
Loss-of-function DJ-1 (PARK7) mutations have been linked with a familial form of early onset Parkinson disease. Numerous studies have supported the role of DJ-1 in neuronal survival and function. Our initial studies using DJ-1-deficient neurons indicated that DJ-1 specifically protects the neurons against the damage induced by oxidative injury in multiple neuronal types and degenerative experimental paradigms, both in vitro and in vivo. However, the manner by which oxidative stress-induced death is ameliorated by DJ-1 is not completely clear. We now present data that show the involvement of DJ-1 in modulation of AKT, a major neuronal prosurvival pathway induced upon oxidative stress. We provide evidence that DJ-1 promotes AKT phosphorylation in response to oxidative stress induced by H2O2 in vitro and in vivo following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Moreover, we show that DJ-1 is necessary for normal AKT-mediated protective effects, which can be bypassed by expression of a constitutively active form of AKT. Taken together, these data suggest that DJ-1 is crucial for full activation of AKT upon oxidative injury, which serves as one explanation for the protective effects of DJ-1.  相似文献   

7.
Disruption of neurotransmitter vesicle dynamics (transport, capacity, release) has been implicated in a variety of neurodegenerative and neuropsychiatric conditions. Here, we report a novel mouse model of enhanced vesicular function via bacterial artificial chromosome (BAC)-mediated overexpression of the vesicular monoamine transporter 2 (VMAT2; Slc18a2). A twofold increase in vesicular transport enhances the vesicular capacity for dopamine (56%), dopamine vesicle volume (33%), and basal tissue dopamine levels (21%) in the mouse striatum. The elevated vesicular capacity leads to an increase in stimulated dopamine release (84%) and extracellular dopamine levels (44%). VMAT2-overexpressing mice show improved outcomes on anxiety and depressive-like behaviors and increased basal locomotor activity (41%). Finally, these mice exhibit significant protection from neurotoxic insult by the dopaminergic toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), as measured by reduced dopamine terminal damage and substantia nigra pars compacta cell loss. The increased release of dopamine and neuroprotection from MPTP toxicity in the VMAT2-overexpressing mice suggest that interventions aimed at enhancing vesicular capacity may be of therapeutic benefit in Parkinson disease.Faulty monoamine neurotransmission is characteristic of many disorders, including Parkinson disease, depression, dystonia, attention deficit hyperactivity disorder, schizophrenia, addiction, and Huntington disease (17). Several strategies have been used to enhance monoamine signaling: administration of precursors to increase synthesis, inhibition of enzymes to prevent metabolism/degradation, inhibition of plasma membrane transporters to increase synaptic lifespan, and administration of receptor agonists to directly activate postsynaptic targets. However, these therapies fail to preserve many, if not all, of the critical aspects of chemical neurotransmission: normal transmitter synthesis, activity-dependent transmitter release and receptor activation, and receptor recovery following signal termination both by transmitter uptake and metabolism. Thus, these approaches often produce deleterious side effects or lose efficacy over time.Increasing the neurotransmitter content in the synaptic vesicle may represent a therapeutic approach capable of increasing the release of monoamines without the aforementioned adverse effects. The vesicular monoamine transporter 2 (VMAT2, SLC18A2) is responsible for the packaging of neurotransmitter into vesicles for subsequent release from monoaminergic neurons. VMAT2 is an H+-ATPase antiporter, which uses the vesicular electrochemical gradient to drive the packaging of cytosolic transmitter into small synaptic and dense core vesicles (810). VMAT2 is also essential for survival of dopamine neurons as cytosolic dopamine is neurotoxic (11, 12). By sequestering intracellular dopamine into vesicles, VMAT2 prevents cytosolic dopamine accumulation and its subsequent conversion to neurotoxic species (1317). Thus, VMAT2 serves two primary functions: to mediate monoamine neurotransmission and to counteract intracellular toxicity.Previous data clearly show that disruption of VMAT2 function produces adverse effects. Pharmacological VMAT2 inhibition by reserpine or tetrabenazine results in monoamine depletion and negative behavioral consequences, including akinesia and depressive behaviors (1820). Genetic reduction of VMAT2 in mice also causes depletion of dopamine, norepinephrine, and serotonin and progressive neurodegeneration in multiple monoaminergic regions (2125). Similarly, a VMAT2 mutation in humans that dramatically reduces vesicular function was recently linked to an infantile parkinsonism-like condition with symptoms caused by deficits in all of the monoamines (26). SNPs in the VMAT2 gene have also been associated with neurocognitive function in relatives of patients with schizophrenia and even in posttraumatic stress disorder (27, 28). Interestingly, haplotypes within the VMAT2 promoter region that increase VMAT2 expression have been associated with a decreased risk of Parkinson disease (29, 30). Although the detrimental effects of reduced VMAT2 function are recognized, our understanding of the potential benefits of increased VMAT2 function in vivo has been limited to a Drosophila model (3133). Thus, we generated VMAT2-overexpressing mice using a bacterial artificial chromosome (BAC) to determine whether increased vesicular packaging could provide an elevation of monoamine output in a mammalian system. We report here that VMAT2-overexpressing mice (VMAT2-HI) have increased vesicle capacity, increased synaptic dopamine release, improved outcomes on anxiety-like and depressive-like behaviors, and reduced vulnerability to toxic insult by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These data demonstrate that the manipulation of vesicular capacity is capable of providing a sustained enhancement of the dopamine system and suggest that the vesicle is a viable therapeutic target for numerous monoamine-deficient disorders.  相似文献   

8.
Despite different embryological origins, islet beta-cells and neurons share the expression of many genes and display multiple functional similarities. One shared gene product, vesicular monoamine transporter type 2 (VMAT2, also known as SLC18A2), is highly expressed in human beta-cells relative to other cells in the endocrine and exocrine pancreas. Recent reports suggest that the monoamine dopamine is an important paracrine and/or autocrine regulator of insulin release by beta-cells. Given the important role of VMAT2 in the economy of monoamines such as dopamine, we investigated the possible role of VMAT2 in insulin secretion and glucose metabolism. Using a VMAT2-specific antagonist, tetrabenazine (TBZ), we studied glucose homeostasis, insulin secretion both in vivo and ex vivo in cultures of purified rodent islets. During intraperitoneal glucose tolerance tests, control rats showed increased serum insulin concentrations and smaller glucose excursions relative to controls after a single intravenous dose of TBZ. One hour following TBZ administration we observed a significant depletion of total pancreas dopamine. Correspondingly, exogenous L-3,4-dihydroxyphenylalanine reversed the effects of TBZ on glucose clearance in vivo. In in vitro studies of rat islets, a significantly enhanced glucose-dependent insulin secretion was observed in the presence of dihydrotetrabenazine, the active metabolite of TBZ. Together, these data suggest that VMAT2 regulates in vivo glucose homeostasis and insulin production, most likely via its role in vesicular transport and storage of monoamines in beta-cells.  相似文献   

9.
Investigations into the cellular and molecular biology of genes that cause inherited forms of Parkinson's disease, as well as the downstream pathways that they trigger, shed considerable light on our understanding the fundamental determinants of life and death in dopaminergic neurons. Homozygous deletion or missense mutation in DJ-1 results in autosomal recessively inherited Parkinson's disease, suggesting that wild-type DJ-1 has a favorable role in maintaining these neurons. Here, we show that DJ-1 protects against oxidative stress-induced cell death, but that its relatively modest ability to quench reactive oxygen species is insufficient to account for its more robust cytoprotective effect. To elucidate the mechanism of this cell-preserving function, we have screened out the death protein Daxx as a DJ-1-interacting partner. We demonstrate that wild-type DJ-1 sequesters Daxx in the nucleus, prevents it from gaining access to the cytoplasm, from binding to and activating its effector kinase apoptosis signal-regulating kinase 1, and therefore, from triggering the ensuing death pathway. All these steps are impaired by the disease-causing L166P mutant isoform of DJ-1. These findings suggest that the regulated sequestration of Daxx in the nucleus and keeping apoptosis signal-regulating kinase 1 activation in check is a critical mechanism by which DJ-1 exerts its cytoprotective function.  相似文献   

10.
Inherited mutations in PARK7, the gene encoding DJ-1, are associated with loss of protein function and early-onset parkinsonism. Like human DJ-1 (hDJ-1), Drosophila DJ-1b protects against oxidative insult and is modified with oxidation. We demonstrate that hDJ-1 rescues flies mutant for DJ-1b, and that a conserved cysteine residue in the fly protein (C104, analogous to C106 in hDJ-1) is critical for biological antioxidant function in vivo. Targeted mutagenesis suggests that modification of DJ-1b at this residue inactivates the protective activity of the protein against oxidative stress. Further studies show that DJ-1 modification increases dramatically with age in flies, mice, and humans, with aged flies showing strikingly increased susceptibility to oxidative stress and markedly enhanced DJ-1b modification upon oxidative challenge. Overoxidation of DJ-1 with age and exposure to oxidative toxins may lead to inactivation of DJ-1 function, suggesting a role in susceptibility to sporadic Parkinson's disease.  相似文献   

11.
Parkinson disease (PD) is the most common movement disorder and, although the exact causes are unknown, recent epidemiological and experimental studies indicate that several environmental agents may be significant risk factors. To date, these suspected environmental risk factors have been man-made chemicals. In this report, we demonstrate via genetic, biochemical, and immunological studies that the common volatile fungal semiochemical 1-octen-3-ol reduces dopamine levels and causes dopamine neuron degeneration in Drosophila melanogaster. Overexpression of the vesicular monoamine transporter (VMAT) rescued the dopamine toxicity and neurodegeneration, whereas mutations decreasing VMAT and tyrosine hydroxylase exacerbated toxicity. Furthermore, 1-octen-3-ol also inhibited uptake of dopamine in human cell lines expressing the human plasma membrane dopamine transporter (DAT) and human VMAT ortholog, VMAT2. These data demonstrate that 1-octen-3-ol exerts toxicity via disruption of dopamine homeostasis and may represent a naturally occurring environmental agent involved in parkinsonism.Parkinson disease (PD), the most common movement disorder, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (1). Contributing factors include oxidative stress, mitochondrial dysfunction, disruption of dopamine handling, and protein aggregation (2). The etiology of PD remains unknown, although ∼5% of cases are linked with monogenetic inheritance and involve genetic mutations in at least six genes (SNCA, LRRK2, PARK2, PINK1, DJ-1, and ATP13A2) (3). For the remaining 95% of cases, strong epidemiological evidence associating the exposure with a variety of environmental agents, especially pesticides, has been suggested (46). Agents that cause formation of reactive oxygen species through mitochondrial inhibition, disruption of dopamine handling, or redox cycling, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), paraquat, and rotenone, all cause dopaminergic toxicity in animal models (7). Although interactions between genetic and environmental factors are thought to be major contributors to the etiology of PD, the disease was observed long before these synthetic chemicals were introduced. The vast majority of research has focused on synthetic chemicals, such as pesticides and industrial chemicals. Because PD has been around for centuries if not millennia, it is possible that common environmental factors contributed to the disease before the Industrial Revolution and the development and use of these man-made chemicals (6).Among the proposed naturally occurring environmental agents for PD etiology, the role of fungi and their metabolites has never been elucidated, despite their ubiquitous presence around us. However, the presence of fungi and their metabolites has been linked with poor indoor air quality and adverse health effects (811). The quality of indoor air is especially important, because in the United States, people spend almost 90% of their time indoors (12). Interestingly, exposure to fungi has been linked to the presence of neurologic and neuropsychiatric signs and symptoms, including movement disorders and loss of balance and coordination (13, 14). Fungi are known to emit complex mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, hydrocarbons, terpenes, and sulfur compounds and are responsible for the characteristic moldy odors related to damp indoor spaces (15).In an attempt to develop an inexpensive, invertebrate model for studying the possible toxicological effects of fungal volatile organic compounds (VOCs) associated with indoor environments, we turned to a Drosophila model. Using this model, we reported the toxicity of a variety of fungal toxicants, including 1-octen-3-ol, trans-2-octenal, 3-octanol, 2,5-dimethylfuran, and 2-octanone, at concentrations of 2.8–14 ppm (16). Out of this screen, 1-octen-3-ol was one of the most potent agents and selectively damaged the dopamine system at high levels of exposure. Given its ubiquity in the natural and built environment and recognizing the prevalence of PD long before neurotoxic chemicals such as paraquat or MPTP were synthesized or used (17), we decided to further investigate the role of 1-octen-3-ol as a possible etiological agent for PD.In this report, we demonstrate that exposure of Drosophila to 1-octen-3-ol vapors at lower concentrations (0.5 ppm) results in loss of dopamine neurons, accompanied by a decrease in dopamine levels. Mechanistically, 1-octen-3-ol appears to interfere with proper dopamine handling, which was reflected by an increase in the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) and its ability to inhibit uptake of dopamine in vitro. Furthermore, we assess the role of vesicular monoamine transporter (VMAT) in 1-octen-3-ol–mediated toxicity using genetic and cell-culture assays. Taken together, these data demonstrate that low concentrations of a natural fungal volatile organic compound lead to disruption of dopamine homeostasis and also interact with genetic variants in dopamine biosynthesis to increase dopaminergic neurodegeneration.  相似文献   

12.
Recent evidence has indicated that common mechanisms play roles among multiple neurological diseases. However, the specifics of these pathways are not completely understood. Stroke is caused by the interruption of blood flow to the brain, and cumulative evidence supports the critical role of oxidative stress in the ensuing neuronal death process. DJ-1 (PARK7) has been identified as the gene linked to early-onset familial Parkinson's disease. Currently, our work also shows that DJ-1 is central to death in both in Vitro and in Vivo models of stroke. Loss of DJ-1 increases the sensitivity to excitotoxicity and ischemia, whereas expression of DJ-1 can reverse this sensitivity and indeed provide further protection. Importantly, DJ-1 expression decreases markers of oxidative stress after stroke insult in Vivo, suggesting that DJ-1 protects through alleviation of oxidative stress. Consistent with this finding, we demonstrate the essential role of the oxidation-sensitive cysteine-106 residue in the neuroprotective activity of DJ-1 after stroke. Our work provides an important example of how a gene seemingly specific for one disease, in this case Parkinson's disease, also appears to be central in other neuropathological conditions such as stroke. It also highlights the important commonalities among differing neuropathologies.  相似文献   

13.
DJ-1, a cancer-associated protein protects cells from multiple toxic stresses. The expression of DJ-1 and its influence on thyroid cancer cell death has not been investigated so far. We analyzed DJ-1 expression in human thyroid carcinoma cell lines and the effect of DJ-1 on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. DJ-1 was expressed in human thyroid carcinoma cell lines; small interfering RNA-mediated downregulation of its levels significantly sensitized thyroid carcinoma cells to TRAIL-induced apoptosis, whereas the forced exogenous expression of DJ-1 significantly suppressed cell death induced by TRAIL. We also report here that TRAIL-induced thyroid cancer cell apoptosis is mediated by oxidative stress and that DJ-1, a potent nutritional antioxidant, protects cancer cells from apoptosis at least in part by impeding the elevation of reactive oxygen species levels induced by TRAIL and impairing caspase-8 activation. Subsequently, we investigated DJ-1 expression in 52 normal and 74 primary thyroid carcinomas from patients of China Medical University. The protein was not detectable in the 52 specimens of normal thyroid, while 70 out of 74 analyzed carcinomas (33 out of 33 follicular, 17 out of 19 papillary, 12 out of 13 medullar, and 8 out of 9 anaplastic) were clearly positive for DJ-1 expression. Our data demonstrated that DJ-1 is specifically expressed in thyroid carcinomas and not in the normal thyroid tissue. In addition, the protein modulates the response to TRAIL-mediated apoptosis in human neoplastic thyroid cells, at least partially through its antioxidant property.  相似文献   

14.
目的 探讨融合DJ-1及其活性多肽片段的抗氧化应激作用及其机制。方法在稳定的抗氧化应激实验系统中,分别观察20μmol/LH2O2作用下不同质量浓度His融合DJ-1对钙调神经磷酸酶(CaN)活性的影响;在1.5μmol/LH2O2作用下DJ-1活性多肽片段102—107IAMCA和106—111CAGPTA对乳酸脱氢酶(LDH)活性的影响。结果两种浓度His融合DJ.1均可对抗H20:诱导的氧化应激,恢复CaN活性;DJ-1活性多肽片段102—107IAAICA和106~111CAGPTA均可部分对抗H2O2诱导的氧化应激,提高LDH活性。结论融合DJ-1及其活性多肽片段具有抗氧化应激作用;DJ-1完整蛋白可能通过自身C106残基氧化来对抗氧化应激,此为今后对抗H2O2活性多肽的发展及应用提供了依据。  相似文献   

15.
In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samples from 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism. Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases.  相似文献   

16.
Exposure to early life stress has been suggested to increase an individual's vulnerability to methamphetamine (MA) dependence. Although there is no cure for drug dependence, the opioid and vesicular monoamine transporter 2 (VMAT2) systems may be useful targets for treatment insofar as they play pivotal roles in the neurochemistry of addiction. Here we investigated the effects of naltrexone (opioid antagonist) and lobeline (VMAT2 inhibitor) on MA-induced place preference in adolescent rodents subjected to early life trauma (maternal separation, MS) and controls, as well as the effects on dopamine and serotonin levels in the striatum. We found: (1) maternal separation attenuated methamphetamine-induced place preference; (2) lobeline and naltrexone treatment had differential effects on serotonin and dopamine concentrations in the striatum, naltrexone increased serotonin levels in the maternally separated animals. The hypothesized effect of early adversity increasing MA-induced place preference may not be apparent in adolescence. However the data are consistent with the hypothesis that early life stress influences neurochemical pathways that predispose an individual to drug dependence.  相似文献   

17.
The recent availability of mice lacking the neuronal form of the vesicular monoamine transporter 2 (VMAT2) affords the opportunity to study its roles in storage and release. Carbon fiber microelectrodes were used to measure individual secretory events of histamine and 5-hydroxytryptamine (5-HT) from VMAT2-expressing mast cells as a model system for quantal release. VMAT2 is indispensable for monoamine storage because mast cells from homozygous (VMAT2(-/-)) mice, while undergoing granule-cell fusion, do not release monoamines. Cells from heterozygous animals (VMAT2(+/-)) secrete lower amounts of monoamine per granule than cells from wild-type controls. Investigation of corelease of histamine and 5-HT from granules in VMAT2(+/-) cells revealed 5-HT quantal size was reduced more than that of histamine. Thus, although vesicular transport is the limiting factor determining quantal size of 5-HT and histamine release, intragranular association with the heparin matrix also plays a significant role.  相似文献   

18.
Loss-of-function DJ-1 mutations can cause early-onset Parkinson's disease. The function of DJ-1 is unknown, but an acidic isoform accumulates after oxidative stress, leading to the suggestion that DJ-1 is protective under these conditions. We addressed whether this represents a posttranslational modification at cysteine residues by systematically mutating cysteine residues in human DJ-1. WT or C53A DJ-1 was readily oxidized in cultured cells, generating a pI 5.8 isoform, but an artificial C106A mutant was not. We observed a cysteine-sulfinic acid at C106 in crystalline DJ-1 but no modification of C53 or C46. Oxidation of DJ-1 was promoted by the crystallization procedure. In addition, oxidation-induced mitochondrial relocalization of DJ-1 and protection against cell death were abrogated in C106A but not C53A or C46A. We suggest that DJ-1 protects against neuronal death, and that this is signaled by acidification of the key cysteine residue, C106.  相似文献   

19.
Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine‐induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R?/? mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R?/? mice.  相似文献   

20.
Abstract:  Parkinson's disease (PD) is a movement disorder resulting from nigrostriatal dopaminergic neurodegeneration. The impairment of mitochondrial function and dopamine synaptic transmission are involved in the pathogenesis of PD. Two mitochondrial inhibitors, 1-methyl-4-phenylpyridine (MPP+) and rotenone, have been used to induce dopaminergic neuronal death both in in vitro and in vivo models of PD. Because the uptake of MPP+ is mediated by the dopamine transporter (DAT), we used a cell-permeable rotenone-induced PD model to investigate the role of DAT and dopamine D2 receptor (D2R) on dopaminergic neuronal loss. Rotenone subcutaneously infused for 14 days induced PD symptoms in rats, as indicated by reduced spontaneous locomotor activity (hypokinesis), loss of tyrosine hydroxylase (TH, a marker enzyme for dopamine neurons) immunoreactivity in the substantia nigra and striatum, obvious α-synuclein accumulation, downregulated DAT protein expression, and upregulated D2R expression. Interestingly, rotenone also caused significant noradrenergic neuronal loss in the locus coeruleus. Melatonin, an antioxidant, prevented nigrostriatal neurodegeneration and α-synuclein aggregation without affecting the rotenone-induced weight loss and hypokinesis. However, rotenone-induced hypokinesis was markedly reversed by the DAT antagonist nomifensine and body weight loss was attenuated by the D2R antagonist sulpiride. In addition, both antagonists significantly prevented the reduction of striatal TH or DAT immunoreactivity but not the loss of nigral TH- and DAT-immunopositive neurons. These results suggested that oxidative stress and DAT downregulation are involved in the rotenone-induced pathogenesis of nigrostriatal dopaminergic neurodegeneration, whereas D2R upregulation may simply represent a compensatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号